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Abstract

In end-to-end speech translation, acoustic rep-
resentations learned by the encoder are usually
fixed and static, from the perspective of the de-
coder, which is not desirable for dealing with
the cross-modal and cross-lingual challenge in
speech translation. In this paper, we show the
benefits of varying acoustic states according to
decoder hidden states and propose an adaptive
speech-to-text translation model that is able
to dynamically adapt acoustic states in the de-
coder. We concatenate the acoustic state and
target word embedding sequence and feed the
concatenated sequence into subsequent blocks
in the decoder. In order to model the deep inter-
action between acoustic states and target hid-
den states, a speech-text mixed attention sub-
layer is introduced to replace the convention-
al cross-attention network. Experiment results
on two widely-used datasets show that the pro-
posed method significantly outperforms state-
of-the-art neural speech translation models.

1 Introduction

Speech-to-text translation (ST) aims at translating
the source language speech into the text of the tar-
get language. Approaches to ST can be roughly
divided into two categories: end-to-end ST and cas-
caded ST. Early research on ST is primarily using
a cascaded model that combines a speech recog-
nition (ASR) module with a machine translation
component, both usually trained independently on
speech and parallel corpora (Ney, 1999; Matusov
et al., 2005). In contrast, end-to-end ST, which di-
rectly translates the speech of the source language
into text of the target language (Berard et al., 2016),
not only avoids error propagation in the ASR-MT
pipeline, but also greatly reduces inference latency.

However, despite these advantages, end-to-end
ST is confronted with its own challenging problem-
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s: performing cross-modal translation and cross-
lingual conversion in one shot. On the one hand,
compared with text-to-text translation, end-to-end
ST has to deal with acoustic inputs which are typ-
ically longer than their corresponding text input-
s. This makes the cross-modal source-target de-
pendencies more complicated. On the other hand,
compared with monotonic ASR, end-to-end speech
translation usually handles non-monotonic cross-
lingual conversion.

Generally, end-to-end ST uses the seq2seq
encoder-decoder framework (Sutskever et al., 2014)
as the backbone for training and inference, where
the encoder computes hidden states layer by layer
according to speech inputs. The decoder yields tar-
get translations word by word by attending to the
fixed-after-computing hidden states of the encoder.
Since the hidden states are static in the encoder,
information only flows one direction: from the en-
coder to the decoder. Given the cross-modal and
cross-lingual challenge in end-to-end ST, we ar-
gue that more sophisticated interaction between the
encoder and decoder would be desirable.

In this paper, we propose an adaptive ST
(AdaST) model that incorporates acoustic states
into the decoder for modeling the deep interaction
between the encoder and decoder for end-to-end ST.
We enable AdaST to dynamically adapt encoder
states in the decoder when target hidden states are
updated layer by layer. It also learns to represent
speech and text in one shared space in the decoder
for mitigating the cross-modal issue.

Our contributions can be summarized as follows:

• We present AdaST, a new architecture for end-
to-end ST, which learns representations of two
modalities (textual and audio) in one shared
space in the decoder.

• We conduct experiments to validate the ef-
fectiveness of AdaST. Our experiments and
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Figure 1: Diagram of the proposed AdaST that dynamically adapts acoustic encoder states in the decoder for
end-to-end ST.

analyses disclose that dynamically adaptive
acoustic representations are more desirable
than static acoustic states for end-to-end ST.

2 Related Work

Berard et al. (2016) demonstrate the potential
of end-to-end neural ST and Weiss et al. (2017)
achieve good performance by using an end-to-end
neural architecture, which trigger more research in-
terests in end-to-end ST. Both Bansal et al. (2019)
and Stoian et al. (2020) train a speech recognition
model first and then use the encoder of ASR to
initialize the encoder of speech translation. Jia
et al. (2019) synthesize training data for end-to-
end speech translation from MT and ASR dataset.
Gangi et al. (2019); Inaguma et al. (2019) adap-
t the idea of multilingual machine translation to
speech translation. In addition to these methods,
Bahar et al. (2019) use phoneme-level representa-
tions instead of speech frame-level representations
as input, greatly reducing the length of acoustic se-
quences. Knowledge distillation (Liu et al., 2019),
meta-learning (Indurthi et al., 2019), curriculum
learning (Wang et al., 2020b), and two-pass decod-
ing (Sung et al., 2019), have also been studied in
end-to-end speech translation.

