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Abstract

Recent studies on the analysis of the mul-
tilingual representations focus on identifying
whether there is an emergence of language-
independent representations, or whether a mul-
tilingual model partitions its weights among
different languages. While most of such work
has been conducted in a “black-box” manner,
this paper aims to analyze individual com-
ponents of a multilingual neural translation
(NMT) model. In particular, we look at the
encoder self-attention and encoder-decoder at-
tention heads (in a many-to-one NMT model)
that are more specific to the translation of a cer-
tain language pair than others by (1) employ-
ing metrics that quantify some aspects of the
attention weights such as “variance” or “con-
fidence”, and (2) systematically ranking the
importance of attention heads with respect to
translation quality. Experimental results show
that surprisingly, the set of most important at-
tention heads are very similar across the lan-
guage pairs and that it is possible to remove
nearly one-third of the less important heads
without hurting the translation quality greatly.

1 Introduction

Recent work on analyzing the internals of
Transformer-based models (Vaswani et al., 2017)
sheds some light on how different components
within the models affect the final performance (Bo-
goychev, 2020; Behnke and Heafield, 2020), and
are closely related to playing linguistically inter-
pretable roles (Voita et al., 2019; Jo and Myaeng,
2020). Moreover, studies on the analysis of mul-
tilingual representations (Conneau et al., 2020b;
Dufter and Schütze, 2020; Wang et al., 2020b) fo-
cus on identifying whether there is an emergence
of language-independent representations in mul-
tilingual models, or whether multilingual models
partition their weights among different languages.

In this paper, we investigate if similar analy-
sis can be made for pretrained multilingual neu-
ral machine translation (NMT) models regarding
language pair specificity. More precisely, we
analyze multi-head attention in a many-to-one
(Transformer-based) NMT model and try to find,
through an extensive ablation method on selection
of the attention heads, whether some heads are
more specific to the translation of a certain lan-
guage pair than others.

Our contributions are the following: (1) we ex-
amine the effectiveness of different attention-based
metrics on pruning encoder self-attention and cross
attention heads; (2) we find that while it is possible
to discover rare heads that are specific to a language
pair by using a proposed head selection method,
most important heads are language-independent;
(3) we also show that around 30% of heads can be
removed with very little loss of performance.

2 Related Work

Recent studies analyzed the roles of attention heads
in the Transformer models either in language mod-
eling (LM) (Michel et al., 2019; Clark et al., 2019;
Jo and Myaeng, 2020) or NMT (Voita et al., 2019;
Behnke and Heafield, 2020; Michel et al., 2019). It
has been shown that a set of attention heads might
be redundant at inference and can be pruned with
almost no loss in performance. In addition, some
studies (Voita et al., 2019; Clark et al., 2019) sug-
gested a linguistic interpretation of self-attention
heads. However, most of these analyses were car-
ried out for a single language (in case of LM) or a
single language pair (in case of NMT).

In the meantime, efficiency in the cross-lingual
transfer of recently released pretrained multilin-
gual language models (Devlin et al., 2019; Con-
neau et al., 2020a) has boosted an active line of
research trying to analyze their representations to
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understand what favors the emergence of an inter-
lingua. For instance, Pires et al. (2019); Dufter
and Schütze (2020); Karthikeyan et al. (2020) tried
to decouple the effect of shared “anchors”1 from
the rest of the model. Very recently, Muller et al.
(2021) performed a more fine-grained analysis, ex-
amining representations at each layer of the model.

Despite the success of massively multilingual
NMT models (Johnson et al., 2017; Bapna and Fi-
rat, 2019; Aharoni et al., 2019; Zhang et al., 2020),
less effort has been made in analyzing multilin-
gual NMT representations. Kudugunta et al. (2019)
clustered the representations of different languages
learned by multilingual NMT models showing that
common representations emerge in the encoder.
Mareček et al. (2020) found that while RNN mod-
els (Attention Bridge architecture) (Cı́fka and Bo-
jar, 2018; Lu et al., 2018) learn to capture certain
linguistic properties with an increasing number of
target languages, Transformer models are largely
unaffected. Recent work of Zhang et al. (2021)
introduced a conditional routing layer in a form
of gate selection between language-specific and
language-independent projection, providing some
insights on which components allow for the emer-
gence of interlingua.

