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Abstract

Syntactic and semantic structure directly re-
flect relations expressed by the text at hand
and are thus very useful for the relation extrac-
tion (RE) task. Their symbolic nature allows
increased interpretability for end-users and de-
velopers, which is particularly appealing in RE.
Although they have been somewhat overshad-
owed recently by the use of end-to-end neu-
ral network models and contextualized word
embeddings, we show that they may be lever-
aged as input for neural networks to positive
effect. We present two methods for integrat-
ing broad-coverage semantic structure (specif-
ically, UCCA) into supervised neural RE mod-
els, demonstrating benefits over the use of
exclusively syntactic integrations. The first
method involves reduction of UCCA into a
bilexical structure, while the second leverages
a novel technique for encoding semantic DAG
structures. Our approach is general and can
be used for integrating a wide range of graph-
based semantic structures.1

1 Introduction

Early work on RE focused on pattern-based rules
for capturing the structure of relation-evoking
words and phrases. These rules are applied over
text to identify entity relations in much the same
way a regular expression would be applied to dis-
cover matching text. The pattern machinery spans
from simple, regular-expression like, surface pat-
terns (Brin, 1999; Agichtein and Gravano, 2000),
through systems that integrate both lexical features
and syntactic dependencies into the pattern con-
struct (Mintz et al., 2009). The PredPatt and py-
BART frameworks (Zhang et al., 2017a; Tiktinsky
et al., 2020) are examples of syntactic dependency
based systems that leverage a set of rules defined

1Code can be found on GitHub at https:
//github.com/yyellin/gcn-over-semantic-
representations.

over Universal Dependencies (UD; Nivre et al.,
2016) to extract predicate-argument structures.

In supervised RE, a multi-class classifier is
trained to determine whether a relation between
entities is evoked by a text. With the increased pre-
dominance of end-to-end neural network architec-
tures in NLP practice, it is not surprising that recent
work on supervised relation extraction has focused
on adapting end-to-end neural systems for the task
(Peters et al., 2019; Yamada et al., 2020). However,
end-to-end neural models pose interpretability and
customization challenges (Conneau et al., 2018; Be-
linkov et al., 2020), motivating the study of hybrid
models, in which the neural architecture is fed ex-
plicit structure representations. The Contextualized
Graph Convolution Network (C-GCN; Zhang et al.,
2018) represents a method for exposing structure
representation to the machinery of a deep neural
network. C-GCN uses a sentence’s UD structure
as explicit input to the neural network, resulting
in a model whose results are both competitive and
interpretable.

In this paper we explore whether we can adopt
broad coverage semantic structure to the same ef-
fect, and whether we are able to observe improved
performance in comparison to the baseline model,
based on syntactic structure. We focus on the Uni-
versal Conceptual Cognitive Annotation (UCCA;
Abend and Rappoport, 2013) framework as a test
case, but note that our method can be easily ex-
tended to other semantic representations. Our re-
sults demonstrate that broad coverage semantic
structures, including those that, like UCCA, require
representation by directed acyclic graphs (DAGs),
can be integrated effectively in neural networks for
relation extraction.

https://github.com/yyellin/gcn-over-semantic-representations
https://github.com/yyellin/gcn-over-semantic-representations
https://github.com/yyellin/gcn-over-semantic-representations
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2 Background

We introduce the representation approaches and
datasets we employ in our study.

2.1 Universal Dependencies
Since the late 1990s, various NLP motivated de-
pendency grammar representations have been pro-
posed. Carroll et al. (1999); King et al. (2003);
De Marneffe and Manning (2008) are examples
of such systems, each one accompanied with cor-
pora of accordingly annotated sentences, used for
training supervised models for dependency pars-
ing. The UD (Nivre et al., 2016) project, based on
De Marneffe and Manning (2008), is a more recent
dependency grammar representation, that empha-
sizes cross-linguistic consistency and has over 300
contributors producing more than 150 treebanks
in 90 languages.2 UD dependency grammar repre-
sentations come in three forms: basic, enhanced
and enhanced++ (Schuster and Manning, 2016); in
basic the sentence is represented as a tree structure,
with every word in the sentence assigned a single
head word, while enhanced and enhanced++ are
DAG representations, in which a word may have
multiple heads, and where otherwise implicit rela-
tions between content words are captured explicitly.
In this paper, we use UD v1 to maintain consistency
with the setup used by Zhang et al. (2018).

2.2 UCCA
The Universal Conceptual Cognitive Annotation
framework (UCCA; Abend and Rappoport, 2013)
is a multi-layered system for semantic representa-
tion that seeks to capture the semantic, rather than
syntactic patterns, expressed through linguistic ut-
terances. The UCCA scheme maps sentences to
DAGs that embody these semantic structures. In
contrast to graphs formed by dependency gram-
mars, whose nodes all represent lexical entities,
a UCCA graph contains both nodes that repre-
sent word terminals, which are leaves in the DAG,
and non-leaf nodes that represent entities accord-
ing to some semantic consideration. The foun-
dational layer of UCCA covers the semantics of
predicate-argument structure evoked by predicates
of all grammatical categories (verbal, nominal, ad-
jectival and others). The layer’s primary construct
is a Scene, which captures a temporally persistent
state or an evolving event. A Scene contains one or
more Participants, and may also contain secondary

2https://universaldependencies.org

scenes, known as Adverbials. Scene, Participant
and Adverbial manifest as units in the DAG. In
appendix A we provide an example to highlight
UCCA’s semantic dexterity.