To solve the cross-modal and cross-lingual chal-
lenges of end-to-end speech translation, Wang et al.
(2020a) and Dong et al. (2020) propose to use sub-
modules to separately analyze cross-modal and
cross-lingual problems in end-to-end ST. Each
module introduced solves one problem. Unfor-
tunately, they introduce a large number of extra
parameters and rely on a large amount of external
data to pre-train each submodule. In contrast, we
do not introduce any additional submodules and

therefore we do not need external data for pretrain-
ing.

3 The AdaST Model

In this section, we first introduce the widely-used
CNN + Transformer structure as the strong base-
line for end-to-end ST. After that we elaborate the
proposed AdaST model.

3.1 Baseline ST Model
The CNN + Transformer end-to-end ST model con-
sists of a speech encoder and a translation decoder.
The basic building unit of Transformer (Vaswani
et al., 2017) is the self-attention mechanism, which
can be formulated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The speech encoder is composed of Nc CNN
layers for encoding acoustic signals and Ne Trans-
former encoder layers stacked over CNN layers.
The translation decoder consists of Nd Transformer
decoder layers.

The CNN module subsamples acoustic features
to fit them into the subsequent Transformer encoder
layers. The Transformer encoder layers then learn
encoder states from the output of the CNN module,
which are fixed during decoding. That is to say, the
Transformer decoder layers attend to static Trans-
former encoder hidden states for yielding target
words.

3.2 AdaST
As shown in Figure 1, our proposed AdaST uses
the same speech encoder as the baseline ST model.
The significant difference lies in the decoder. In
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order to make acoustic states dynamically adap-
tive to decoder states in each layer, we concatenate
the hidden acoustic state sequence generated from
the last layer of the speech encoder with the target
word embedding sequence and feed the concate-
nated sequence into the subsequent decoder blocks.
The concatenated input sequence is combined with
positional encoding, similar to the vanilla Trans-
former decoder. In addition to positional encoding,
we also adapts modality embeddings, which are
defined in a embedding matrix with size of 2 × c
(c is the dimension of attention) adding to the input
sequence to distinguish the target textual tokens
from the source acoustic features. Modality embed-
dings has also been used in other cross-modal tasks,
e.g., Vilbert for vision-text multimodal pretraining.
Our experiments show that using modality embed-
dings in our model can slightly improve translation
quality.

In the decoder, each block consists of a multi-
head speech-text mixed attention sublayer and a
feedforward sublayer. The multi-head speech-text
mixed attention (STMA) is calculated as follows:

STMA(Q,K, V ) = softmax(
QKT

√
dk

+Mask)V

(2)

Q = Concat(src, tgt)WQ (3)

K = Concat(src, tgt)WK (4)

V = Concat(src, tgt)W V (5)

where src and tgt represent the sequence of acous-
tic hidden states and target word embeddings re-
spectively, and Mask is a predefined matrix which
serves as indicators controlling which positions of
the acoustic and target sequence are visible to atten-
tion heads, similar to the look ahead mask matrix
used in Transformer to prevent the decoder from
attending future tokens.

In each decoder layer of the proposed AdaST,
we divide the Mask matrix into four parts:

Mask =

[
MSS MST

MTS MTT

]
MSS represents the self-attention mask matrix of

the acoustic state, which is the same as used in the
encoder. MST is the mask matrix for the attention
from acoustic states to target hidden states. During
parallel training, as source acoustic states are not

visible to target hidden states, we set all values
of MST to minus infinity to forbid such attention.
MTS denotes the mask matrix for attention from
target hidden states to acoustic states. Values in
MTS are the same as the mask matrix used for the
cross-attention in Baseline ST. MTT is the mask
matrix for self-attention over target hidden states,
which is the same as the mask matrix used for self-
attention on the Baseline ST decoder.

