
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 256–268
August 1–6, 2021. ©2021 Association for Computational Linguistics

256

How does Attention Affect the Model?

Cheng Zhang1,Qiuchi Li2, Lingyu Hua3, Dawei Song 3∗

1College of Intelligence and Computing, Tianjin University, China
2Department of Information Engineering, University of Padua, Italy
3School of Computer Science, Beijing Institute of Technology, China

cheng.zhang@tju.edu.cn
qiuchili@dei.unipd.it
hualingyu@hotmail.com
dwsong@bit.edu.cn

Abstract

The attention layer has become a prevalent
component in improving the effectiveness of
neural network models for NLP tasks. Figur-
ing out why attention is effective and its inter-
pretability has attracted a widespread deliber-
ation. Current studies mostly investigate the
effect of attention mechanism based on the at-
tention distribution it generates with one single
neural network structure. However they do not
consider the changes in semantic capability of
different components in the model due to the
attention mechanism, which can vary across
different network structures. In this paper,
we propose a comprehensive analytical frame-
work that exploits a convex hull representation
of sequence semantics in an n-dimensional Se-
mantic Euclidean Space and defines a series
of indicators to capture the impact of attention
on sequence semantics. Through a series of
experiments on various NLP tasks and three
representative recurrent units, we analyze why
and how attention benefits the semantic capac-
ity of different types of recurrent neural net-
works based on the indicators defined in the
proposed framework.

1 Introduction and Motivation

The first appearance of the attention mechanism in
natural language processing (NLP) can be traced
back to its successful application in Neural Ma-
chine Translation (NMT). Bahdanau et al. (2014a)
proposed an attention mechanism in an Encoder-
Decoder model, which achieved great success, and
showed that attention weight produced in this mech-
anism improved the interpretability of the model by
providing a way of aligning the source and target
languages through a simple quantitative analysis.
Subsequently, the assumption that attention could
improve the interpretability and transparency of a
model was acquiesced by many later works, such
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as AEN (Song et al., 2019) (applied to targeted sen-
timent classification), ATAE-LSTM (Wang et al.,
2016) (applied to aspect-level sentiment classifica-
tion), and CMLA (Wang et al., 2017) (applied to
semantic sentiment analysis).

More recently, this hypothetical premise has
aroused controversies. For example, Serrano and
Smith (2019) and Jain and Wallace (2019) used
an erasure-based approach and advocated the at-
tention weight does not necessarily correspond
to importance. Wiegreffe and Pinter (2019) and
Vashishth et al. (2019) considered attention to be
interpretable, using a more model-driven approach
and manual verification. These investigations fo-
cus on whether the attention distribution is unique
and the correlation between attention weight and
model prediction results, based on a similar neural
network setting that consists of an embedding layer,
a specific Recurrent Neural Network (RNN) and an
attention component. Complex components such
as the encoder-decoder structure were removed
from the network as they may bias the analysis
on the effect of attention weights. However, these
works fail to explain two critical issues as follows:

(1) Neglecting the changes in the rest of the
model before and after introducing attention,
especially the word embedding layer and the
RNNs’ hidden layer. Figure 1 shows the tran-
sition before and after the introduction of atten-
tion. When a model does not introduce atten-
tion, the model generates an embedding sequence
E = {e1, e2, ..., en} from the original one-hot word
representation. Subsequently, the sequence E is
processed by a specific RNN and converted into
a hidden layer sequence H = {h1, h2, ..., hn},
which is used to produce the output. The intro-
duction of attention will cause the model to change
the gradient during the back-propagation in the
training phase, which will lead to the embedding
and hidden sequences to move away from the pre-



257

output

h1

e1 e2 …

Association for Computational Linguistics

en

h2 … hnh0

E

H H attn

E attn

Attention Distribuion

h1attn

e1attn e2attn …

Association for Computational Linguistics

enattn

h2attn … hnattnh0attn

A attna0attn a1attn … anattn

output

Figure 1: The transformation before and after the introduction of the attention in the RNNs.

vious values E and H when the model training
step is done. The new embedding sequence is
represented by Eattn = {eattn1 , eattn2 , ..., eattnn },
and the hidden layer sequence is represented by
Hattn = {hattn1 , hattn2 , ..., hattnn }. After the at-
tention layer, Hattn is adjusted by the attention
distribution to produce a new sequence Aattn =
{aattn1 , aattn2 , ..., aattnn }. At this point, Aattn is
used to generate the output of the model.