TUPA (Transition-based UCCA Parser) is a
transition-based parsing model that can be trained
to map sentences to their UCCA scene-based foun-
dational layer (Hershcovich et al., 2017). Pre-
trained TUPA models are available online;3 the
BERT based pre-trained model is used extensively
in this work.

2.3 TACRED

TACRED was designed by Zhang et al. (2017b) to
address the dearth of annotated data required for
supervised learning for RE. It is based on examples
from the corpus used in the yearly TAC Knowledge
Base Population (TAC KBP) challenges, conducted
from 2009 to 2015 (McNamee and Dang, 2009).
In each annual challenge, 100 entities, people, and
organizations, were provided to competing systems
for them to identify relations between those given
entities (referred to as subjects), and other objects
mentioned in the text. The TAC KBP relation ex-
traction task was formulated in terms of slot filling:
a person entity is assigned 26 attribute types while
an organization is assigned 16 — the challenge
posed to competing systems being the extraction
of the values of these attributes based on the given
corpus (or in other words, the object and relation
are given; the challenge is to find the subject). TA-
CRED leverages the results of these challenges to
form a set of 106,264 example sentences, each one
containing an object and a subject.

Annotation is implemented through crowdsourc-
ing, with each sentence annotation containing the
spans of both object and subject, one of the 42
entity relation attributes, or a no relation classi-
fication if no relation exists. In addition to the
human created annotations for subject and object
spans and relation type, the TACRED dataset con-
tains POS tags, named entities and UD parses by
the Standford CORENLP parser (Manning et al.,
2014). TACRED’s dependency representation an-
notation corresponds to basic UD v1.

3 Motivating Experiment:
A Rule-based Approach

Syntactic sentence representation is used in both
rule-based and supervised methods for relation ex-

3https://github.com/danielhers/tupa

https://universaldependencies.org
https://github.com/danielhers/tupa
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The Jerusalem Foundation , a charity founded by Kollek 40 years ago , said he died of natural causes .
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(b) UCCA Parse Graph

Figure 1: UD v1 (basic) and UCCA parse graphs for the sentence ’The Jerusalem Foundation, a charity founded
by Kollek 40 years ago, said he died of natural causes.’ The diagrams highlight paths from the subject ’Jerusalem
Foundation, through the trigger word ’founded’ to the object ’Kollek’ (sentence 61b3a5c8c9272ce895a6 in the
TACRED training dataset). For UD the resulting path pattern is <sub>↓appos↓acl<trigger>↓nmod<obj>,
and for UCCA it is<sub>↑C↓E↓P<trigger>↑P↓A↓C<obj>.

traction. Our hypothesis is that semantic sentence
representation can provide further benefit for this
task. We begin the examination of this conjecture
by comparing the relation extraction performance
of two simple rule-based methods, one using UD
and the other using UCCA, both applied to sen-
tences from the TACRED dataset.

Method. Asserting that a relation between two
entities is evoked by a text is often contingent on
the presence of a ”trigger word”, or phrase, with se-
mantic application to both entities. We use pattern-
based rules that denote a path from the relation
subject to the trigger word, and from the trigger
word to the relation object. Figure 1 illustrates this
by highlighting the path for both UD and UCCA
for the sentence ”The Jerusalem Foundation, a char-
ity founded by Kollek 40 years ago, said he died of
natural causes”.

Our procedure comprises three phases: UCCA
tagging, pattern extraction for both UD and UCCA,
and pattern evaluation.

UCCA Tagging. While the TACRED dataset
contains the UD representation for each sentence,
it does not contain the corresponding UCCA repre-
sentation. To begin our experiment, we use TUPA
with the BERT based pre-trained model, to create
UCCA annotations for all sentences in the training
set, producing TACRED sentences that have both
UD and UCCA representations. We do the same
for the sentences in the test set, which we use for
evaluation.

Pattern Extraction. Pattern extraction requires
a manual step in which trigger words for the rela-
tion in each sentence are identified. With the trig-
ger words identified, automatic pattern construction
follows for both UCCA and UD, per relation type.
The caption of Figure 1 presents an example. The
end result is a list of paths and trigger words for
each relation.

We declare a path match to occur when the target
sentence contains a subject and object entity pair,
any one of the trigger words in our list for the
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relation, and a path from the subject entity to the
trigger word and from it to the object entity, that
matches one of our extracted patterns.

Evaluation. We evaluate our system using the
org:founded by relation. For precision we count
the number of no relation sentences in the
test set incorrectly identified as containing an
org:founded by pair, as a fraction of the total num-
ber of no relation and org:founded by sentences,
to produce a precision value. We ignore sentences
containing other relations. For recall, we count
the number of correctly identified org:founded by
relations, from the total number in the test set.