Our work builds on the findings from the at-
tention heads analyses (Voita et al., 2019; Michel
et al., 2019) but attempts to extend them to mul-
tilingual NMT, investigating whether it is possi-
ble to discover attention heads that are language
pair specific. Also, we experimented with a set of
attention-based metrics and analyzed how effective
they are in pruning under different language pairs
and types of attention.

3 Methodology

As our goal was to identify “important” attention
heads for different language pairs, we first needed
to define a metric or a procedure that can capture
the notion of “importance” of an attention head,
and selected heads based on this importance.

In Section 3.1, we present a set of metrics that
quantify certain aspects of attention weights, which
to some extent, can be considered as the impor-
tance. Section 3.2 illustrates a more direct approach
where the importance of a head is defined as the
extent of decrease in BLEU scores (Papineni et al.,
2002) resulted in pruning the head.

1either shared vocabulary or shared special tokens such as〈
SEP

〉
,
〈
EOS

〉
, etc.

3.1 Metrics Based on Attention Weights
We experimented with three types of metrics that
are defined for each attention head, headl∈L,h∈H ,
where l and h are the indices of layer and multi-
head, respectively. In what follows we define how
the metrics were computed for one sentence. Each
metric was computed and averaged over a set of
development sentences, then normalized to zero
mean and unit standard deviation for ease of com-
parison. We note that |I| and |J | were the number
of source tokens and/or target tokens, depending on
whether we looked at the self-attention of encoder
or the encoder-decoder cross attentions.

Confidence Voita et al. (2019) defined the notion
of confidence of a head to be the mean of its max-
imum attention weights, and showed that only a
small set of heads are confident and responsible for
most of the model’s performance.

conf(head) :=
1

|I|
∑
i∈I

max
j∈J

αi,j

Variance Inspired by Vig and Belinkov (2019),
we computed the expected position of attention
for token i as µi := E[j|i] =

∑
j∈J j · αi,j , and

measured how much each individual position was
away from it:2

var(head) := −
∑
i∈I

∑
j∈J

αi,j (µi − j)2

Coverage Tu et al. (2016) defined the notion
of coverage for encoder-decoder attentions which
computes the amount of attention a source token
has received. We extended the idea to the self-
attentions in encoder as well.

cov(head) :=
∑
j∈J

(∑
i∈I

αi,j

)2

More details on the metrics are provided in Ap-
pendix C.

3.2 Sequential Backward Selection of Heads
Intuitively, a head can be considered as important
if its removal results in a drastic decrease in the
BLEU scores. As different combinations of heads
can affect the performance differently, we followed
the sequential backward selection (SBS) algorithm
(Aha and Bankert, 1996), which is a top-down algo-
rithm starting from a feature set of all features (in

2As we wanted the important heads to have lower variance,
we multiplied the score with −1.
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Algorithm 1: SBS for Head Selection

selections← ∅;
while |selections| < |L| · |H| do

bleuMin←∞;
headMin← ∅;
for ∀ headl∈L,h∈H 6∈ selections do

masks← selections ∪ headl,h;
trans← Translate(masks);
bleuDrop← Evaluate(trans);
if bleuDrop < bleuMin then

bleuMin← bleuDrop;
headMin← headl,h;

end if
end for
selections← selections ∪ headMin;

end while
return selections;

our case, a set of all heads) and sequentially remov-
ing the most irrelevant features that maximize the
evaluation metric (in our case, the BLEU score).

The pseudo-code for the head selection proce-
dure is illustrated in Algorithm 1. The algorithm
first selects a head that, when masked, results in the
smallest decrease in the BLEU score; and adds it to
selections. For subsequent iterations, it proceeds
similarly, but the masks now include the heads
in selections as well as the candidate head. The
procedure terminates when all heads are selected.
Note that the time complexity of the algorithm is
O(|L|2|H|2), where L and H denote the set of lay-
ers and attention heads, respectively. It is a compu-
tationally intensive procedure as for each iteration,
a test set is translated and evaluated.

4 Experiments and Results

4.1 Preliminary Experiment

We conducted a preliminary experiment using a
many-to-one multilingual model trained on a TED
talk dataset (Qi et al., 2018), covering top-20 source
languages with the most data. We observed that
patterns of attention heads (measured with the “con-
fidence” metric) for both encoder self-attention and
encoder-decoder attention were very similar among
the language pairs.

