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Abstract

Neural machine translation suffers when paral-
lel data for training is scarce. Previous works
have explored transfer learning to assist train-
ing in low-resource scenarios. However, they
transfer either from high-resource parallel data,
or from monolingual data. In this work, we pro-
pose a framework to transfer multiple sources
of auxiliary data, including both high-resource
parallel data and monolingual data of involved
languages. Knowledge in those sources is re-
spectively encoded in a high-resource trans-
lation model and pretrained language models,
and dually transferred to the low-resource trans-
lation model by our approach. Extensive exper-
iments show that our approach yields consis-
tent improvements over strong competitors for
multiple translation directions. Furthermore,
our approach still exhibits benefit on top of
back-translation, making it a useful addition to
practitioners’ toolbox.

1 Introduction

Neural machine translation (NMT) has achieved
remarkable success in recent years, but its quality
critically hinges on large-scale parallel data. In the
low-resource scenarios for most world languages
and many domains, its performance usually deteri-
orates dramatically.

Although parallel data for some translation tasks
may be difficult to obtain, monolingual data is usu-
ally within reach, and often comes in much larger
quantity. Besides, parallel data for several high-
resource languages is readily available. These cor-
pora have been used in various methods to help
training low-resource NMT. The most relevant
method to our work is transfer learning.

Transfer learning starts with training a source
task and then initializes the target task with the pa-
rameters. Recent advances in pretrained language
models (PLM) like BERT (Devlin et al., 2019) can
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no transfer !

(Zoph et al., 2016) ! !

(Kim et al., 2019) ! ! !

BERT2RND ! !

BERT2BERT ! !

(Kocmi and Bojar, 2018) ! !

BBERT2BBERT ! !

BBERT transfer ! ! ! !

dual transfer (ours) ! ! ! !

Table 1: An overview of data usage by approaches
considered in this work (Section 4.3). H/L: high/low-
resource language pair; M: monolingual; P: parallel.
BBERT transfer checks all the boxes but uses data in a
different way from ours.

be seen as transfer learning, where language mod-
eling is the source task for downstream target tasks.
In low-resource NMT, pretrained language models
have also provided noticeable improvements (Clin-
chant et al., 2019; Imamura and Sumita, 2019).
As another source of transfer, high-resource NMT
models have also been used for transfer learning
low-resource NMT. Zoph et al. (2016) pioneered
this direction with NMT based on recurrent neu-
ral networks, and coined the high-resource and
low-resource models as parent and child models,
respectively.

However, it is non-trivial to transfer from both
PLMs and NMT models. This limitation constrains
most existing transfer-learning-based low-resource
NMT to a single source of auxiliary data, either
monolingual or parallel.

In this paper, we propose a framework for trans-
fer learning low-resource NMT that utilizes both
monolingual data and high-resource parallel data
(Table 1). Our approach encodes monolingual
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knowledge in parent PLMs and translation knowl-
edge in parent NMT models, and transfers both
types of models to the child NMT model. Despite
its simplicity, our approach shows consistent gains
for multiple translation directions. Furthermore, it
possesses several desirable features:

• It performs reasonably well even with little or
no parallel data in the language pair of inter-
est, alleviating the data issue for low-resource
language pairs.

• It is complementary to back-translation, a
strong data augmentation approach.

• It is agnostic to network architectures and thus
applicable to any translation models.

• It is widely applicable to low-resource lan-
guages and can be applied to domain adapta-
tion.

• The same high-resource NMT model can be
used to transfer to future low-resource lan-
guages, saving computation.

2 Background

2.1 Transfer from Pretrained Language
Models

The “pretraining-finetuning” paradigm has been
highly successful for various natural language pro-
cessing tasks. It first pretrains a language model
through self-supervised learning, and then fine-
tunes the model along with additional task-specific
layers on downstream task data. Here, we exclude
pretrained language models trained by sequence-
to-sequence learning to simplify discussion1. Com-
mon pretrained language models include BERT
and GPT (Brown et al., 2020).

In NMT with the encoder-decoder architecture
(Sutskever et al., 2014; Bahdanau et al., 2015), the
direct application of the “pretraining-finetuning”
paradigm would be initializing the encoder with
PLM and treating the decoder as task-specific lay-
ers. However, it is also possible to initialize the
compatible modules in the decoder, leaving the
cross attention module randomly initialized. Al-
though initializing the decoder does not appear as
useful, especially for high-resource language pairs
(Rothe et al., 2020), it is not harmful either.