Results. For org:founded by, recall is 0.38 for
the UD patterns and 0.2 for UCCA. Interestingly,
when applying either UD or UCCA patterns, recall
improves to 0.47. The precision result is 0.99 for
both UD and UCCA. We note that since the UCCA
representation system contains non-terminal nodes,
we can expect more variation in a UCCA path than
in the terminal-only UD representation-based path,
contributing to the inferior recall score of UCCA
versus UD.

While our experiment considers entity pairs with
an org:founded by relation or no relation at all,
and thus represents a binary classification problem,
rather than the multi label classification problem
posed by the 41 relations of the TACRED ontology,
it nonetheless highlights the potential for leverag-
ing trigger words and sentence graph representa-
tions (syntactic as in UD v1 basic and semantic
as in UCCA) for construction of relation match-
ing systems. Indeed, comprehensive trigger word
selection per relation is not scalable if done man-
ually, however we could utilize word embedding
techniques, so that trigger word matching could be
performed using a vector distance threshold, which
would capture similar trigger word terms (Batista
et al., 2015).

In the next sections, we describe more sophis-
ticated machinery, which realizes a softer notion
of matching between the paths of the training data,
and those of the test set.

4 C-GCN for Semantic Representation

We propose a supervised deep-neural-network
model that explicitly utilizes sentence graph rep-
resentations, so that we may compare the utility
of UCCA and UD paths (and their combination).
The model receives a sentence and two entity spans

(subject and object) as input and gives preference to
the word representations corresponding to the syn-
tactic or semantic path between subject and object,
for processing by the deep neural network. Con-
textualized Graph Convolution Networks (Zhang
et al., 2018) fulfil this requirement, and we select
them as the framework for our study.

4.1 The C-GCN Model

At the heart of the graph convolution network
method presented by Zhang et al. is the notion
that a sentence’s bi-lexical dependency structure
can be captured as an adjacency matrix and used
efficiently to fuse the representation of each token
on the path with the representations of its depen-
dency induced neighbors. Zhang et al. experi-
mented with various implementations and hyper-
parameters; we reference the C-GCN implementa-
tion for which their published results are achieved,
in which only words on the path or one dependency
edge away from the path are considered (”distance-
one-pruning”), and which uses two convolution
layers.4

In the case of UD, where all edges in the depen-
dency graph representation are between terminals,
this adjacency matrix stems from the graph repre-
sentation directly (this is not the case with UCCA
that contains non-terminal nodes; see 4.2). The ad-
jacency matrix captures the dependencies between
words that are either on the shortest path from sub-
ject to object, or are one dependency edge away
from a word on the shortest path (”near-path” to-
kens); all other dependencies are ignored.

C-GCN Architecture. Figure 2 presents the six
building blocks of the C-GCN implementation.
The nexus of the C-GCN model is in the graph
convolution layer (Block 3): it allows the deep neu-
ral network apparatus to focus on tokens that are
on-path or near-path. Best results are reached by
Zhang et al. with two instances of graph convolu-
tion, as depicted in the diagram. The first GCN
instance receives the [sentence-length× 400]
matrix input from the LSTM and outputs a
[sentence-length× 200] matrix. Subsequent
GCN instances all accept as input, and produce
as output, [sentence-length× 400] matrices.

To explain the core GCN mechanism we em-
ploy some notation. Let A represent our pruned

4This is also the model implemented by Zhang et al. and
available on GitHub at https://github.com/qipeng/
gcn-over-pruned-trees.

https://github.com/qipeng/gcn-over-pruned-trees
https://github.com/qipeng/gcn-over-pruned-trees
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Figure 2: High level overview of the six blocks comprising the contextualized graph neural network, with the
sentence from figure 1 as input.

adjacency matrix, where Ai,j = 1 if both i and j
are on the path between subject and object, or one
edge away from it, and there exists a dependency
between tokens i and j of any kind. The direc-
tion of the dependency is ignored by the model,
resulting in a symmetric matrix. Each GCN in-
stance is assigned its own weight matrix; the first,
of dimensions [400, 200], all others of dimensions
[200, 200]. Let W(l) represent the weight matrix
corresponding to instance l. Let di denote the de-
gree of token i, where a token’s degree corresponds
to the number of tokens it is connected to directly,
according to the dependency graph representation.
Finally, let h(l) and h(l+1) represent the input to
GCN instance l and its output respectively. Then
we have:

h
(l+1)
i =σ

(∑n
j=1(A+I)i,jW

(l+1)h
(l)
j

di
+b(l+1)

)
(1)

In other words, h(l+1) is computed by applying
a non-linearity function to the a linear combination
of both its immediate, unpruned, neighbors in the
graph, and itself, normalized by the degree of to-
ken i. Intuitively, all on, or near-path, tokens are
fused with their on or near-path neighbors in the
dependency graph, up to a dependency distance
that corresponds to the number of GCN instances.

We describe the other network blocks in ap-
pendix C.

GCN vs C-GCN In their paper, Zhang et al. ana-
lyze two variants of the graph convolution network:
C-GCN, and GCN. These models are identical ex-
cept with regard to an LSTM block, which is only
used in C-GCN. The ’C’ of C-GCN refers to the
contextualization achieved by the LSTM apparatus.

