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Abstract

Hypernym discovery aims to identify all possi-
ble hypernyms of a given term. The most re-
cent hypernym discovery models exploit mul-
tiple mapping functions to project a term to
different semantic spaces and then aggregate
these embeddings to a general representation
for further classification. We refer to this
model as a parallel style model. In this work,
we observe that there are hierarchical relations
between a target terms’ hypernyms. How-
ever, these hierarchical relations were not suf-
ficiently considered in the previous parallel
style model. To leverage the hierarchical rela-
tions, we propose a sequential style model that
recurrently maps the query words to their hy-
pernyms, starting from the most specific ones
to the less specific ones. Empirical studies
on SemEval-2018 Task 9 confirm the effective-
ness of the presented model.

1 Introduction

Hypernymy, namely “is-a” relation, is a vital
lexical-semantic relation in natural languages,
which relates general terms to their instances or
subtypes. In a hypernymy relation, we name a
specific instance or subtype hyponym and its re-
lated general term hypernym. For instance, (apple,
fruit) is in hypernymy relation, where apple is a
hyponym and fruit is one of its hypernyms. Due
to its general representation ability of semantic re-
lations, hypernymy becomes an essential concept
in modern natural-language research, and hyper-
nymy detection becomes a fundamental component
in many natural language processing (NLP) tasks,
such as taxonomy construction (Snow et al., 2006;
Navigli et al., 2011), semantic search (Hoffart et al.,
2014; Roller et al., 2014; Roller and Erk, 2016),
textual entailment (Dagan et al., 2013; Bowman
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Figure 1: The parallel modeling (left) and sequential
modeling (right). The Dejan is the name of a basket-
ball player. The Bas Player denotes the Basketball
Player hypernym.

et al., 2015; Yu et al., 2020) and question answer-
ing (Yahya et al., 2013; Gupta et al., 2018).

One branch of existing works builds the
hypernymy-relation-identification problem as a
“detection” task, which is only interested in whether
a given term pair “is” or “is not” in hypernymy re-
lation. These works formulate hypernym detection
as a binary classification task. This hypernym de-
tection task has been studied for years and plenty
of models have been successfully applied in this
task (Held and Habash, 2019a; Le et al., 2019).

This paper focuses on another problem named
hypernym “discovery”, which is different from the
detection task. Given an input term, the hyper-
nym discovery task retrieves a ranked list of its
suitable hypernyms from a large corpus. For train-
ing, some hyponyms with their gold hypernym lists
are provided. SemEval-2018 Task 9 (Camacho-
Collados et al., 2018) is the only benchmark for this
task. Existing studies working on this task mainly
build a parallel mapping model (Bernier-Colborne
and Barriere, 2018; Fu et al., 2014; Ustalov et al.,
2017; Yamane et al., 2016). It introduces mul-
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tiple parallel projections, each with independent
parameters, to extract features and score the given
hyponym/hypernym pair, as shown in the left pic-
ture of Figure 1. This model structure is motivated
by the assumption that each fine-grained “is-a” re-
lation should be modeled by a specific projection.
However, the parallel mapping model may be in-
effective due to uncountable ”is-a” relation types
in real-world applications. It may also suffer from
overfitting due to its large model capacity. It also
ignores the relations between different projections
because they are independently learned.

To overcome the limitations of the parallel map-
ping model, we propose a recurrent mapping
model. Our model is motivated by the observa-
tion that a hypernymy term may be produced by
the “hypernymy transformation”, which transforms
a term to its closely related hypernym via a pro-
jection, as shown in Figure 1 (right). In the fig-
ure, we want to identify hypernyms of the term
Dejan. The higher-level hypernym Person may
be transformed from a Dejan–Bas Player–
Sports Man–Person path. The parallel model-
ing in Figure 1 (left) may not have the ability to
capture these sequential relations. Thus we devise
a recurrent mapping model for these sequential re-
lations. Note that the projection in our recurrent
mapping model is shared among all hops. We as-
sume that a higher-level hypernym term can be
generated by operating multiple hypernymy trans-
formations recurrently from the given term. In this
way, we build the sequential relations between the
transformed terms and largely reduce the parame-
ters used in projection.