1Examples of such models include MASS (Song et al.,
2019) and BART (Lewis et al., 2020). If desired, pretrained
encoders in these models can be used in our approach.

2.2 Transfer from High-Resource
Translation Models

Even though the Transformer model (Vaswani et al.,
2017) has become more popular than recurrent neu-
ral networks for NMT, the transfer procedure pro-
posed by Zoph et al. (2016) still applies as long
as the parent model and the child model share
the same architecture, which is typically the case.
However, one problem still persists. Because the
high-resource languages have different vocabular-
ies from the low-resource ones, directly transfer-
ring the word embedding layer is not possible.

One way to circumvent this issue is to prepare a
joint vocabulary of the involved languages that is
shared between the parent and child NMT models
(Kocmi and Bojar, 2018). Known as warm-start
transfer (Neubig and Hu, 2018), this type of meth-
ods need to prepare a new joint vocabulary when-
ever a new low-resource model is on demand, and
retrain both parent and child models. In contrast,
cold-start transfer (Kocmi and Bojar, 2020) trains a
universal parent NMT model that does not depend
on child languages.

Kim et al. (2019) addressed the vocabulary mis-
match for cold-start transfer by matching word em-
beddings across languages. They first learn mono-
lingual word embeddings of the child language
with e.g. skip-gram (Mikolov et al., 2013), and
then learn a cross-lingual linear mapping to con-
nect child monolingual word embeddings and pre-
trained parent NMT word embeddings. The child
monolingual word embeddings can then be mapped
to the parent word embedding space, and be used
to initialize the child NMT word embeddings. The
cross-lingual linear mapping relies on a bilingual
lexicon to learn, which can be induced from parent
and child language monolingual data by unsuper-
vised methods like (Lample et al., 2018a).

Our approach also belongs to cold-start transfer
in its usage of the parent NMT model. It addresses
the vocabulary mismatch by design, without rely-
ing on monolingual word embeddings and bilingual
lexica.

3 Approach

Our approach is a general framework for trans-
ferring from any high-resource language pair to
any low-resource language pair, as long as data
condition permits. Generally speaking, monolin-
gual data and high-resource parallel data are avail-
able in large quantity. We first present the gen-



2728

[A] PLM emb.

[A] PLM body

A and B mono.

(1)

[P] PLM emb.

[A] PLM body

P and Q mono.

(2)

[A] NMT 

encoder emb.

[A] NMT 

encoder body

[B] NMT 

decoder emb.

A→B parallel

(3)

[P] NMT 

encoder emb.

[P] NMT 

encoder body

[Q] NMT 

decoder emb.

P→Q parallel

(4)

[B] PLM emb.

[B] PLM body

[Q] PLM emb.

[B] PLM body
[B] NMT 

decoder body

[Q] NMT 

decoder body

[A] NMT 

encoder emb.

[B] NMT 

decoder emb.

[A] PLM body

[B] PLM body

Figure 1: Dual transfer from PLM and high-resource A→BNMT to low-resource P→QNMT. Dashed lines represent
initialization. Parameters in striped blocks are frozen in the corresponding step, while other parameters are trainable.
Different colors represent different languages. Data used in each step is also listed.

eral case where we would like to transfer from
the high-resource A→B to the low-resource P→Q,
where capital letters denote languages. Then we
discuss specific cases where some of the involved
languages are the same.

3.1 General Transfer

Figure 1 shows the pipeline of our approach, con-
sisting of four major steps, as detailed below.

(1) Train PLMA and PLMB on monolingual data
of A and B separately.

(2) Train PLMP and PLMQ on monolingual data
of P and Q as follows.

• Initialize PLMP with PLMA (except
word embeddings); freeze parameters
other than word embeddings.

• Initialize PLMQ with PLMB (except
word embeddings); freeze parameters
other than word embeddings.

(3) Train NMTA→B on A→B parallel data as fol-
lows: Initialize NMT encoder with PLMA,
and decoder with PLMB; freeze word embed-
dings during training.

(4) Replace word embeddings as follows to initial-
ize NMTP→Q, and finetune on P→Q parallel
data.