For the main experiment, we decided to use
a larger and stronger multilingual model for the
following reasons: (1) the TED dataset is quite
small and the model trained on it achieves lower

BLEU scores and may not be regularised very well;
(2) the network capacity of the TED model could
be too limited for the language-pair-specific pat-
terns to emerge (if any). According to a study
on BERT’s multilinguality (Dufter and Schütze,
2020), the increased network capacity (i.e., over-
parameterization) is shown to lead to more decou-
pled representations between languages.

As the multilingual model described in Sec-
tion 4.2 is trained on much larger datasets, and
has a network capacity larger than the initial TED
model while covering fewer language pairs, we ex-
pect that the language-pair specificity (if any) is
more likely to emerge.

4.2 Experimental Settings

For the sake of reproducibility, all experiments
were conducted using a strong publicly available
many-to-one multilingual NMT model released
by Bérard et al. (2020). The model can translate
French, German, Italian, Spanish, and Korean sen-
tences into English. It is trained with standard
open-accessible datasets, including biomedical cor-
pora where available. The model uses a variant of
the Transformer-Big architecture (Vaswani et al.,
2017) with a shallower decoder: 16 attention heads,
6 encoder layers, and 3 decoder layers. The model
produces SOTA- or near-SOTA-level results for
news, IWSLT, and biomedical translation tasks.

As the model is many-to-one, we could set up
a controlled experiment where the BLEU scores
were directly compared among the language pairs.
We employed the development and test sets from
the TED talk dataset, and utilized only the multi-
lingual sentence pairs where both source and refer-
ence sentences were present for all five language
pairs.3 After the filtering, the development and test
sets contained 1771 and 2137 pairs, respectively.

As we were using a many-to-one model, we con-
ducted experiments on both encoder self-attentions
and encoder-decoder attentions. In our experi-
ments, we did not re-train or fine-tune the model
when masking each head, making procedure lighter
than other approaches involving the re-training.

4.3 Results

Heads importance across languages Figure 1
shows the heatmaps for each importance metric
(Sect. 3.1) for the self-attention and cross-attention

3Note that the English reference sentences were the same
across the language pairs.
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Figure 1: Each heatmap of a language pair shows the corresponding normalized metric scores for every (a) encoder
self-attention and (b) encoder-decoder attention head, broken out by layer (vertical axis) and head (horizontal
axis). For each metric, the color scales are identical across language pairs.

heads, respectively. The heatmaps were computed
for each language pair separately (FR-EN, KO-EN,
etc.) or jointly for all pairs (ALL-EN).4 The main
finding is that even if each metric displayed a dif-
ferent heatmap, the important heads were the same
for all language pairs according to these metrics.
In other words, the metrics did not highlight the
emergence of language pair specific (encoder or
cross) attention heads. Comparing among the met-
rics, variance and confidence tended to emphasize
the same heads (with the exception of the first self-
attention heads of each layer which were system-
atically rated as important by the variance metric).
On the other hand, coverage highlighted different
heads compared to the other two metrics.

Impact of head selection on NMT performance
In the previous paragraph, we explored several met-
rics that could help capturing the importance of an
attention head. We now analyze if these metrics
could be used to prune heads and the corresponding
impact on MT performance. We also investigate a
more direct (but more costly) approach to measure
how heads contribute to MT performance.

Figure 2 shows the evolution of BLEU curves as
more and more heads were pruned. Head pruning
was based on the importance metrics (removing
least important heads first according to the metrics
presented in Sect. 3.1) or on the SBS algorithm
(Sect. 3.2). Head selection was conducted sepa-
rately for each language pair,5 and the curves were
drawn from fitting polynomial regressions. First,
we observed that, for both encoder self-attentions
and cross attentions, it was possible to remove
around 30% of the less important heads without

4We only display FR-EN and KO-EN, reader should refer
to Appendix B for all language pairs.