We also consider the types of hyponyms when
building our recurrent mapping model. As pointed
out in previous work (Bernier-Colborne and Bar-
riere, 2018; Camacho-Collados et al., 2018), hy-
ponyms are divided into two types, namely, the con-
cept type and the entity type. This type information
is available in the dataset. According to the type of
a hyponym, the hypernymy relation can be divided
into “subclass-of” (e.g. A guitar is an instrument)
and “instance-of”(e.g. Rome is a city). The for-
mer represents the hypernymy relation between
two concepts, and the latter connects an entity-
hyponym with a concept-hypernymy. We first ex-
ploit two projections to obtain type-enhanced rep-
resentation for different types of hyponyms, then
feed the type-enhanced representation to a unified
recurrent mapping model. In this way, we provide

appropriate additional model capacity to handle dif-
ferent types of hyponyms and simultaneously we
can utilize all data with hyponyms that belong to
both types to train our model.

Our recurrent model outputs a representation
vector at each hop. These vectors indicate hyper-
nym representations from different hierarchy levels
corresponding to the original hyponym. While scor-
ing a candidate hypernym, we exploit an attention
mechanism to aggregate hypernym representations
from each hierarchy level. The attention weight of
a level is viewed as the probability of the candidate
hypernym lying in that level.

In summary, the contributions of this work are
as follows:

• We propose a recurrent mapping model that
utilizes a shared mapping unit to model the
inherent hierarchical dependencies between
hypernyms.

• To exploit the hyponym-type information, we
use an independent projection matrix for each
type to map hyponyms of different types to
hypernym space.

• We utilize the attention mechanism into the ag-
gregation module to obtain learnable weight.

2 Related Work

Earlier research on hypernym detection mainly
focuses on unsupervised methods, which can be
categorized into pattern-based methods and dis-
tributional methods. Pioneered by Hearst (1992),
the pattern-based methods pre-define some com-
mon patterns that indicate hypernym relation, for
example, word phrase “such as”, “especially”.
Words occurring together in these pre-defined
patterns will be extracted as hyponym/hypernym
pairs. This method is quite intuitive. However,
one serious problem is sparsity, since many hy-
ponym/hypernym pairs never co-occur explicitly
in the corpus, let alone in specific patterns. As
a result, this method can provide high accuracy,
at the cost of low recall. Seitner et al. (2016) try
to improve this method by proposing an extended
set of patterns, while (Snow et al., 2004; Shwartz
et al., 2016) put forward methods to learn such
lexical-syntactic patterns automatically. To further
alleviate the sparsity problem, distributional mod-
els are proposed. Based on distributional inclusion
hypothesis (DIH, Geffet and Dagan (2005)), these
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models represent every word as a distributional vec-
tor. Hyponym/hypernym pairs that never co-occur
in the corpus can be captured based on the relation
on their distributional vectors.

Most recent studies on hypernym discovery are
supervised methods. Fu et al. (2014) was in-
spired by the well-known example “V (king) −
V (queen) ≈ V (man) − V (woman)”, where
V(w) is the embedding of the word w. The au-
thors observed that the same linguistic regularities
are preserved between hyponym and hypernyms.
Thus they supposed that a hyponym can be pro-
jected to its hypernym. Besides the uniform linear
projection, they also proposed piece-wise linear
projections to model fine-grained hypernymy rela-
tions. Ustalov et al. (2017) makes use of negative
examples to regularize the model, which further im-
proves the performance of the model. Yamane et al.
(2016) jointly learns the clusters and projections,
the number of clusters can be determined depend-
ing on the learned projections and vice versa.

Some other work (Bernier-Colborne and Bar-
riere, 2018; Held and Habash, 2019b) utilize a
mix of both unsupervised and supervised methods.
Dash et al. (2020) argued that hypernym relation
can be represented as strict partial order relation
(transitive, irreflexive and asymmetric) and they
introduced a model which takes strict partial order
relation as soft constraint.