Modification of the C-GCN model to support
experimentation with other dependency represen-
tations involves multiple stages. In the following
sections we review these modifications and the re-
sulting models.

4.2 Converting UCCA Structures to
Bi-Lexical Graph

A goal of this study is to apply UCCA’s semantic
representations to the task of RE, by leveraging
UCCA’s parse graph in the graph convolutional
network machinery of the C-GCN model. As in
our motivating experiment (section 3), the prelimi-
nary step is to produce UCCA representations for
each of TACRED’s 106,264 sentences. We again
employ TUPA’s BERT-based pre-trained model to
this end, and generate parse-graph representations
for each sentence. We are confronted however
with a challenge: C-GCN expects a tree structure,
where all nodes correspond to tokens in the sen-
tence and have a single parent; UCCA produces
a graph structure with nodes that correspond to
non-terminal units and that have multiple parents.
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The first step in bridging this gap involves con-
version of the UCCA graph into a bilexical struc-
ture, where all nodes correspond to a token in the
sentence. We employ the method described by Her-
shcovich et al. (2017), which heuristically selects
a head terminal for each non-terminal node and
attaches all terminal descendants to the head termi-
nal.5 Using this conversion procedure, we produce
a UCCA-based bi-lexical graph representation for
each sentence in the TACRED dataset. Appendix
B provides an example of a bi-lexical reduction.

In the bi-lexical representation result, a termi-
nal token may have multiple parents, deeming the
structure a non-tree DAG. Indeed, the notion of
multiple parents may be viewed as a core feature
of semantic representations, reflecting the fact that
a word in a sentence or text may have multiple
semantic roles (Oepen et al., 2020). We thus mod-
ify the C-GCN model implementation, so that it
can produce the adjacency matrix using a bi-lexical
DAG rather than tree.

4.3 Extending C-GCN for UCCA DAG
Representation

Conversion of a UCCA sentence representation
into a bi-lexical graph clearly loses extensive se-
mantic information captured in the original struc-

5Details of the algorithm in Hershcovich et al. supplemen-
tary material https://www.aclweb.org/anthology/
attachments/P17-1104.Notes.pdf.

ture. We pursue an embedding-based mechanism
that will allow us to exploit the full UCCA structure
representation in our model.

Our novel approach seeks to utilize a lossless
representation of the UCCA DAG structure as train-
ing input for an additional embedding vector. To
this end, we map each token in a sentence to its
path to the root of the sentence-representing UCCA
DAG. With a set of fourteen different edge labels
in UCCA’s foundational level, we can encode each
label with four 0/1 bits. Given a maximum distance
of 18 steps from terminal to root for all sentences in
the TACRED dataset, we can encode all paths with
up to 72 zero/one bits in total. In a new pre-training
step, we collect all distinct paths from terminal to
root as derived from TACRED training dataset (for
a total of 22,922 distinct paths), assigning each
one to an initial 80-dimensional vector, where the
value of dimension i corresponds to bit i in the
corresponding path (we assign 0 to all beyond-path
dimensions).6 We add a

#»
0 vector for representing

out-of-vocabulary paths (necessary for evaluation).
Finally, we extend the 360-dimensional represen-
tation of each token to 440 dimensions, by con-
catenating the 80-dimensional representation of the

6This preparatory procedure is somewhat similar to the
pre-training step required for word embeddings, in which
we collect the set of word embeddings that our training data
vocabulary corresponds with for training initialization of word
embeddings.

https://www.aclweb.org/anthology/attachments/P17-1104.Notes.pdf
https://www.aclweb.org/anthology/attachments/P17-1104.Notes.pdf
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token’s path to root. Like word embeddings, the
UCCA path-to-root representation embeddings are
tuned during training.

While we can assign a UCCA-embedding for
each token in the sentence, we would like to focus
our network’s attention on tokens that relate closely
to subject and object. We achieve this with the help
of a minimal sub-DAG, which we define as the
DAG comprised of the lowest common ancestor of
both subject and object, and all their descendants.
Where there is more than a single lowest common
ancestor, we choose the one that induces the small-
est number of terminals. All tokens that are outside
the minimal sub-DAG are assigned the

#»
0 embed-

ding. In figure 3 we provide an example of the
embedding vector values before they are fine-tuned
during training.

5 Experiments

We perform twenty independent cycles of training-
and-test for all our experiments, computing an av-
erage of the recall, precision and F1 results across
these runs. This technique differs from the com-
mon evaluation protocol of selecting the model
with the median dev F1 from five independent runs
and reporting its F1 result; we frame our approach
in terms of statistical significance in Appendix F.
We use TACRED’s standard train/dev/test splits.
Results are reported using the standard F1 score.
We use a fork of the source code made available
by Zhang et al.7 In general we maintain the default
parameters of Zhang et al., including the default
pruning factor of one, by which tokens that are up
to one edge away from the path are also considered
by the convolution and pruning mechanisms.