The proposed AdaST benefits from the follow-
ing features. First, the acoustic states and decoder
hidden states are unified into a shared semantic s-
pace. Second, the acoustic states at each decoder
layer change accordingly after the calculations at
the current layer are performed. Third, instead
of calculating softmax for self-attention and then
calculating softmax for cross-attention in the base-
line ST, the neural representations in the AdaST
decoder are updated by calculating a single soft-
max over both acoustic states and hidden states for
target words. With these changes, we hope to miti-
gate the cross-modal and cross-lingual challenges
in end-to-end ST.

4 Experiments

We conducted experiments to examine the pro-
posed AdaST model.

4.1 Datasets

We used two datasets that are widely adopted to
evaluate end-to-end ST: IWSLT18 En-De and Aug-
mented Librispeech En-Fr (Berard et al., 2018).

Augmented Librispeech English-French. The
corpus provides triples for each instance: English
speech signal, English transcription, French text
translation from the aligned e-books. Following
Wang et al. (2020b), we only used the 100 hours
clean data for training, with 2 hours data as the
development set and 4 hours as the test set, which
corresponds to 47,271, 1071 and 2048 utterances
respectively. To be consistent with their settings,
we also doubled the training data by concatenating
the aligned references with pseudo translations by
the Google Translate.

IWSLT18 English-German. The IWSLT18
speech translation dataset is from TED Talks,
which contains 271 hour speech with 171K cor-
responding English transcripts and German transla-
tions. As there is no validation set in this dataset,
we randomly sampled 2000 samples from the train-
ing data as our validation set. Following Wang et al.



2542

(2020b), we used tst2013 as the test set.

4.2 Settings
We built our model based on the Espnet toolkit
(Inaguma et al., 2020). On the two datasets, we ex-
tracted 80-dimensional Fbank features from audio
files, setting the step size as 10ms and the window
size as 25ms. We deleted sentences with frame size
larger than 3000 and sentences with poor align-
ments. Following Wang et al. (2020a), we adopted
speed perturbation with factors 0.9 and 1.1. To
further reduce overfitting, we used SpecAugment
strategy (Bahar et al., 2019). In Librispeech, we
used subword level decoding, which was performed
via SentencePiece with a size of 1K tokens. In I-
WSLT18, we performed character level decoding.
As the tst2013 of IWSLT2018 is not aligned, we
employed Espnets default LIUM SpkDiarization
tool to segment each audio sequence. We used
RWTH toolkit (Bender et al., 2004) to calculate
BLEU scores (Papineni et al., 2002).

A two-layer CNN was taken in the speech en-
coder. The step size was set to 2. The size of the
convolution kernel was 2 × 2. The dimension of
the attention was set to 256. We used 12-layer en-
coder. The number of decoder layers in both the
baseline and AdaST was set to 10. We used the
Adam optimizer (Kingma and Ba, 2015) and run
our models on four P100 GPUs.

4.3 Main Results
In order to make each layer of the decoder to in-
teract with acoustic states, our model requires ad-
ditional computational overhead. However, the
conventional source-to-target attention network in
Transformer is subsumed in the decoder, which
helps AdaST to use fewer parameters than Trans-
former, hence partially offsetting the additional
cost. Overall, the number of parameters in AdaST
is 0.65 million fewer than that of the standard
CNN+Transformer structure. On the augment-
ed dataset, AdaST increased the training time by
11.7% and the inference time by 15.7%. We com-
pared our work against previous state-of-the-art
models and the ASR pretraining + MT fine-tuning
method. Table 1 shows the results on the two
datasets. We observe that the proposed AdaST
is able to achieve improvements of +0.83 BLEU
and +1.18 BLEU over the best baseline results on
En-Fr and En-De translation, respectively. This
demonstrates that our proposed method benefits
end-to-end ST at both the character and subword

Method BLEU

En-Fr

LSTM ST (Berard et al., 2018) 12.90
Transformer+ASR pre-train (Inaguma et al., 2020) 15.53

Transformer+ASR pre-train 16.27
AdaST 17.10

En-De

Transformer+ASR pre-train (Inaguma et al., 2020) 13.12
Transformer+ASR pre-train (Wang et al., 2020b) 15.35

Transformer+ASR pre-train 15.21
AdaST 16.39

Table 1: Results on the two datasets.