5The language-independent selection of heads led to a very
similar plot as Fig. 2 and is provided in Appendix E

much decrease of BLEU. Next, we noted that for
cross attention head pruning, coverage seemed to
be a better alternative than confidence and variance,
while for encoder self-attention pruning confidence
remained the most efficient. Intuitively, coverage
metric is complementary to confidence in case of
cross attention as it measures whether the whole
input has been attended to. On the other hand, self-
attention heads seemed devoted to specific phenom-
ena (Voita et al., 2019; Clark et al., 2019) and there
was no need to attend to the whole sentence for this
matter. Finally, we also display the BLEU curves
for randomly ranking (rand-ranking) the at-
tention heads, confirming that the metrics proposed
can be used as a proxy to measure the importance of
heads and prune the least important ones. However,
the exhaustive (but costly) SBS algorithm logically
led to the best results.

Is there really no emergence of language-
specific heads? We verified how statistically
significant the BLEU differences were between
language-specific and language-independent heads
selection processes according to various metrics
with Mann–Whitney U tests (Mann and Whitney,
1947).6 We found no significant difference between
language-specific and language-independent head
rankings, even if some differences emerged for re-
sults obtained by SBS ranking.

Finally, we looked at how the individual head
rankings were varied according to the SBS algo-
rithm. Figure 3 illustrates the standard deviation of
each head position among the rankings of the five
different language pairs. We observed that there
were a few heads whose relative importance varied
greatly among the language pairs. For example,

6We report p-values for Mann–Whitney U tests in the
Appendix D.
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Figure 2: BLEU curves on test set when pruning subsequent self-attention and cross attention heads based on
different importance metrics (or SBS) computed from dev set (language pair dependently). To be seen in color.

Figure 3: Standard deviation of each (a) encoder self-attention and (b) encoder-decoder attention head ranking
with SBS algorithm. SBS rankings range from 1 to 96 for self attention and from 1 to 48 for cross attention and
standard deviation is calculated for each head, using these scores, among the five language pairs.

the head2,7 of the encoder-decoder attention was
ranked as least important for KO-EN but quite im-
portant for the other four language pairs.7 Similarly,
head1,7 for encoder self-attention was ranked as
not important for ES-EN while very important for
KO-EN. This analysis showed that, even though the
majority of important heads seemed to be language-
independent, certain heads may capture different
linguistic phenomena.

5 Conclusion and Future Work

We investigated if there are attention heads that
are language pair specific within a many-to-one
multilingual NMT model. We examined different
metrics for heads selection process and found that
confidence is a good proxy for self-attention heads
“prunability”, and coverage is a better indicator for
cross attention heads “prunability”.

We showed that, although it is possible to find
the rare heads specific to a language pair via the
extensive SBS procedure, the most important heads
are language-independent; and it is possible to
prune around 30% of the heads with no retraining

7Masking this single head alone, resulted in an increase
in BLEU for KO-EN by 0.03, while for others, a decrease in
BLEU up to 0.5.

and almost no loss in BLEU.8

As the findings from the SBS procedure indi-
cated that some language pair specific heads do
exist, a promising future direction is to perform
pruning at different level of granularity (Frankle
and Carbin, 2019; Zhao et al., 2020) (as opposed
to single scalar values computed by the metrics) in
order to identify which part of the model is more
language-specific. Such analysis could help us to
deploy multilingual models with better efficiency /
performance trade-offs.
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A Experimental Details

All the experiments were conducted using PyTorch (Paszke et al., 2019) and Fairseq (Ott et al., 2019)
toolkit. The multilingual NMT model used in the experiments can be downloaded online.9 Please refer to
Bérard et al. (2020) for more details on the model.

When running an experiment for each language pair, a single V100 GPU was used. We note that
computing the SBS rankings for encoder self-attention was the most computationally intensive part, where
almost 962 translations of the development set were conducted.

When computing the BLEU curves for the rand-ranking, we ran the procedure with a randomly
created ranking five times, and averaged the resulting BLEU scores.

B Heatmaps of Metric Scores for All Language Pairs

Figure B illustrates the normalized metrics scores for every attention head. We observed that for each
metric, the patterns are consistent across all language pairs.