As noted, C-GCN is trained on the TACRED
dataset.8 For each of the 106,264 sentences, the
dataset contains attributes including the relation
type, subject and object span and UD dependency
information. The process of model extension be-
gins with the enrichment of the TACRED dataset
with representation for additional semantic struc-
tures. As additional representation needs to be ex-
pressed in terms of the attributes of tokens for the
enrichment to be valid, alignment on tokenization
must be reached. In appendix D we describe how
this alignment is achieved and reproduce Zhang
et al.’s results using our updated tokenization.

7https://github.com/yuhaozhang/tacred-
relation.

8Available for download from https://
catalog.ldc.upenn.edu/LDC2018T24

System Adjacency Combination F1

cons UD UCCA

C-GCNud 7 3 7 66.27
C-GCNucca 7 7 3 66.44
C-GCNud∪ ucca 7 3 3 66.67
C-GCNall 3 3 3 66.94

Table 1: Results for different adjacency matrix combi-
nations. C-GCNud is the baseline model described in
Zhang et al. (2018). C-GCNucca replaces the UD rep-
resentation with bi-lexical UCCA representation. Best
performance is achieved when supplementing the com-
bined UD and UCCA path representations with all to-
kens between subject and object (C-GCNall).

System F1

C-GCNud+emb 66.66
C-GCNucca+emb 66.60
C-GCNall+emb 67.32

C-GCNall+emb ensemble 68.41

Table 2: The models listed in table 1 are further en-
riched with UCCA DAG representation, and their re-
sulting scores are listed here. We demonstrate an in-
crease of one F1 point for C-GCNall+emb over baseline
model C-GCNud.

The graph-convolution network uses each sen-
tence’s UD dependency tree to determine the set of
tokens (and their intra-connections) that it should
focus on in the convolution and pooling phases of
the network operation. As we presented in section
4.1, this is achieved by representing the UD depen-
dency tree as adjacency matrix Aud. The bi-lexical
UCCA graph projection we described in section
4.2 is represented by Aucca.

In addition to UD and UCCA structures, we
employ a synthetic bi-lexical tree, where, for an n-
token sentence, the only dependencies are between
tokeni and tokeni+1 for all i < n. This artificial de-
pendency tree will cause the convolution network
to focus on all tokens that appear between subject
and object in the surface structure of the sentence
(including subject and object themselves), and, in
consideration of path pruning, two additional to-
kens adjacent to either ends of the span. We denote
the adjacency matrix for this artificial structure by
Acons (”cons” for consecutive).

We establish a performance baseline by testing
different combinations of these adjacency matrices:
Aud alone, Aucca alone, [Aud ∪Aucca], and finally
[Aud ∪Aucca ∪Acons]. Our results are presented
in table 1.

https://github.com/yuhaozhang/tacred-relation
https://github.com/yuhaozhang/tacred-relation
https://catalog.ldc.upenn.edu/LDC2018T24
https://catalog.ldc.upenn.edu/LDC2018T24
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The UCCA-based adjacency matrix slightly out-
performs the UD-based one, providing experiment-
based evidence that tokens on the path between
subject and object on the UCCA bi-lexical tree re-
duction, provide more linguistic cues for the RE
task than those on the equivalent UD path. The su-
periority of the UCCA model is despite some loss
of semantic content that occurs when transforming
a full UCCA DAG to a bi-lexical one. Interestingly,
the addition of Acons further improves the result.

Armed with baseline performance, we employ
our novel UCCA terminal-path-to-root embedding
method described in section 4.3. We first apply
UCCA embeddings to the C-GCNud model; we
observe an F1 score improvement of close to 0.4
points. We observe a similar improvement when
we apply UCCA embeddings to C-GCNall: the F1
score rises from 66.94 to 67.32.

Our headline result is an improvement of 1.05
F1 points between the C-GCNud system described
by Zhang et al. with a mean score of 66.27, and
our C-GCNall+emb system, with a mean score of
67.32. We confirm the statistical significance of
these results by conducting Welch’s t-tests and
Mann-Whitney U-tests. For further discussion, see
Appendix F.

We follow the practice of performing ensemble
testing (Zhang et al., 2017b; Zhou et al., 2020),
by applying a soft-max function on the sum of the
classifier’s logits from five different C-GCNall+emb
models. We repeat the ensemble experiment for
all combinations of five models, from the set of C-
GCNall+emb models we produced in separate runs
of the experiment. We average the F1 scores for
a final score of 68.41. Table 2 summarizes these
results.

Finally, we perform a relation-based comparison
of C-GCNucca and C-GCNud, to determine whether
the performance improvements are a product of
improved results in specific relation categories. Ta-
ble 3 lists the results for all the relations for which
a difference of over 5% was demonstrated. We
discuss these results in the next section.

6 Discussion

Our goal is to measure how UCCA performs in
comparison with UD based C-GCN model. The
results of our baseline experiment provide evidence
that the graph convolution network produces a
slightly stronger model when the UD sentence rep-
resentation is substituted for a UCCA bi-lexical

Relation Avg. Improvement

per:country of birth 71.7%
per:city of birth 29.4%
per:city of death 10.5%
per:date of death 9.4%
org:country of headquarters 8.3%
per:stateorprovinces of residence 7.2%
per:stateorprovince of death 6.4%
per:schools attended -6.2%
org:parents -8.3%
org:subsidiaries -8.9%
org:shareholders -9.4%
per:children -9.6%
org:political/religious affiliation -23.0%
per:other family -55.4%

Table 3: Relations with average improvement/decline
of above 5% for C-GCNucca in comparison to C-
GCNud.

representation, and a significantly stronger model
when UD and UCCA are used in tandem.