3 Problem Formulation

Hypernym discovery task aims to identify all hyper-
nym terms of a given hyponym term. Formally, let
V be the set of all terms, and X and Y denote the
set of all hyponym terms and candidate hypernym
terms, respectively. Both X and Y are subsets of V .
For a given hyponym x ∈ X , a hypernymy detector
is expected to find all hypernym terms y ∈ Y that
make (x, y) a hypernymy relation.

4 Methodology

In this section, we introduce the proposed Recur-
rent Mapping Model (RMM). It consists of three
components: a type enhanced representation mod-
ule that maps the hyponym embedding via different
projections, a recurrent mapping module that trans-
forms the term features into multiple concept-level
semantics and an aggregation module that aggre-
gates hypernym representations from each hierar-
chy level and compute a final score via the aggre-
gated vector. We next describe each component in

detail.

Mapping 
Unit

Mapping 
Unit

Mapping 
Unit

＋

...
×

×

×

......

Figure 2: Overview of RMM model.

4.1 Type Enhanced Representation

Type information is essential for hypernym dis-
covery. It implies different hypernym types that
provide the hyponyms’ attributes. Utilizing type
information may increase the hypernym-discovery
performance. Specifically, let x ∈ Rd×1 be the em-
bedding of hyponym term x, for its type indexed
by i, we introduce a projection Ai ∈ Rd×d to map
the hyponym embedding as a type enhanced repre-
sentation t ∈ Rd×1 as follows:

t = Aix (1)

In this way, we provide appropriate additional
model capacity to handle different types of hy-
ponyms and simultaneously we can utilize all data
with hyponyms that belong to both types to train
our model.

4.2 Recurrent Mapping Module

One motivation of this paper is that we assume
the candidate hypernym terms may come from dif-
ferent concept levels. The hypernym term at a
higher concept-level can be obtained by transform-
ing from a lower-level hypernym term. To model
this transformation process, we build a recurrent
mapping module with a shared projection function.
Specifically, let hl ∈ Rd×1 denote the transformed
concept semantics at the lth level (or the term rep-
resentation after l-hop transformations). The trans-
formation from a lth-level concept semantics to a
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(l + 1)th-level is then formulated as

ĥl+1 = Wφhl (2)

In Equation 2, the semantic representation of the
primary concept level is exactly the type-enhanced
representation, that is h0 = t. Wφ ∈ Rd×d is the
learnable projection matrix which is shared during
each transformation. We recurrently make L trans-
formations from the original hyponym embedding.
We hope this recurrent mapping process captures
the relationships of different concept-levels and as-
sociates the given hyponym term with its hypernym
terms at different concept levels.

Theoretically, when the number of layers in-
creases in a neural network, its model capabilities
become large and it should produce lower train-
ing error. However, the gradients may vanish af-
ter they are propagated through many layers, thus
degrade the model performance (He et al., 2016).
Consequently, optimizing the projection matrix in
Equation 2 is difficult when the maximum number
of transformations L becomes large. Following
the previous work (He et al., 2016), we introduce
residual network (ResNet) to overcome the gradi-
ent vanishing problem as follows:

hl+1 = ĥl+1 + hl (3)

ResNet improves the training efficiency by refor-
mulating the (l+1)th-level representation with ref-
erence to the lth-level representation. In addition,
the ResNet also forces the model to remember the
past information during multi-hop transformation.

4.3 Aggregation Module

After obtaining the multi-hop representations of the
given hyponym term, we obtain a final representa-
tion via letting multi-hop representations attend to
the candidate embedding.

Concretely, by calculating dot product between
representations from each hop and candidate hy-
pernym, we can get a weight vector. The attention
weight of a level is viewed as the probability of
the candidate hypernym lying in that level. The
weight vector and the final score of the candidate
term embedding y being the input’s hypernym are

calculated as follows:

αl =
exp(hl · y)
L∑
k=1

exp(hk · y)

H̃ =

L∑
l=1

αl · hl

sy = H̃ · y

(4)

This mechanism allows the model to adaptively
assign weights for representations from each hop
based on the candidate terms. We expect this aggre-
gation strategy to provide appropriate scores that
correctly rank the true hypernym terms ahead of
other candidate terms.