FR-EN DE-EN

IT-EN ES-EN

KO-EN ALL-EN

FR-EN DE-EN

IT-EN ES-EN

KO-EN ALL-EN

FR-EN DE-EN

IT-EN ES-EN

KO-EN ALL-EN

(1) confidence (2) variance (3) coverage

(a) encoder self-attention

(2) variance (3) coverage

FR-EN DE-EN

IT-EN ES-EN

KO-EN ALL-EN

FR-EN DE-EN

IT-EN ES-EN

KO-EN ALL-EN

FR-EN DE-EN

IT-EN ES-EN

KO-EN ALL-EN

(1) confidence

(b) encoder-decoder attention

Figure B: Each heatmap of a language pair shows the corresponding normalized metric scores for every (a) en-
coder self-attention head and (b) encoder-decoder attention head, broken out by layer (vertical axis) and head
(horizontal axis). For each metric, the color scales are identical across language pairs.

C Remarks on the Importance Metrics

We denote |L| and |H| to be the number of layers and heads, respectively, while |S| and |T | represent
the number of source and target tokens. When calculating each metric, we began with the tensor shape,
(|L|, |H|, |S|, |S|) or (|L|, |H|, |T |, |S|), depending on whether we were computing for the encoder self-
attention or the cross attention. After the computation, the shape of the outcome tensor was: (|L|, |H|).

C.1 Confidence
We noted that the patterns of the confidence scores for each head tended to vary depending on the length
of sentences we used to compute the scores. This was due to the fact that the metric was calculated by
averaging over the maximum attention, which was inversely proportional to the length of sentences.

9https://github.com/naver/covid19-nmt

https://github.com/naver/covid19-nmt
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C.2 Variance
The variance metric was defined so that heads with a small variance were considered to be important. A
small variance was achieved when most of the attention weights were focused on one or a few positions.
While this intuition came initially from encoder-decoder attention (interpreting attention as a source-target
alignment), it is less clear if it holds for encoder self-attention as well (our results seemed to suggest that
it is not the case).

C.3 Coverage
While the notion of coverage was initially proposed for encoder-decoder attention, we extended it to
the encoder self-attention. We may consider it as how much a source token has been attended from its
neighbouring source tokens. Similar to the variance metric, for the encoder self-attention, the importance
of high coverage is less clear where a head may play a specific role as discussed in Voita et al. (2019); Clark
et al. (2019). This probably accounts for the reason that the head pruning of the encoder self-attention
was not as effective as that of the cross attention.

D P-Values for Mann–Whitney U tests

As the BLEU curves obtained from language-specific pruning and language-independent pruning were
very similar, we performed a non-parametric statistical test, namely, Mann-Whitney U test, to compare
the outcomes. The test checks whether two samples are likely to derive from the same population (i.e.
that the two populations have the same shape).

Table D shows the p-values for the two-sided tests between BLEU curves computed using language-
specific and language-independent metrics for encoder self-attention and cross attention.

The high p-values (> 0.05) across all language pairs suggest that the differences in the BLEU scores
computed from the two scenarios were statistically insignificant.

FR-EN DE-EN IT-EN ES-EN KO-EN

conf 0.938 0.849 0.871 0.878 0.902
var 0.927 0.995 0.959 0.939 0.573
cov 0.570 0.555 0.865 0.927 0.850
sbs 0.137 0.189 0.293 0.878 0.375

(a) encoder self-attention

FR-EN DE-EN IT-EN ES-EN KO-EN

conf 0.918 0.988 0.965 0.968 0.881
var 0.991 0.994 0.997 0.985 0.936
cov 0.772 0.907 0.912 0.889 0.621
sbs 0.901 0.631 0.936 0.918 0.404

(b) encoder-decoder attention

Table D: P-values for Mann–Whitney U tests between BLEU scores computed using language-specific and -
independent metrics for (a) encoder self-attention and (b) encoder-decoder attention.

E BLEU Curves (Language-Independent Head Selection) for All Language Pairs

In Figure E, we present the BLEU curves obtained from pruning the encoder self-attention heads and
cross attention heads according to the importance metrics (and SBS) computed over all language pairs
(i.e. language-independent). We observed that the curves were very similar to those presented in Figure 2
of the main paper, where the computation was conducted over the specific language pairs.



2841

FR-EN DE-EN IT-EN

ES-EN KO-EN
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(b) encoder-decoder attention

Figure E: BLEU curves on test set when pruning subsequent (a) encoder self-attention heads and (b) encoder-
decoder attention heads based on different importance metrics (or SBS) computed from the development set
(language pair independently).