In our main line of experimentation, we at-
tempted to utilize the entire UCCA representation,
rather than its bi-lexical reduction. We tested a
system that uses embedding representation of the
path of each token, within the minimal sub-DAG
that contains both subject and object, to the root
of that sub-DAG. We found that integration of this
additional input produces superior results for all
the models we tested: C-GCNud, C-GCNucca and
C-GCNall; interestingly, the improvement is the
smallest for C-GCNucca itself. We postulate that
the results demonstrate the efficacy of this novel
approach for embedding semantic representation
and believe that further analysis of this method in
the context of other systems for semantic represen-
tation could be helpful to the NLP community.

As detailed by Zhang et al., the C-GCN pool-
ing mechanism allows for identification of which
tokens contribute significantly to the pooling re-
sults (block 4 of the network). Thus, it is possible
to directly analyze sentences classified correctly
by, for example, C-GCNall+emb, but incorrectly by
C-GCNud, to ascertain which tokens contribute sig-
nificantly to the pooling stage output in the former
but not the latter. We leave this analysis for future
work as well.

To complete our study, we compared UCCA and
UD performance, relation by relation. All the re-
lations in which UCCA exhibits improved results
are location-oriented. Contrarily, UD does con-
siderably better than UCCA for family relations.
Why should UCCA do better for location relations
at the expense of its performance for family rela-
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tions? We note that location relations associate a
subject, person, or organization, to the object, a
location, via an explicit event such as birth, death
or residence. This is different from a family rela-
tion, for which there is detachment between the
event that evoked the relation, and the reality of
the relation at the present time. Indeed, for family
relations the relation-evoking event may vary con-
siderably for the same relation (consider adoption
versus birth). We hypothesize that UCCA, with
its improved semantic awareness, is more adept at
sensing an event that binds object to subject, as
opposed to UD, which performs better for fam-
ily relations that may emerge more readily from
syntax. This finding could lead to improved classi-
fication performance by constructing an ensemble
of UCCA and UD models, and weighting the soft-
max function on the sum of the classifiers to favor
UCCA results for location relations and UD results
for family ones. This experimentation is also left
for future work.

7 Conclusion

Much recent work on RE focuses on improving
the contextualized representations of words and
entities, including by means of injecting knowl-
edge into large pretrained models such as BERT,
to be used for a final step of supervised training
using comparatively small training datasets like TA-
CRED. This approach is successful in overcoming
the dearth of annotated data required for supervised
learning for RE and is producing ever-improving
bottom-line results. However, it further intensi-
fies the interpretability challenges posed by end to
end models and deepens the chasm between the
linguistic domain and the practice of NLP.

Our approach also leverages pretrained models
that are dependent on extensive prior training data
(via the TUPA parser); however, the intention is
linguistically explicit: generation of UCCA repre-
sentations for the sentences in the TACRED dataset.
The C-GCN architecture then provides visibility
into which words actually contribute to a relation
classification, providing a level of transparency de-
void in end-to-end models.

Our results indicate that representation of ex-
plicit semantic structure is indeed beneficial for the
RE task, providing linguistically-explicit means
for leveraging prior training to the task of relation
extraction.

Because our approach to embedding semantic

structure is not specific to UCCA, future work
could analyze the effects of integrating other se-
mantic representations, as well as the possibility of
embedding semantic structure representation in the
latest cutting-edge RE models.
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A Example of UCCA Advantage

Figure 4 provides an example of UCCA’s advan-
tage over UD in capturing scenes and their partici-
pants by representing non-verbal predicates (”grad-
uation”) like verbal ones (”transition”).

researchfull-timetotransitionedJohnnygraduationAfter

RO
O

T

compound nsubj amod

casemark

nmod:to

(a) UD Parse Graph

After graduation Johnny transitioned to full - time research

P A

T T T T T T T T T

E U C

E CR

APA

L H H

P process

A participant

H linked scene

C center

E elaborator

R relator

L scene linker

U punctuation

T terminal

(b) UCCA Parse Graph

Figure 4: UD v1 (enhanced++) and UCCA represen-
tation graphs for the sentence ’After graduation Johnny
transitioned to full-time research’. The UCCA parse di-
rectly captures Johnny’s participation in both the occur-
rences described in the sentence, graduation, and transi-
tion. This semantic connection does not arise from the
UD representation (not even the enhanced++ flavor).

B Example of Bi-Lexical Reduction for
UCCA

Figure 5 provides a graphic illustration for the re-
sults of bi-lexical reduction of UCCA representa-
tion, for the sentence depicted in figure 4. The
product of this bi-lexical reduction is a representa-
tion containing terminal nodes only.

-fulltotransitionedJohnnygraduationAfter

RO
O

T

time research

L

AA

H

A

R

E

U E

Figure 5: Bilexical UCCA representation of the sen-
tence from 1.