• Replace NMTA→B encoder word embed-
dings with those in PLMP.

• Replace NMTA→B decoder word embed-
dings with those in PLMQ.

Note that Steps (2) and (3) are independent of
each other, and therefore can be done in parallel.

Intuitively, Step (2) learns word embeddings of
P and Q that lie in the same semantic space of A
and B, respectively. Because only word embed-
dings are trainable, they are forced to align with
pretrained A and B body parameters to do language
modeling (e.g. masked language model). In Step
(3), NMTA→B needs to learn translation based on
the frozen A and B word embeddings space. With P
and Q word embeddings swapped in place in Step
(4), the body and embedding parameters can coop-
erate in a close semantic space, allowing finetuning
to proceed smoothly.

Like (Kim et al., 2019), our approach solves the
vocabulary mismatch issue by manipulation in the
embedding space, allowing transfer between arbi-
trary languages, even with different scripts2. Each
language now manages its own independent vocab-
ulary. We also tie input and output embeddings
of the decoder (Press and Wolf, 2017), so a single
decoder embedding block is shown in Figure 1.

We can further generalize our approach by defin-
ing transfer parameters as those responsible for
transforming input into continuous representations
shared across languages. In Figure 1, the trans-
fer parameters are simply word embeddings, but
we may also use other sets of transfer parameters,
e.g. word and position embeddings, or even lower
layers of the body. In Step (2), only transfer pa-
rameters are trainable, while in Step (3), only non-
transfer parameters are trainable, and initialization
changes accordingly.

2We verified the effectiveness of our approach for transfer-
ring from fr→en to ru→en on in-house data.
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Our approach defines a framework for transfer
learning, which can be applied to various network
architectures. For example, if we would like to train
a low-resource RNN-based NMT, we can prepare
RNN-based PLMs and a high-resource RNN-based
NMT. In our experiments, we use Transformer for
PLMs and NMT models.

3.2 Shared Target Transfer and Shared
Source Transfer

In practice, it is a rare need to train on a low-
resource language pair where both languages are
low-resource. Typically one of the two languages
would be high-resource, e.g. English. In this case,
we can choose a high-resource language pair that
shares this language on the same side, thereby sim-
plifying our approach.

If the target language (Q) of the low-resource lan-
guage pair (P→Q) is high-resource, we can choose
a high-resource language pair (A→B) with that lan-
guage as the target, i.e. B=Q. In this case, there is no
vocabulary mismatch on the target side, so PLMQ

is no longer needed, and decoder word embeddings
can be adjusted when training NMTA→B in Step (3).
PLMB also becomes optional, and the randomly ini-
tialized decoder of NMTA→B may learn sufficiently
from abundant A→B parallel data.

Likewise, if the source language (P) is high-
resource, we can let A=P. Then PLMP is not
needed, and encoder word embeddings are train-
able in Step (3). PLMA may also be dispensed with
and the encoder of NMTA→B is randomly initial-
ized.

3.3 Domain Adaptation

By viewing a certain domain as a special language,
our approach can also be applied to domain adapta-
tion. In this case, A→B is a high-resource source
domain, and P→Q is a low-resource target domain.
By definition, this setting is general transfer, be-
cause neither B=Q nor A=P is possible due to do-
main difference, but typically they will be the same
language, respectively.

4 Experimental Setup

We mainly verify our approach in the more realistic
shared target and shared source transfer scenarios.
We take German-English (de-en) as the high-
resource language pair, while Estonian-English
(et-en) and Turkish-English (tr-en) are the
low-resource language pairs. Previous works

language code # sentence (pair)
de-en 5.9m
et-en 1.9m
tr-en 207k
fr-es 10k

de-en medical 347k
en 94m
de 147m
et 139m
tr 100m
fr 4.1m
es 4.2m

en medical 4.0m
de medical 3.6m

Table 2: Training data statistics.

mainly consider shared target transfer (Dabre et al.,
2020), and we make extensive comparison in the
experiment that transfers from de→en to et→en.
We then verify on other translation directions, in-
cluding shared source transfer, as well as general
transfer, in which we consider an artificial setting
of transferring from de→en to French→Spanish
(fr→es). For domain adaptation we work on
de→en, transferring from news domain to medi-
cal domain. We report SacreBLEU3 (Post, 2018).
Further details about data and hyperparameters can
be found in Appendices B and C, respectively.