Structure Result

ST
Transformer+ASR pre-train 16.27

AdaST 17.10

ASR
Transformer 7.5

AdaST 8.3

MT
Transformer 18.10

AdaST 18.16

Table 2: Results of using AdaST on different tasks, i.e.,
speech translation (ST), automatic speech recognition
(ASR) and machine translation (MT). BLEU (↑) scores
are reported on ST and MT while CER (↓) on ASR.

level. We have also carried out experiments to com-
pare against a standard CNN+Transformer model
with deeper encoder and decoder. Experiment re-
sults show that simply deepening either encoder or
decoder of the standard structure is not helpful for
speech-to-text translation.

5 Analysis

We conducted further experiments and analyses to
take a deep look into our proposed method.

5.1 Only Cross-modal or Cross-lingual
Challenge

In order to investigate whether our proposed archi-
tecture is helpful for a task with only cross-modal
or cross-lingual challenge, we also conducted ex-
periments for automatic speech recognition (AS-
R) and machine translation (MT) tasks with the
proposed method on the Agmented Librispeech
dataset. Experimental results in Table 2 show that
the performance of ASR task drops, while the per-
formance of MT task is improved slightly. This
suggests that the proposed architecture is more ap-
propriate for dealing with cross-lingual and cross-
modal challenges at the same time.

5.2 Adaptive vs. Static Acoustic States

We assume that dynamically adaptive representa-
tions of acoustic states in accord with hidden de-
coder states at each decoder layer will be of great
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Structure BLEU
Transformer+ASR pre-train 15.21

Transformer+Additional Self-Att 16.08
AdaST 16.39

Table 3: Results of dynamic vs. static acoustic states.

Method ACC
Transformer+ASR pre-train 74.2

AdaST 96.7

Table 4: Classification accuracy (%) on speaker verifi-
cation.

help to end-to-end ST. In order to examine this hy-
pothesis, we add an additional self-attention at each
encoder layer in the baseline ST, which forces a-
coustic states at the corresponding encoder layer to
adapt to decoder hidden states. The results on the
IWSLT18 dataset, as displayed in Table 3, validate
this assumption. However, the added additional
self-attention substantially increase the number of
parameters at each layer. By contrast, our AdaST
does not introduce additional parameters at each
layer to learn adaptive acoustic states on the one
hand and achieves better performance on the other.

5.3 Probing the Speech Encoder

We further compared the trained speech encoder of
our AdaST against that of the baseline ST by eval-
uating speaker verification accuracy on the Fluent
Speech Commands dataset (Lugosch et al., 2019)
to investigate the change of the semantic informa-
tion learned by the encoder. Generally, the more
semantic information the encoder contains, the less
audio information it learns and hence the lower
classification accuracy it will obtain. We froze pa-
rameters of these two speech encoders, and added a
linear classification layer on the top of the encoder
. Only the added classification layer is trained on
the dataset mentioned above. Table 4 shows the
classification accuracy results, where the baseline
encoder achieves 74.2% while our encoder 96.7%,
substantially higher than the baseline encoder. This
indicates that our encoder focuses on modeling the
audio modality and passes the major task of mod-
eling semantic information in speech inputs to the
decoder. In contrast, the baseline encoder has to
model both semantic and modality information of
speech inputs, which weakens its modeling capaci-
ty for modality and therefore makes it have a much
lower performance on speaker verification.

6 Conclusions

In this paper, we have presented AdaST, a neural
model dynamically adapting acoustic states in the
decoder, which is able to mitigate the cross-lingual
and cross-modal challenge for end-to-end speech
translation. Experiments demonstrate that AdaST
achieves an improvement of 1.18 BLEU points over
state-of-the-art neural speech translation models.
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