As this example illustrates, the bi-lexical reduc-
tion constitutes a DAG; in this example ”Johnny”

is the child of both the ”graduation” and the ”tran-
sitioned” terminals.

C C-GCN Architecture

We describe the six blocks of the C-GCN model as
depicted in figure 2.

Block 1 – Word Embeddings: Zhang et al. use
300-dimensional GloVe vectors to initialize word
embeddings corresponding to each token. Each
token’s initial corresponding GloVe based vectors
is further extended with 30-dimensional embed-
ding for the token’s part-of-speech, and another 30-
dimensional embedding for its entity type. Part-of-
speech and entity-type are both provided as input
in the TACRED dataset (POS and NER attributes
respectively) and are initialized in training with
random values for each of the unique classes in the
part-of-speech of entity-type sets. All the embed-
dings undergo fine-tuning during training and are
therefore variables of the model.

Block 2 – LSTM: The input vector embeddings
do not contain information about word order or
contextual cues required for disambiguation. A
bi-directional long short-term memory network ad-
dresses this, by taking the list of 360-dimensional
vectors corresponding to the sentence’s tokens and
producing a corresponding list of 400-dimensional
vectors.

Block 3 – Graph Convolution: We cover the
third block in section 4.1

Block 4 – Pool: The fourth block is responsible
for converting the two-dimensional sentence rep-
resentation into a single-dimensional vector. We
resort to formalism to describe precisely how this
is achieved. LetHp=[hp1 ,...,hpn ] denote the out-
put representations of the final GCN layer for all
on-or-near-path tokens, and let Hs=[hs1 ,...,hsn ]
and Ho=[ho1 ,...,hon ] denote the vector lists cor-
responding to the subject and object spans re-
spectably. A simple max pooling function is ap-
plied to Hp, Hs and Ho, resulting in three single
vectors, hpmax , hsmax and homax , representing the
on-or-near-path tokens, the subject and the object
respectably. The output of block four is a simple
concatenation of these vectors resulting in a single
600-dimensional vector.

Block 5 – Feedforward Network Block five is
a simple stacked feed-forward network, with each
FF layer comprising a single linear transformation
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followed by a RELU non-linearity. Zhang et al.
use two layers as depicted in the diagram. The
first layer receives a 600-dimensional vector and
produces a 200-dimensional vector as output; all
other layers receive and produce 200-dimensional
vectors.

Block 6 – Classifier The sixth and final block
of the network is a simple feed-forward linearity,
which receives the 200-dimensional vector from
block five, and outputs a 42-dimensional vector,
one dimension per relation category. This final
vector is used in both training with a cross-entropy-
loss function, and in evaluation, where a soft-max
function is applied to produce a probability vector.
It is possible to control the recall/precision balance
by applying a thresholding mechanism such that
a positive classification (i.e. any label other than
no relation) must surpass a threshold greater than
0.5, however the model chooses to treat a negative
classification symmetrically.

D Token Alignment

TUPA, the UCCA parser we briefly mentioned
in the introduction, uses the the SpaCy NLP
pipeline for basic NLP tasks including tokenization.
SpaCy’s default tokenization results vary consider-
ably from TACRED’s given tokenization. Indeed,
in 30% of train sentences, 28% of dev sentences,
and 25% of test sentences tokenization is differ-
ent. For example, differences arise in the case of
intra-word-hyphens9. Additionally, the TACRED
dataset contains some obvious tokenization errors;
for example, there are over 130 entries in which
two sentences have been merged into one, by erro-
neously fusing the last token of the first sentence,
it’s period punctuation mark, and the first one of
the next sentence into a single token.

To address these tokenization concerns, we re-
parse the entire TACRED dataset with the Stand-
ford CORENLP parser, configuring it to adhere
to the given tokenization produced by the TUPA
parser10. This results in a tokenization-aligned
standford pos, stanford ner, stanford head and
stanford deprel attribute set (see table 4). For

9Discussion on this tokenization divergence on Stack Over-
flow: https://stackoverflow.com/questions/
52293874/why-does-spacy-not-preserve-
intra-word-hyphens-during-tokenization-
like-stanford

10We achieve this by reconstructing a sentence where all
TUPA generated tokens are separated by whitespace, and then
setting CORE NLP’s ’tokenize.whitespace’ flag to True

Attribute Description

id UUID for the sentence
relation The relation that exists between sub-

ject and object (or no relation) if no
relation exists

token Array of the sentence’s tokens, the to-
ken at each array position correspond-
ing to the token at the same

subj start start zero-based index of the subject
token span

subj end end zero-based index of the subject
token span

obj start start zero-based index of the object to-
ken span

obj end end zero-based index of the object to-
ken span

subj type Entity type of subject (either organiza-
tion or person)

obj type Entity type of object (not limited to
organization and person; 18 different
classes of object type, including, for
example, location, duration and ideol-
ogy)

stanford pos Array of the sentence tokens’ parts-
of-speech, the part-of-speech at each
array position corresponding to the to-
ken at the same

stanford ner Array of the sentence tokens’ entity
types, the entity-type at each array po-
sition corresponding to the token at
the same (with ’O’ used to indicate a
non-entity token)

stanford head Array of the sentence tokens’ head
word one-based indices, the index at
each array position corresponding to
the head of the token at the same

stanford deprel Array of the sentence tokens’ incom-
ing dependency type, the index at each
array position corresponding to the in-
coming dependency type of the token
at the same

Table 4: Main attributes associated with each sentence
in the TACRED dataset

subj start, subj end, obj start and obj end, which
are human annotated properties, we employ a
simple algorithm to reassign their index values
to correspond to TUPA’s tokenization. The end
result is a transformed TACRED input dataset
where all sentence attributes that require adherence
to the sentence’s token breakdown conform with
TUPA/SpaCy tokenization.