The existing works have focused on whether the
attention distribution is unique or reasonable (if it
is not unique). However, they ignore the extent
of semantic changes in the sequences caused by
the attention mechanism, including the changes
in the embedding sequence (E → Eattn), in the
hidden layer sequence (H → Hattn), and even in
the emerging attention sequence (Aattn). We posit
that such ignorance would lead to an unfair and
biased analysis of the attention.

(2) Lacking a systematic study of the atten-
tion effect on different types of RNNs. The
attention layer is compatible with various types
of RNNs, regardless of which recurrent unit
out of Vanilla-RNN (Mikolov et al., 2010),
LSTM (Hochreiter and Schmidhuber, 1997) or
GRU (Cho et al., 2014), is used, or whether it has
a uni-directional or bi-directional structure. Al-
though the existing works have experimented on
many datasets, they solely focus on a single type
of RNN preceding the attention layer at a time.
We argue that a comprehensive comparison of the
changes before and after introducing attention to
different types of RNNs mentioned above will bet-
ter reveal the intrinsic interpretability of attention.

To address these two issues, we propose to ex-
plore the effect of attention from a new perspec-
tive by conducting a systematic investigation on
the semantic changes across different sequences
of a RNN model with or without attention, and

comparing the differences in the changes across
mainstream recurrent units. Based on the analysis
results, we expect to better understand what hap-
pens before and after the introduction of attention
into the model.

The proposed analysis requires a comprehensive
framework with reasonable metrics to evaluate the
quality of sequence semantics based on their vec-
tor representations. For this purpose, we adopt the
concept of Convex Hull in n-dimensional Seman-
tic Euclidean Space (SRn) (Zhang et al., 2020) to
represent the semantics of a sequence. Since an
attention mechanism always produces a point in
the convex hull of its preceding hidden units, we
can establish suitable metrics based on the convex
hull formed by a sequence of vectors in SRn, to
facilitate the analysis of attention effect. Section 2
will briefly introduce the Semantic Euclidean Space
and the convex hull representation of the sequence
semantics. In Section 3, we analyze the attention
mechanism and establish the relationship between
the attention weight and the sequence meaning (as
convex hull in SRn). Section 4 formulates a set of
indicators to analyze the semantic changes before
and after attention. With the proposed framework,
we conduct comparative experiments on various
datasets concerning text classification and senti-
ment analysis tasks in Section 5. Based on the
experimental results, we conduct in-depth analysis
from the perspective of why and how the atten-
tion mechanism benefits the semantic capacity of
different recurrent units of RNNs.

2 Background

Zhang et al. (2020) proposed an n-dimensional
Semantic Euclidean Space (SRn), which defines
the mapping relationship between points in an Eu-
clidean Space (Rn) and their semantics. As a se-
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mantic extension of Rn, SRn is defined as:

SRn = {∀x = (x1, ..., xn) ∈ Rn|x→ semantics}
(1)

In SRn, the points are divided into specific seman-
tic points and abstract semantic points. A spe-
cific semantic point has a word corresponding to it,
which can also be regarded as a word embedding.
An abstract semantic point does not have a specific
word corresponding to it, such as a point generated
by the hidden layer of RNNs.

Zhang et al. (2020) then proposed to use the con-
vex hull and centroid of points in SRn to measure
the meaning and central idea of a sequence of
words. It provides a theoretical basis for exploring
the semantic changes that occur before and after
introducing attention into a model.

2.1 Meaning of a Sequence

Definition. The meaning of a sequence composed
of semantic points is represented by the convex hull
composed of these points.

Given a sequence X composed of semantic
points, its meaning, denote as ME(X ), is formu-
lated as:

ME(X ) = Conv(X ) (2)

Conv(X ) denotes the convex hull of a finite point
set X , as the set of all convex combinations of the
points (Faux and Pratt, 1979). In a convex combi-
nation, each point xi inX is assigned with a weight
or coefficient αi in such a way that the coefficients
are all non-negative and sum to one. These weights
are used to produce a weighted average of points.
It is formulated as:

Conv(X ) =


|X |∑
i=1

αixi

∣∣∣∣αi ≥ 0 ∧
|X |∑
i=1

αi = 1


(3)

The mapping between the definition of the convex
hull and the meaning of a sequence is intuitive. A
sentence (sequence) consists of words (semantic
points). In addition to the semantics expressed
by the individual words, a sentence should also
include the implicit semantics (abstract semantic
points) produced by all possible combinations of
words.