4.1 Data

We mainly use data from WMT 20184. We use
preprocessed parallel data for training NMT mod-
els. The provided development data includes multi-
parallel data for several languages, which we use
for fr→es. We collect monolingual data for the
involved languages and follow the same preprocess-
ing pipeline. Training data statistics is provided
in Table 2. Each language is encoded with byte
pair encoding (BPE) (Sennrich et al., 2016b). The
BPE codes and vocabularies are learned on each
language’s monolingual data, and then used to seg-
ment parallel data. Following (Kim et al., 2019),
we use 50k merge operations for English, and 20k
for other languages. Sentences with more than 150
subwords are removed from NMT training.

3SacreBLEU signature: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.4.12.

4http://statmt.org/wmt18/
translation-task.html

http://statmt.org/wmt18/translation-task.html
http://statmt.org/wmt18/translation-task.html
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4.2 Hyperparameters

We use Transformer base as our NMT model, but
with slight modifications that follow the imple-
mentation of BERT5. The absolute position em-
beddings are also learned as in BERT. We apply
dropout with probability 0.1. Learning rate warms
up for 16,000 steps and then follows inverse square
root decay. The peak learning rate is 7×10−4 for
the high-resource de-en. For other translation
tasks, we grid search over {1,3,5}×10−4 for each
approach in every experiment, and keep the best
model based on development BLEU. We use 8
GPUs for de-en, and 1 GPU otherwise. Other
hyperparameters follow (Kim et al., 2019).

We train BERT as the PLM in our experiments,
with the same number of layers and hidden size as
Transformer base. The absolute position embed-
dings are learned up to 128. We only train with
masked language modeling and dispense with next
sentence prediction as in (Liu et al., 2019). We train
for 480k steps with batch size 180 on 8 GPUs. The
peak learning rate is 1.8×10−4, and the number of
warmup steps is 18,000.

Rothe et al. (2020) found that for the high-
resource de-en pair, initializing the decoder with
PLM has no advantage over random initialization.
Therefore, we only used PLMde for de→en, but
for en→de, we used both PLMen and PLMde be-
cause the vocabulary mismatch is on the target side.

4.3 Baselines

We compare with the following approaches.

No transfer This baseline trains directly on the
low-resource parallel data.

(Zoph et al., 2016) This approach transfers from
the high-resource language pair. In the orig-
inal paper, random parent word embeddings
are used to initialize child word embeddings.
We simply initialize child word embeddings
with the truncated normal initializer.

(Kim et al., 2019) This approach transfers from
the high-resource language pair and utilizes
cross-lingual word embeddings. The authors
also proposed other orthogonal data augmen-
tation techniques, but we do not include them
in our experiments.

5https://github.com/google-research/
bert

BERT2RND This approach transfers from the
source language PLM trained on monolingual
data. By comparing with BERT2BERT, we can
see if the finding in (Rothe et al., 2020) holds
for low-resource language pairs.

BERT2BERT This approach transfers from the
source and target language PLMs trained
on monolingual data. Note that PLMs
for BERT2BERT and BERT2RND are directly
trained on monolingual data of P and Q, dif-
ferent from those obtained by Step (2) of our
approach.

As discussed in (Kim et al., 2019), managing inde-
pendent vocabularies for each language has the ad-
vantage of flexibility. However, many approaches
rely on shared vocabulary. We nevertheless report
their performance for reference.

(Kocmi and Bojar, 2018) This approach uses
joint vocabulary of all the involved languages.
It first trains the NMT model on the high-
resource parallel data, and then finetunes it
on the low-resource parallel data. It can be
seen as a multilingual NMT in which high-
resource performance does not matter. We
experiment with transferring from de→en to
et→en, thus involving three languages. We
learn joint BPE with 90k merge operations.

BBERT2BBERT Multilingual PLMs usually rely
on shared vocabulary, and bilingual BERT
(BBERT) is an example trained on non-parallel
data of two languages. We learn joint BPE
with 70k merge operations for the source and
target languages of the low-resource language
pair, and the same vocabulary is used for the
source and target sides of NMT. Otherwise
this approach is the same as BERT2BERT. This
is equivalent to XLM (Conneau and Lample,
2019) used for bilingual PLM and MT.