As a baseline, we reproduce the experimen-
tal setup of Zhang et al. (2018), using the given
sentence attributes as they appear in the TA-
CRED dataset. We compare these results with
results we attain when using TACRED sentences
re-annotated by the CORENLP engine, using
SpaCy/TUPA sentence tokenization, as described
above. Table 5 captures this comparison. We hy-

https://stackoverflow.com/questions/52293874/why-does-spacy-not-preserve-intra-word-hyphens-during-tokenization-like-stanford
https://stackoverflow.com/questions/52293874/why-does-spacy-not-preserve-intra-word-hyphens-during-tokenization-like-stanford
https://stackoverflow.com/questions/52293874/why-does-spacy-not-preserve-intra-word-hyphens-during-tokenization-like-stanford
https://stackoverflow.com/questions/52293874/why-does-spacy-not-preserve-intra-word-hyphens-during-tokenization-like-stanford
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System Note F1

GCN reported result 64.0
C-GCN reported result 66.4

C-GCN our result with given dataset 66.68
C-GCN our results with TACRED input re-

annotated with CORE NLP engine, us-
ing SpaCy tokenization

66.27

Table 5: Our results for the unmodified C-GCN model,
using given and re-annotated TACRED datasets.

pothesize that the decrease in score when using
re-annotated data may stem from errors introduced
by our procedure for reassignment of index val-
ues for the human annotated subj start, subj end,
obj start and obj end properties.

E Variations of DAG encoding

We test two variations of our UCCA terminal-path-
to-root embedding method: the first adds non-zero
embedding representations for the token-to-root
path of all tokens in the sentence; the second uses
non-zero embeddings for tokens in the minimal
sub-DAG only, using zero vector embedding for
all other tokens. We also perform an ablation test
by using random values for each unique path em-
bedding, rather than values that encode the actual
paths.

System Path En-
coding

Min
Sub-
DAG

F1

C-GCNucca
† - - 66.44

C-GCNucca+emb 7 3 65.63
C-GCNucca+emb 3 7 66.22
C-GCNucca+emb 3 3 66.60

Table 6: Measuring impact of UCCA embeddings un-
der different settings. † marks the baseline C-GCNucca

model score as reported in table 1. An 7 in the Path
Encoding column indicates the use of random values.

The results in table 6 indicate that using path
encodings for tokens in the minimal sub-DAG
produce improved results when compared to the
plain C-GCNucca model. While the improvement
is marginal – 0.2 F1 points – we do see a more
marked impact, to the negative, when we use ran-
dom initialization. When we consider all sentence
tokens and not just those in the minimal sub-DAG
evoked by subject and object we also see a negative
impact, albeit more mild.

F Statistical Significance

We call attention to Reimers and Gurevych (2018),
who critique the common evaluation practice of
selecting the model with the median dev F1 from
five independent runs and reporting its test F1 result.
As noted, the F1 scores reported in our experiments
are the mean scores on the test set for 20 multiple
models, trained according to the parameters of the
system at hand (e.g. GCNud, C-GCNucca), using
the full TACRED train and dev datasets, and tested
with the test dataset.

Our headline result is an improvement of 1.05
F1 points between the C-GCNud system described
by Zhang et al., with a mean score of 66.27, and
our C-GCNall+emb system, with a mean score of
67.32. We conduct two sets of significance tests to
validate this result:

Welch’s t-test: Welch’s t-test assumes that the
compared distributions are approximately normally
distributed. We apply Welch’s t-test to a pair of 20
sample pairs, each pair using the same random seed,
with the first set corresponding to C-GCNud, and
the second to C-GCNall+emb, with a null hypothesis
asserting that both systems produce models with
similar F1 scores on the test set. The resulting p-
value is 3.015e-09. We subtract 0.75 F1 from all
the samples corresponding to C-GCNall+emb and
reapply Welch’s t-test. The p-value for this new
null hypothesis is 0.019. In other words, we have
a statistically significant improvement of 0.75 F1
points with p < 0.02.

Mann-Whitney U-test: We abandon the as-
sumption that our systems produce models with
normally distributed F1 on the test set and apply
the Mann-Whitney U test after once again subtract-
ing 0.75 F1 from the C-GCNall+emb samples. The
p-value for this new null hypothesis is 0.027. Re-
stated, we have demonstrated a statistically signifi-
cant improvement of 0.75 F1 points with p < 0.03.