4.4 Loss Function

Hypernymy discovery is viewed as a ranking prob-
lem. Existing models optimize this ranking prob-
lem using a pair-wise loss function. They first
score the candidate hypernym terms by training
a binary classifier that identifies whether a given
(x, y) pair supports a hypernymy relation, then rank
the candidates by descending order of their match-
ing scores. Although pair-wise loss function is
efficient, it learns to score each candidate inde-
pendently (Shi and Weninger, 2017). Instead of
optimizing the model via pairwise loss, we intro-
duce the list-wise loss function that learns to score
the candidates collectively.

Let Xtrain be the set of hyponym terms in the
training set. For each hyponym term x in the train-
ing set, letQx denote a set of candidate hypernyms,
which consists of only gold hypernym terms of x,
and Cx denotes a controllable number of negative
candidates. Then we compute the cross-entropy
loss with the sampled positive and negative candi-
dates as follows:

L=−
∑

x∈Xtrain

1

|Qx|
∑
y∈Qx

log
exp(sy)∑

y′∈Qx∪Cxexp(sy′)

(5)
where 1

|Qx| is a normalizing term that balances the
learning of all gold candidate scores. The num-
ber of negative candidates |Cx| is optional in prac-
tice, we leave it as a hyperparameter. We may set
Cx = Y − Qx with enough computation source
available. In this way, we simultaneously optimize
the scores for a collection of candidates, improving
the training efficiency.
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5 Experiments

5.1 Data Sets

We evaluate the performance of our model on
SemEval-2018 Task 9 1benchmark for hypernym
discovery. This shared task consists of five differ-
ent subtasks covering both general-purpose (mul-
tiple languages-English, Italian, and Spanish) and
domain-specific (Music and Medicine domains)
tasks. For each subtask, a large textual corpus, a
vocabulary including all valid hypernyms and a
training and testing set of hyponyms and its gold
hypernyms are provided. In this paper, we consider
the three English subtasks: 1A (general), 2A (med-
ical) and 2B (music). The summarized statistics of
the datasets are shown in Table 1. For more details,
we refer the reader to the original SemEval-2018
Task 9 (Camacho-Collados et al., 2018) paper.

Three metrics were used for the performance
evaluation.

Mean Average Precision (MAP) For a given
query word, average precision(AP) is the average
of the correctness of each obtained hypernym from
the search space. MAP is the mean of this value
among all queries in the data set.

Mean Reciprocal Rank (MRR) Since MAP ig-
nores the exact rank of the true hypernyms, we
introduce the Mean Reciprocal Rank (MRR) met-
ric which focuses on the top results performance.
Mean Reciprocal Rank (MRR) is the average of the
reciprocal ranks over all queries. The reciprocal
rank of an individual query is the reciprocal of the
rank in which the first true hypernym is returned.

Precision at K (P@K) Precision at K is the pro-
portion of the top-K results that are true hypernyms
of a given query.

Following the same evaluation procedures as
previous studies (Bernier-Colborne and Barriere,
2018; Held and Habash, 2019b; Dash et al., 2020),
the scorer script provided by SemEval-2018 Task 9
is exploited for evaluating our proposed model and
comparing fairly with other recent models.

5.1.1 Compared Models
We compare our model with baseline mod-
els: MFH (Camacho-Collados et al., 2018),
vTE (Camacho-Collados et al., 2018), 300-
sparsans(Berend et al., 2018), and NLP-HZ (Qiu

1https://competitions.codalab.org/competitions/17119

subtask corpus size #train #test
1A 16G 1500 1500
2A 800M 500 500
2B 500M 500 500

Table 1: Data set statistics

et al., 2018). 8 SPON (Dash et al., 2020), Hybrid
of SVD & NN (Held and Habash, 2019b).

Besides, we also compare our model with recent
models. Brief descriptions of these models are
given as follows.

CRIM (Bernier-Colborne and Barriere, 2018) In
the CRIM model, multiple parallel projections are
introduced to map the queries to different spaces.
A logistic regression function is then applied to
compute the final score. In addition, this module is
combined with an unsupervised system that iden-
tifies hypernym based on specific Hearst-style pat-
terns. The final output of CRIM is the combination
of both supervised and unsupervised models.