2.2 Central Idea of a Sequence

Definition. The central idea of a sequence com-
posed of semantic points is represented by the cen-
troid of the sequence’s meaning.

The central idea of a sequence X of semantic
points is denoted as Centroid(X ), formulated as:

CI(X ) = Centroid(ME(X )) (4)

The centroid a subset X of Rn is the mean posi-
tion of all the points in all coordinate directions. It
is computed as:

Centroid(X ) =

∫
xg(x)dx∫
g(x)dx

(5)

where the integrals are taken over the whole space
Rn, and g is the characteristic function, which is 1
if a point is inside X and 0 otherwise (Protter and
Morrey, 1977).

However, the central idea of a sequence needs
to be calculated as Centroid(Conv(X )), instead of
Centroid(X ) directly, to guarantee that the cen-
tral idea of the sequence lies within the convex
hull (meaning) of the sequence. In contrast, even
though the geometric centroid of a convex object
always lies within the area representing its mean-
ing, a non-convex object might also have a centroid
that is outside the area, which is undesirable. As
introduced above, ME scopes the meaning of a se-
quence as an area in SRn, while the central idea
of the sequence should be at the centre of the ME
area.

The central idea of a sequence can be consid-
ered as a “summary” of the sentence’s meaning.
Operationally, it is the centroid of the convex hull
representation of the sentence meaning, within a
SRn. Take the phrase “The Association for Com-
putational Linguistics” as an example, the central
idea of this phrase can be summarized as a seman-
tic point, which corresponds to the abbreviation
“ACL”. Considering another phrase, “good enough
but not excellent”, the central idea of this phrase
also can be summarized as a semantic point, but for
the time being, there is no word that corresponds to
this semantic point. Perhaps with the development
of natural language, people will soon create a word
to describe this semantic point. This is actually the
specific semantic point and abstract semantic point
defined in SRn. More explanations about SRn can
be found in Zhang et al..
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3 Attention With Convex Hull

Motivated by the ability of SRn to measure the
meaning and central idea of sequences, we will
theoretically analyze the role of attention from the
perspective of semantic change.

Take the well-known Scaled Dot-Product atten-
tion (Vaswani et al., 2017) as an example (this will
be abbreviated as dot-attn later). When a sequence
X = {x1, x2, ..., xn} passes through a dot-attn
layer, the specific calculation process is shown as
follows:

αi = softmax(
xiX√
m

) (6)

yi = αiX (7)

X ∈ Rn×m denotes the matrix of word vectors
corresponding to the input sequence X , where m
is the dimensionality of word vectors. Essentially
this process can be described as the following two
steps:

1. Construct an attention distribution α =
(α1, α2, ..., αn) through the input sequence X
and the softmax function,

2. Use the attention weight and X to generate a
new sequence Y = {y1, y2, ..., yn}, which is
called an attention sequence.

αi is a probability distribution generated from
the softmax function, which ensures that each com-
ponent in it will be in the interval (0, 1) and the
components will add up to 1. Focusing on a specific
vector yi in Y , it can be expressed as follows:

yi =
n∑

j=1

αj
ixj

∣∣∣∣ n∑
j=1

αj
i = 1, αj

i ≥ 0 (8)

Comparing Formula 8 with Formula 3, we can
find that under the action of dot-attn, the process
of converting X to Y is indeed a process of con-
tinuously selecting new semantic points from the
convex hull of X (i.e., the meaning of X , ME(X ))
to form a new semantic sequence Y . Therefore, the
new sequence Y is a semantic transformation of the
original sequence X to some extent. An example
of X dot-attn−→ Y is shown in Figure 2.

Furthermore, although the convex hull of X
can be used to express the meaning of a sentence,
the model usually uses X to construct a vector
c = 1

n

∑n
i=1 xi as representation of a sentence, fol-

lowed by a dense layer and activation function to
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Figure 2: Use attention to convert sequence X to se-
quence Y . The meaning of X is represented by the yel-
low shaded part, and the meaning of Y is represented
by the red part.

generate prediction result. The form of sentence
representation c is consistent with the definition of
the central idea in SRn. Therefore, from the sen-
tence representation’s perspective, attention is to
transform the central idea expressed by the original
sequence (CI(X )) to a new semantic point CI(Y)
(the central idea of Y). The offset from the yellow
diamond to the red triangle in Figure 2 represents
the conversion from CI(X ) to CI(Y).