BBERT transfer Multilingual PLMs are often
used for cross-lingual transfer. We apply
this approach to NMT, transferring from
de→en to et→en. First we train a de-et
BBERT, and use it to initialize the encoder
of NMTde→en. Then we train on de→en
and finally finetune on et→en. We learn
joint BPE with 40k merge operations for the
de-et pair. This approach uses exactly the
same data as ours because we do not use

https://github.com/google-research/bert
https://github.com/google-research/bert
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approach V BLEU

no transfer ! 21.76
(Zoph et al., 2016) ! 21.07
(Kim et al., 2019) ! 22.25

BERT2RND ! 22.89
BERT2BERT ! 23.44

(Kocmi and Bojar, 2018) % 23.58
BBERT2BBERT % 23.90
BBERT transfer % 24.03

dual transfer (word) ! 24.81
dual transfer (word+position) ! 24.28

Table 3: BLEU on et→en, with the best in bold. “!”
in the “V” column indicates independent vocabulary,
while “%” means the approach relies on shared vocabu-
lary. Our approach (dual transfer) has two variants, with
or without position embeddings in the transfer parame-
ters.

PLMen when transferring from de→en to
et→en.

In their experiments, Zoph et al. (2016) and Kim
et al. (2019) only considered shared target transfer,
and they found that freezing certain components
of the decoder during finetuning can be benefi-
cial. In our et→en experiment, we tried freez-
ing the decoder word and position embeddings,
and optionally self attention parameters, for their
approaches, our approach, and BERT2BERT, but de-
velopment set results revealed that the only setting
which brought improvement was freezing word and
position embeddings and self attention parameters
for (Kim et al., 2019), possibly due to the relatively
large size of et→en data. Therefore we only use
it for (Kim et al., 2019) in our experiments.

5 Results

In this section, we first report extensive exper-
iments on et→en before generalizing to other
translation directions. We then present the perfor-
mance of our approach when used in conjunction
with back-translation and self training. Finally we
demonstrate that our approach can be used for do-
main adaptation.

5.1 Results on et→en
Table 3 shows the BLEU scores for et→en. We
report the following findings for this translation
direction.

1 10 100 1000
parallel data size (×103)

0

5

10

15

20

25

B
L

E
U

dual transfer
BERT2BERT

BERT2RND

(Kim et al., 2019)
no transfer
(Zoph et al., 2016)

Figure 2: BLEU of different approaches with respect
to the number of parallel et→en sentence pairs for
training. We plot our approach with word embeddings
as transfer parameters; additionally transferring position
parameters performs similarly.

The approach in (Zoph et al., 2016) only uses
high-resource parallel data for transfer, and the
approach in (Kim et al., 2019) additionally uses
low-resource monolingual data; their BLEU scores
are close to the “no transfer” baseline. The ap-
proach in (Kocmi and Bojar, 2018) shows positive
transfer from high-resource parallel data by forgo-
ing the vocabulary flexibility and relying on joint
vocabulary.

Using monolingual data, BERT2RND and
BERT2BERT show notable improvement on the “no
transfer” baseline. In this relatively low-resource
setting, it appears useful to initialize the decoder
with BERT, in contrast to de-en experiments in
(Rothe et al., 2020).

We expected additionally transferring position
embeddings to better deal with word order diver-
gence across languages, but after comparing the
two variants of our approach, we find no benefit
in including position embeddings in the transfer
parameters. Our approach with word embeddings
as transfer parameters achieves best BLEU, which
is a 3.05 improvement over the “no transfer” base-
line, and 1.37 over BERT2BERT. Note that we did
not use monolingual English data for our approach
when the target language is English.
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parallel data size (×103) 0 1 5 10 50 100 500 1000
dual transfer (word) 0.43 9.06 11.74 12.97 17.44 18.84 22.10 23.72

+freezing parent NMT encoder 6.20 8.82 11.58 12.76 16.62 18.50 21.69 23.59

Table 4: BLEU on et→en. Freezing the parent NMT encoder helps our approach to perform zero-shot translation.

approach tr→en en→et en→tr fr→es
no transfer 15.44 16.29 9.63 10.59

BERT2BERT 19.73 17.36 11.78 18.26
dual transfer (word) 21.12 19.41 13.18 22.28

dual transfer (word+position) 20.29 18.79 13.16 -

Table 5: BLEU on translation directions shown in columns, grouped by shared target transfer, shared source transfer,
and general transfer. “-” means the experiment was not carried out.

approach BLEU
no transfer 21.63 (-0.13)

dual transfer (word) 22.53 (-2.28)
dual transfer (word+position) 23.08 (-1.20)

Table 6: BLEU on et→en augmented with 4m self
training data. Numbers in parentheses indicate differ-
ences from the corresponding approach trained on au-
thentic parallel data.