SPON (Dash et al., 2020) In the SPON model,
non-negative activations and residual connections
are exploited to enforce asymmetry and transitive
as soft constraints.

Hybrid of SVD & NN (Held and Habash,
2019b) This model is a hybrid system which
exploits both unsupervised and supervised ap-
proaches at the same time.

In their proposed supervised module, the nearest
neighbor approach is used. Given a hyponym, can-
didate hypernyms which are its nearest neighbors
are returned. A similarity cut-off point is trained on
tuning data, such that if there is no neighbor with a
similarity greater than the cutoff point, the model
simply returns the most frequent set of hypernyms
from the entire training set.

5.2 Implementation
We trained 200-dimensional word embeddings
via the standard skip-gram word2vec algo-
rithm (Mikolov et al., 2013) on the provided tex-
tual corpus. The representations of the hyponyms
and hypernyms are directly initialized by the pre-
trained word2vec embeddings. In the training pro-
cess of our model, hyponym embeddings are fixed
and hypernym embeddings are learnable. To avoid
overfitting, dropout is applied after each mapping
function. Besides, an early stop strategy is also
used. Thus, if MAP on the validation set does not
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1A 2A 2B
Model MAP MRR P@5 MAP MRR P@5 MAP MRR P@5
MFH 8.77 21.39 7.81 28.93 35.80 34.20 33.32 51.48 35.76
vTE 10.60 23.83 9.91 18.84 41.07 20.71 12.99 39.36 12.41

Sparsans 8.95 19.44 8.63 17.94 37.56 17.06 12.08 25.14 11.73
NLP-HZ 9.37 17.29 9.19 20.04 28.27 20.39 11.37 19.19 11.23
Hybrid 15.97 34.07 15.00 37.85 64.47 40.19 54.62 77.24 55.08
CRIM 19.78 36.10 19.03 34.05 54.64 36.77 40.97 60.93 41.31
SPON 20.20 36.95 19.40 33.50 50.60 35.10 54.70 71.20 56.30

RMM 27.12 39.07 23.41 38.56 54.89 37.17 63.86 74.75 61.61
±0.12 ±0.42 ±0.22 ±0.34 ±0.63 ±0.33 ±0.06 ±0.52 ±0.25

Table 2: Performance comparison on different models on the benchmark datasets. In the first column, Hybrid
denotes the Hybrid of SVD/NN model and Sparsans represents the 300-sparsans model. The results of RMM are
average from 3 runs of experiments. Other reported results are from their corresponding original paper.

increase after 200 continuous epochs, training will
be terminated. The max epoch is set to 1000. In ad-
dition, gradient clipping is used in the weight updat-
ing process, with a clip of 1e−4. We use the Adam
optimizer with beta1=beta2=0.9 and with a learn-
ing rate of 2e−4 for all datasets. We choose two
separate embedding transformation matrices for
two different query types. When initializing these
projection matrices in the mapping function, we
add random noises of Gaussian distribution (zero
mean and 1

200 variance) to an identity matrix. Fi-
nally, we implement our model using PyTorch on
a Linux machine with a GPU device Tesla V100
SXM2 32GB.

5.3 Results

5.3.1 Overall Results

Table 2 shows the MAP, MRR and P@5 perfor-
mance of our model and the other baseline models
across multiple hypernym discovery sub-tasks. The
value of L is tuned over the validation set, we used
L=2 for subtask 1A and L=3 for 2A and 2B. Note
that, to avoid the performance randomness, the
performance of our model is the average of three
random runs. For the other compared models, the
reported performance is taken from their original
paper. The values printed in bold font are the top-
performing models in the comparison.

In the table, it is clear that our recurrent map-
ping model (RMM) outperforms almost all exist-
ing baseline models on all the general English hy-
pernym discovery tasks. More specifically, on all
sub-tasks, RMM outperforms any supervised hy-
pernym discovery models on all metrics. The only
model that RMM does not fully beat is the Hybrid

of SVD/NN model, which uses both unsupervised
and supervised approaches. We note however that
RMM scores best 6 out of the 9 metrics across the
compared methods.