In summary, the model has undergone the fol-
lowing changes after the introduction of attention:

1. Attention adjusts the meaning expressed by
the original sequence by adjusting each se-
mantic point in the sequence.

2. Attention changes the central idea (an instance
representation) of the original sequence.

Through the above analysis, we have a deeper
understanding of how attention transforms the orig-
inal input from the perspective of the convex hull
at the theoretical level. It is important to note that
our proposed attention analysis framework above is
applicable to other forms of attention, such as tanh
attention (Zhou et al., 2016). No matter a popular
dot-attn or a traditional tanh attention is used, they
can be regarded as firstly adjusting the sequence X
to sequence Y , and then further averaging them to
make predictions. The subtle difference between
them lies in the dimensions of attention distribu-
tions. For an input sequence, the dot-attn generates
a 2-dimensional distribution, while the tanh atten-
tion generates a 1-dimensional distribution.

However, only the above analysis framework is
not enough. During the training process, due to the
introduction of attention, the gradient change in the
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back-propagation process will cause the original
sequence X to be converted into a new sequence
X attn, and this has also been ignored in previous
studies. To this end, we will first construct relevant
evaluation indicators, and then give our complete
analysis framework based on the theoretical analy-
sis of attention in this section.

4 Assessing the Effect of Attention

Following the typical settings in this area, we use an
RNN model as the basis to systematically analyze
the changes between different sequences in the pro-
cess of introducing attention to the model. We spec-
ify multiple indicators to measure these changes
and accordingly present our analysis framework.

4.1 Various Sequences Before and After the
Introduction of Attention

As shown in Figure 3, the model takes the one-
hot representation of the word sequence as the
initial input. When attention is not used by the
model, the model contains an embedding sequence
E = {e1, e2, ..., en} inferred from a dense layer
and a hidden sequence H = {h1, h2, ..., hn} pro-
duced by an RNN. When an attention mechanism
is introduced, the model weight changes due to
the gradient changes during the training process.
Hence, E andHwill be converted to new sequences
Eattn = {eattn1 , eattn2 , ..., eattnn } and Hattn =
{hattn1 , hattn2 , ..., hattnn }. The introduction of atten-
tion will be further transformed Hattn into an at-
tention sequence Aattn = {aattn1 , aattn2 , ..., aattnn }.
For the above five sequences, there is the following
progressive relationship:

E → H (9)

Eattn → Hattn → Aattn (10)

The differences between the above two links of
sequences should be carefully examined to explore
the impact of attention on the model. In this work,
we first define a series of indicators to measure
the semantic expression ability of an independent
sequence and the semantic relationship between
two sequences that belong to the same link. A
framework is proposed to systematically compare
the differences between the two links to assess the
effect of attention.

4.2 Degree of Semantic Unsaturation
In SRn, the meaning of a sequence X of length
|X | is calculated by ME. We define the degree of

semantic unsaturation of a sequence as follow:

DSU(X ) =
ME(X )

|X |
(11)

DSU(X ) reflects the degree of semantic unsatura-
tion regarding X . Normally, the smaller the se-
mantic space contained in the meaning of a se-
quence, the more precise the semantics expressed.
Specifically, for sequences X and Y have same
sequence length, if the meaning expressed by X
is more precise than the meaning expressed by Y ,
i.e. ME(X ) < ME(Y), then DSU(X ) is less than
DSU(Y), which means that the degree of unsatu-
ration of X is lower than Y . For this reason, the
smaller DSU(X ), the better.

4.3 Semantic Coverage
For two sequences X ,Y , the sequence Y is a se-
mantic transformation of the previous sequence X
(this transformation may be synonymous transfor-
mation or even semantic extraction), we use seman-
tic coverage (SC) (Zhang et al., 2020) to indicate
the overlap between two sequences:

SC(X ,Y) = ME(X ) ∩ME(Y)

Since X is the original sequence and Y is the con-
verted sequence, then three indicators Semantic
Coverage Precision (SCP), Semantic Coverage Re-
call (SCR), and Semantic Coverage F-Measure
(SCF) can be naturally defined to observe the
changes between the two sequences:

SCP(X ,Y) =
SC(X ,Y)

ME(Y)
(12)

SCR(X ,Y) =
SC(X ,Y)

ME(X )
(13)