5.2 Effect of Low-Resource Parallel Data
Size

Arguably, the parallel training data for et→en is
not quite low-resource. But it provides a good test
bed for manually adjusting the data size to simulate
various degrees of resource scarcity. We sample
subsets of {1, 5, 10, 50, 100, 500, 1000}×103 par-
allel sentence pairs, and show BLEU of different
approaches in Figure 2. We observe roughly mono-
tonic trend of BLEU with respect to parallel data
size, as expected. Our approach performs consis-
tently better than baselines, and the gap is larger
with fewer parallel sentence pairs. In the extremely
low-resource setting of one thousand pairs, our ap-
proach still achieves BLEU close to 10, while all
other approaches fail with BLEU close to 0.

5.3 Zero-Shot Translation

Our approach can also be modified slightly to per-
form zero-shot translation. We conjecture that in
Step (3) of our approach, freezing the embeddings
alone is insufficient to prevent encoder body param-
eters from drifting too far away. Therefore we try
freezing the entire encoder in Step (3). This tech-
nique helps our approach to achieve a zero-shot
BLEU score of 6.20, as shown in Table 4. How-

ever, it does not have advantage when parallel data
is available.

5.4 Other Translation Directions
Table 5 shows the results that include shared target
transfer, shared source transfer, and general trans-
fer, comparing our approach with no transfer and
BERT2BERT. Our approach consistently outper-
forms baselines. Previous works (Zoph et al., 2016;
Kim et al., 2019) typically conducted experiments
on shared target transfer only, and shared source
transfer is considered more difficult (Kocmi, 2020),
but our approach works well for shared source
transfer, as well as general transfer. Also note that,
we use the same de-en pair for all child languages
from diverse language families, which demon-
strates the robustness of our approach. It also high-
lights the advantage of independent vocabularies:
We can prepare NMTde→en and NMTen→de for
any future child language, while approaches like
(Kocmi and Bojar, 2018) and BBERT transfer have
to retrain with the high-resource language every
time a new low-resource language is needed.

5.5 Back-Translation and Self Training
Back-translation (BT) (Sennrich et al., 2016a) and
self training (ST) (Zhang and Zong, 2016) are data
augmentation techniques that generate synthetic
parallel data, using target language monolingual
data and source language monolingual data respec-
tively. We first experiment with ST for et→en.
We use the “no transfer” NMTet→en to translate
4m et monolingual data into en by greedy decod-
ing, and merge with authentic parallel data. Results
in Table 6 show that self training is not helpful
for this experiment, and considerably lowers the
BLEU of our approach.
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approach BT data size BLEU
no transfer 4m 19.78 (+3.49)

dual transfer (word) 4m 21.74 (+2.33)
dual transfer (word+position) 4m 22.34 (+3.55)

no transfer 130m 20.52 (+4.23)
dual transfer (word+position) 130m 22.23 (+3.44)

Table 7: BLEU on en→et augmented with 4m or 130m back-translation data. Numbers in parentheses indicate
differences from the corresponding approach trained on authentic parallel data.

approach BLEU
no transfer (child) 62.94

BERT2BERT (child) 64.33
finetuning (parent) 64.91

dual transfer (parent) 65.14
dual transfer (child) 65.40

Table 8: Domain adaptation results. The transfer param-
eters are word embeddings for dual transfer. “Parent”
indicates using source domain (news) vocabulary, and
“child” indicates using target domain (medical) vocabu-
lary.