In addition, RMM outperforms the most recent
supervised models, i.e. CRIM and SPOM by a
significant margin. This performance suggests that
the true hypernym rank is generally higher than
other candidate words using RMM.

1 2 3 4
L

26.25

26.50

26.75

27.00

1A-MAP

1 2 3 4
L

38.29
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38.76
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1 2 3 4
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23.01
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1A-P@5

(a) 1A-MAP (b) 1A-MRR (c) 1A-P@5

1 2 3 4
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37.61

37.88

38.15
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2A-MAP

1 2 3 4
L
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55.35
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2A-MRR

1 2 3 4
L

36.36

36.60

36.84
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63.36
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74.70

75.06

75.42
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L

60.76
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61.25
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(d) 2B-MAP (e) 2B-MRR (f) 2B-P@5

Figure 3: The comparison of RMM with different map-
ping units. In each sub-figure, x axis represents the
number of mapping units and the y axis represents the
performance of the corresponding model. The results
reported is an average of three experiments.
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5.3.2 The Impact of the Number of Mapping
Units

We now examine the impact of the chosen number
of mappings on RMM. In our recurrent mapping
process, we use mapping functions from a specific
term to a more general term it belongs to. The
number of mappings can be understood as the num-
ber of projections from the original query. Thus,
this value is a hyper-parameter in RMM. We let L
denote the number of mapping units.

As discussed above, we speculate that the correct
hypernym might be chosen by different mapping
units (MU). Here we present experimental results
to support this claim and show how this value af-
fects the performance of RMM. We vary L from 1
to 4 to observe the performance. The experimental
results are shown in Figure 3. Note that all values
in the figure are the average over three runs.

The results indicate that RMM is sensitive
to L. RMM shows a general increasing perfor-
mance when increasing L. This might be due
to that the hypernym semantics transformation
is captured by our model. We find that RMM
performs best at L = 3 for 2A, 2B and L = 2
for 1A. This phenomenon is consistent with the
typical hypernymy transformation situation in the
data set. We observe that, in general, the true
hypernym list is often in the form of a two or three
layers hierarchical structure. Here we list two
examples of the hierarchical structure: guitar
→ stringed instrument→ musical
instrument; alternative rock→ rock
music→ music → music style. So that
RMM will be effective when choosing L as 2 or 3.

It also can be noted that when choosing L = 4,
RMM achieves a lower performance on all data
sets. This result confirms our claim and shows the
effectiveness of the sequential structure exploited
in RMM.

5.3.3 Ablation Study
To more precisely evaluate RMM and to compre-
hensively analyze the contribution of each com-
ponent of our model, we conduct an additional
experiment of ablation studies.

Specifically, this experiment involves three com-
ponents, ResNet connection between mapping
units, separate transformation function for query
type and the attention mechanism to identify the
importance of mapping units. By removing or mod-
ifying each of them individually, we are able to
observe their effects on our model.

The experiment was performed on the same
datasets along with the same experimental setup
and hyperparameters as in the main experiment.

Without Residual Mechanism RMM uses a
residual mechanism to overcome the gradient van-
ishing problem and to improve the model perfor-
mance. In this ablation setup, we directly remove
this ResNet connection and refer to this setup as
RMMw/o ResNet.

Without Separating Query Types Before
multi-hop mapping, RMM model exploits two
different learnable projection matrices for query
types of entity and concept to transform
original embedding to “is-a” embedding. In this
ablation experiment, we unify these two projection
matrices and refer to this setup as RMMw/o QType.
It’s worth noting that hyponyms in 2A(music)
are all of concept type, thus unifying these two
projection matrices can get a close performance as
before.

Without Attention Mechanism RMM model
makes use of an attention mechanism to aggre-
gate hypernym representations from all mapping
units according to candidate hypernyms. In this
ablation experiment, to verify its contribution, we
remove this weighting mechanism and instead use
a mean approach, which simply averages the repre-
sentations of the output of each unit to aggregate
semantics from all mapping units. We refer to this
setup as RMMw/o Att.