SCF(X ,Y) =
2× SCP× SCR

SCP + SCR
(14)

4.4 Central Idea Offset
In addition to the difference in meaning between
two sequences, it is crucial to check the deviation
of the central idea between the two sequencesX ,Y .
The offset distance between the central idea of Y
and that of the original sequenceX is called Central
Idea Offset (CIO), formulated as follows:

CIO(X ,Y) = ‖CI(X ),CI(Y)‖ (15)

4.5 Analysis Framework
Base on the definition of the above five indicators,
we propose a framework to analyze the impact of
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Figure 3: Splice the two models before and after the attention is introduced in a symmetrical manner. The word
vector sequence and hidden layer sequence linked by the red arrow in the figure represent the observation from the
corresponding perspective. The sequence linked at both ends of the blue dashed arrow represents observation from
a shift perspective.

attention on a certain model. Recalling the two
links in Eq. 9, since the number of sequences con-
tained in each link is different, we propose two
perspectives for comparison: the corresponding
perspective and the shift perspective.

4.5.1 The Corresponding Perspective
The introduction of attention to a model has caused
changes in its embedding sequence (E → Eattn)
and its hidden layer sequence (H → Hattn). This
observation on the changes in the corresponding
layers of the model is called the corresponding
perspective. Using ∆ to represent the difference,
∆(ρ(E), ρ(Eattn)) reflects the influence of the in-
troduction of attention on the embedding layer from
the corresponding perspective, and similarly forH
andHattn.

In addition to the changes on a single sequence,
the difference between the links between adjacent
sequences (E → H, Eattn → Hattn) can also be
used to observe the impact of attention. For ex-
ample, ∆(SCP(E ,H),SCP(Eattn,Hattn)) is em-
ployed to compare the changes of semantic cover-
age precision between embedding layer and hid-
den layer before and after introduction of attention.
This difference can also be computed for SCP, SCF
and CIO.

4.5.2 The Shift Perspective
According to the analysis in Section 3, before atten-
tion is added, the generated attention sequenceH
is actually a conversion of the embedding layer.
In the presence of attention, the embedding se-

Dataset
Train/Valid/Test

Size
Vocab
Size

Label
Size

AG News 96000/24000/7600 95812 4
SST 8544/1101/2210 16583 4

Table 1: Dataset statistics.

quence Eattn is converted to the sequence Hattn,
which is further transformed to Aattn by the atten-
tion mechanism. Therefore, the difference between
CIO(E ,H) and CIO(Eattn,Aattn) can be used to
reflect the influence of attention on the overall se-
mantic shift along the link.

In the mean time, an input sentence is finally
converted intoH or Aattn to express the meaning
of the sentence, so we can alternatively express this
change by ∆(DSU(H),DSU(Aattn)).

5 Exploring the Attention

We first introduce the dataset and models used in
the experiments and then explore the impact of
attention using the analysis framework above.

5.1 Experimental Setup

In order to make our analysis concise, our ex-
periments focused on both text classification task
(Stanford Sentiment Treebank (SST) (Socher et al.,
2013)) and sentiment analysis task (AGNews 1). In
the future, we will extend our work to more data

1http://groups.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Figure 4: From the corresponding perspective observe the impact of the introduction of attention on the model. In
each bin, top (blue) is the model without attention, bottom (red) is the model with attention.

AG News SST

- dot - dot

LSTM 0.969 0.976 0.918 0.946
Bi-LSTM 0.974 0.977 0.941 0.951

GRU 0.966 0.973 0.938 0.946
Bi-GRU 0.968 0.970 0.945 0.947

RNN 0.953 0.967 0.848 0.948
Bi-RNN 0.971 0.972 0.892 0.948

Table 2: The accuracy of different types of recurrent
units before and after the introduction of attention.

sets, especially the machine translation dataset in
the encoder-decoder model.

Since the AGNews dataset does not have a pre-
defined validation set, the training set is split into
a training set and validation set at a ratio of 8:2.
The statistics of datasets are shown in Table 1. For
each dataset, the base model we used for training
is shown in Figure 1. It has an embedding layer for
convert one-hot representation to distribution rep-
resentation, a specific RNN-layer (recurrent units
can be Vanilla-RNN, LSTM or GRU. The overall
structure can be uni-directional or bi-directional,
resulting in 6 different combinations.), without or
with a dot-attn layer, followed by an additive layer
and softmax prediction. The accuracy results of
these models on the validation set are shown in
Table 2, we calculate and analyze our indicators on
the test set (The distribution of sentence length in
the test set is shown in Appendix A). It should be
pointed out that for the problem that the convex hull

of high-dimensional vectors cannot be calculated
temporarily, we use t-SNE to reduce the collected
vectors to 2-dimensional at first (like the work of
Zhang et al.), and further continue calculate the
convex hull of the sequence, and use the area to
represent the semantic size covered by the convex
hull (The reproducibility is shown in Appendix B).