We then use the same synthetic parallel data for
en→et, turning to the case of BT. The upper rows
in Table 7 show that BT is highly beneficial for
both the baseline and our approach. Encouraged
by this, we further try using all 130m et mono-
lingual data with the maximum of 80 tokens and
100 subwords per line. We upsample authentic data
to have a 1:4 ratio with synthetic data, following
(Caswell et al., 2019). The lower rows in Table 7
show that more BT data can further improve the
“no transfer” baseline, though the small improve-
ment appears unattractive considering the cost. As
for our approach, going from 4m to 130m yields
no gain. Besides, our approach with 4m BT still
surpasses no transfer with 130m BT. We conjecture
that our approach can work complementarily with a
manageable amount of BT data, reducing the need
to decode and train on a huge data size.

Finally, note that we use the “no transfer”
NMTet→en to generate all synthetic parallel data
in our experiments. In practice, the model produced
by our approach can be used for decoding, which
should result in higher-quality synthetic data. This
might also be the reason that ST hurts our approach
more than the “no transfer” baseline.

5.6 Domain Adaptation

A simple and effective approach to domain adap-
tation is finetuning source domain NMT on target
domain data (Luong and Manning, 2015; Freitag
and Al-Onaizan, 2016). This approach is possible
because directly inheriting parent NMT vocabu-
lary is acceptable for domain adaptation. In other
words, this is a special case of (Kocmi and Bojar,
2018) where child vocabulary largely overlaps with
parent vocabulary. However, our approach allows
using a dedicated vocabulary for the target domain.
In this case, we learn BPE with the same number
of merge operations as the source domain on target
domain monolingual data. Table 8 shows that our
approach can surpass the baselines, especially with
the child (medical domain) vocabulary.

6 Related Work

Low-resource NMT has been researched from
many perspectives. Exploiting auxiliary data has
been verified to be helpful by various approaches,
including data augmentation like back-translation
(Sennrich et al., 2016a; Xia et al., 2019), trans-
fer learning as focused in our work, meta-learning
(Gu et al., 2018), semi-supervised learning (Cheng
et al., 2016), or even unsupervised NMT (Artetxe
et al., 2018; Lample et al., 2018b; Chronopoulou
et al., 2020).

Transfer learning usually utilizes a single source
of knowledge. When multiple sources are avail-
able, transfer learning may be applied in a cascaded
fashion (Lakew et al., 2018), but catastrophic for-
getting may need to be addressed. Maimaiti et al.
(2019) proposed multi-round transfer by perform-
ing transfer learning for several rounds on multiple
high-resource language pairs.

Multilingual NMT (Johnson et al., 2017; Dabre
et al., 2019) aims to perform translation for mul-
tiple translation pairs in a single model, and posi-
tive transfer towards low-resource language pairs
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typically occurs. In our experiment, we have con-
sidered a variant that solely focuses on the low-
resource pair (Kocmi and Bojar, 2018; Nguyen and
Chiang, 2017).

Outside NMT, Artetxe et al. (2020) proposed
a similar partial freezing approach to transferring
BERT cross-lingually. As they worked on BERT
(Transformer encoder) for natural language under-
standing tasks, several differences from our work
arise. First, we need to consider the initialization of
decoder for NMT, and for the shared source case,
we need to deal with vocabulary mismatch on the
decoder side. Second, we find that additionally
transferring position embeddings is not helpful in
our experiments. Third, our approach can outper-
form BBERT transfer, whereas they observe slightly
lower performance in their experiments.

7 Conclusion and Future Work

In this work, we propose a framework for trans-
ferring from both pretrained language models and
neural machine translation models, so that both
monolingual data and high-resource parallel data
can be used to assist low-resource training. Our
approach shows consistent usefulness in a variety
of experiments, while also enjoying the flexibility
of independent vocabulary.

Recently, a deep encoder and shallow decoder
architecture is shown to have comparable trans-
lation quality with faster decoding speed (Kasai
et al., 2020). While our approach can be applied to
such architectures, a shallow decoder means that
transferring on the decoder side will be limited by
the shallow PLM, which is particularly severe for
shared source transfer. In future work we would
like to investigate how to work around this issue.
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the cost of computation. However, we have
highlighted the benefit of cold-start transfer:
Trained high-resource NMT models can be
used for future transfer. For example, we can
reuse NMTde→en and NMTen→de for a future
low-resource language X translating to and from
English, and PLMX can be used for both directions
if the encoder and the decoder have the same
number of layers. We hope such reuse can amortize
the cost of preparing parent models. We release
the code to facilitate future transfer at https:

//github.com/huawei-noah/noah-research/

tree/master/noahnmt/dual-transfer. Be-
sides, our experiment indicates that our approach
can reduce the need of back-translation data size,
while producing back-translation data and training
on augmented data are both costly.
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language code train dev test
de-en preprocessed - ParaCrawl newstest2017 -
et-en preprocessed newsdev2018 newstest2018
tr-en preprocessed newsdev2016 newstest2018
fr-es newstest2008-2011 newstest2012 newstest2013

de-en medical EMEA - dev - test random 3k of EMEA random 3k of EMEA

Table 9: Parallel data source. “Preprocessed” means the preprocessed data provided in WMT 2018 news translation
task.

language code data source
en News Crawl 2014-2017
de News Crawl 2014-2017
et News Crawl 2014-2017, BigEst Estonian corpus, Common Crawl
tr News Crawl 2016-2017, Common Crawl

fr/es News Crawl 2012
en medical EMEA, PatTR, Wikipedia articles, AACT
de medical EMEA, PatTR, Wikipedia articles

Table 10: Monolingual data source.

# GPU runtime (hours)
PLMde 8 32
PLMet 8 33

NMTde→en 8 39
NMTet→en 1 8
no transfer 1 20

Table 11: Runtime of each step in dual transfer (word)
for NMTet→en. The runtime of the “no transfer” base-
line for this language pair is also listed.

B Data Source and Preprocessing

We list the data source in Tables 9 and 10. Most
of the data is from WMT 2018, unless otherwise
noted. Medical data is from WMT 2014 medical
translation task7. The French and Spanish mono-
lingual data is from WMT 2013 news translation
task8.

All data sets are deduplicated. The Turkish
monolingual data is further cleaned by removing
lines with more than half non-Turkish characters,
and we only use a subset with 100m lines.

7http://statmt.org/wmt14/medical-task/
8http://statmt.org/wmt13/

translation-task.html

C Hyperparameters and Development
Performance

As we grid search learning rates in {1,3,5}×10−4,
we report the best found learning rate and the cor-
responding development BLEU in Tables 12, 13,
and 14. The development BLEU is calculated by
tokenized multi-bleu.perl. Due to the large
scale of the 130m BT experiment, we directly use
the best learning rates for 4m BT, and set other
hyperparameters as in high-resource NMT.

http://statmt.org/wmt14/medical-task/
http://statmt.org/wmt13/translation-task.html
http://statmt.org/wmt13/translation-task.html


2738

approach
et→en tr→en en→et en→tr fr→es

lr BLEU lr BLEU lr BLEU lr BLEU lr BLEU
no transfer 5 22.37 5 17.56 3 15.32 5 14.03 3 11.62

(Zoph et al., 2016) 5 21.67 - - - - - - - -
(Kim et al., 2019) 3 23.21 - - - - - - - -

BERT2RND 3 22.84 - - - - - - - -
BERT2BERT 3 23.98 1 22.06 1 16.44 1 16.27 3 21.57

(Kocmi and Bojar, 2018) 5 24.42 - - - - - - - -
BBERT2BBERT 1 24.52 - - - - - - - -
BBERT transfer 1 25.05 - - - - - - - -

dual transfer (word) 1 25.33 1 23.34 3 18.31 1 17.84 1 26.06
dual transfer (word+position) 1 25.20 1 22.33 3 17.91 1 17.88 - -

Table 12: Best found learning rate (×10−4) and the corresponding development BLEU for various translation
directions.

approach
4m ST 4m BT 130m BT

lr BLEU lr BLEU lr BLEU
no transfer 3 22.48 3 19.45 3 19.97

dual transfer (word) 1 23.36 1 21.67 - -
dual transfer (word+position) 1 23.67 1 21.73 1 21.27

Table 13: Best found learning rate (×10−4) and the corresponding development BLEU for et→en ST and en→et
BT experiments.

approach lr BLEU
no transfer (child) 3 63.39

BERT2BERT (child) 3 64.84
finetuning (parent) 1 65.26

dual transfer (parent) 3 65.13
dual transfer (child) 3 65.41

Table 14: Best found learning rate (×10−4) and the corresponding development BLEU for domain adaptation on
de→en.