Table 3 shows the result of our ablation study. It
shows that all components are critical for RMM.
Specifically, we can see that removing ResNet
degrades the model performance, which proves
ResNet can avoid the information loss between
units. Without using the query type, model per-
formance degrades as well. It’s notable that
CRIM (Bernier-Colborne and Barriere, 2018) also
utilized the type information of hypernyms by train-
ing separate logistic regression classifiers for dif-
ferent types of hyponyms. However, their ablation
study suggests that their type modeling actually
degrades the model performance which is contrary
to the results shown in our ablation study. It indi-
cates that the type information is better modeled in
our model. From the last raw of Table 3, we can
conclude that taking the average of each mapping
unit’s output decreases the model performance.
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1A 2A 2B
Model MAP MRR P@5 MAP MRR P@5 MAP MRR P@5
RMM 27.12 39.07 23.41 38.56 54.89 37.17 63.86 74.75 61.61
RMMw/o ResNet 25.78 37.08 22.41 35.80 55.65 34.52 62.39 74.38 60.21
RMMw/o QType 24.76 37.14 21.22 38.23 54.32 36.73 61.71 69.89 60.18
RMMw/o Att 25.91 37.63 22.37 36.60 57.04 35.00 62.90 75.74 60.27

Table 3: Ablation study.

Bill Clinton

Politician
(0.997, 0.0019, 0.0007)

Person
(0.2871, 0.2608, 0.4521)

Dejan Bodiroga

Sports Person
(0.9923, 0.0062, 0.0015)

Person
(0.2734, 0.2412, 0.4854)

(a) Case 1 from 1A (b) Case 2 from 1A

Latin Pop

Latin Music
(0.98, 0.01, 0.003)

pop
(0.91, 0.06, 0.02)

Music Genre
(0.2347, 0.3585, 0.4068)

Traditional Blues

Blues
(0.995, 0.00385, 0.0005)

Music Genre
(0.0804, 0.3935, 0.5262)

(c) Case 3 from 2B (d) Case 4 from 2B

Figure 4: Case Studies. The values in the bracket rep-
resent the weights on the first, the second and the third
mapping units filtered by hypernym.

5.3.4 Case Study
In this subsection, we present a detailed result anal-
ysis on 4 randomly chosen cases from our testing
sets, with the aim to validate our motivation of the
recursive structure of RMM being capable of cap-
turing the near hypernym first and far hypernym
later. We observe the weights on different units and
wish to examine if RMM indeed assigns higher
weights to relative-lower units when the true hyper-
nym is near the query word and vice versa. The
results are shown in Figure 4.

From the figure we can observe that RMM is able
to assign a higher weight to the first mapping units
for its first hop hypernym. This is seen in all 4 cases
by assigning a weight more than 0.9 to the first
unit for their immediate hypernym. For example,
in Figure 4(a) the hypernym Politician for
query Bill Clinton. On the contrary, for a far
hypernym of a query, a higher weight is on the
last mapping units. For example, in Figure 4(c),
the hypernym Music Genre for query Latin
Pop, a higher weight is on the third units.

This result confirms the capability of RMM in

capturing the latent hypernymy transformation and
hierarchical dependencies between hypernyms.

6 Conclusion

Hypernym discovery is a basic task in natural lan-
guage processing. Existing studies focus on design-
ing better models for discovering better mapping
functions from hyponyms to hypernyms. However,
the latent semantic transformation between the hy-
pernyms of one hyponym is not considered. In this
study, both the mapping and the semantic trans-
formation between hypernyms are considered by
a recursive mapping model. In addition, with the
attention mechanism, different levels of transfor-
mations are softly mixed in the final representation
for the final classification task. Empirical studies
on a public hypernym discovery task verify the
superiority of the presented recursive model.

This study is a first attempt on modeling the
transformation between hypernyms and we only
achieve preliminary progress. The better usage of
this will definitely promote the effectiveness of hy-
pernym discovery. In practice, this transformation
can be extracted and graph convolutional network
(GCN) or other neural networks can be exploited
for explicitly this information. Also, the combi-
nation of unsupervised and supervised models has
shown advantages. However, most of these hybrid
models are two separate processes and the super-
vised part highly depends on the pre-defined “is A”
patterns. To build a uniform hybrid model still re-
mains an open problem. We will study these open
problems in our future work.
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