Both in the datasets, regardless of the uni-
directional or bi-directional RNNs structure is used,
the experimental results’ trends are similar. There-
fore, we only show the results generate by the use
of bi-directional RNNs to compare different re-
current units before and after the introduction of
attention on the dataset SST. The more experimen-
tal results can found in Appendix C, such as uni-
directional RNNs in SST dataset, uni/bi-directional
RNNs on AGNews.

5.2 Analysis from the Corresponding
Perspective

As shown in Figure 4, by observing the differ-
ence in semantic density from the corresponding
perspective. We can find that the embedding se-
quences (E , Eattn) learned by the model is basically
the same for different recurrent types with or with-
out attention. However, from the hidden layer se-
quence, H,Hattn , we can observe the change of
this difference, no matter what type of recurrent
unit,Hattn are less thanH, this shows that the hid-
den layer sequence of RNNs using the attention
escapes or abstracts the original text with a smaller
semantic range, and the semantics expressed are
more accurate. After using the attention, the hidden
layer sequence improves the accuracy of semantic
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expression (decrease the degree of semantic unsat-
uration) also brings about the improvement of the
model effect, as shown in Table 2. The attention
mechanism’s introduction also led to the shorten-
ing of the central idea offset between embedding
sequences and hidden sequences.

From the semantic coverage perspective, the in-
troduction of attention makes the semantic conver-
sion between the embedding layer and the hidden
layer generally improve in all of the three indica-
tors, semantic coverage recall, semantic coverage
accuracy, and semantic coverage F-Measure. This
improvement shows that the semantic closeness be-
tween embedding and hidden layer and the degree
of unsaturation of the hidden layer greatly influ-
ence the model results. The introduction of atten-
tion improve the accuracy of hidden layer sequence
expression semantics and makes the semantic con-
version between the embedding sequence and the
hidden layer sequence more natural. If we compare
different types of recurrent units, it is not difficult
to find that RNNs is significantly worse than LSTM
and GRU on most indicators, which shows that the
prediction accuracy of RNNs is lower than LSTM
and GRU is truthfully reflected in our indicators.

5.3 Analysis from the Shift Perspective

The result of the shift perspective is shown
in Figure 5, the picture on the top reflects
∆(CIO(E ,H),CIO(Eattn,Aattn)), the bottom pic-
ture reflects ∆(DSU(H),DSU(Aattn)). After the
introduction of attention, the sequence Aattn used
for original semantic expression has a smaller de-
gree of semantic unsaturation thanH used for orig-
inal semantic expression before the introduction
of attention. At the same time, the distance be-
tween the central idea of the embedding sequence
(CI(E), CI(Eattn)) and the final vector used as
an instance representation of the embedding se-
quence (CI(H),CI(Aattn)) is also shortened. The
improvement of these indicators is also reflected in
the accuracy of the model.

It is worth mentioning that if we observe the
changes from the perspective of different recurrent
types, it is not difficult to find that the number of
gate structures in the recurrent type is positively
correlated with the degree of semantic unsaturation
of embedding sequences and attention sequences.
(There are three gate structures in LSTM, 2 in GRU
and 0 in Vanilla-RNN.)

5.4 Analysis from the Holistic Perspective

Table 1 and Figure A in Appendix show that in
terms of dataset size, vocabulary size and sentence
length, the AGNews dataset is larger than SST. By
observing the experimental results, it can be found
that the changes in the many indicators of RNNs
after adding attention on SST are the most obvi-
ous. On the other hand, the experimental results
for LSTM and GRU without using attention are
significantly better than RNN in term of seman-
tic expression ability. However, this superiority is
largely compromised by the introduction of atten-
tion, which can well recognize the central idea and
effectively condense the semantics of a sequence.
Therefore, for LSTM and GRU, the changes in per-
formance caused by adding attention are relatively
less than that for RNN. This also explains why
the accuracy of any RNN variant can be greatly
improved after the introduction of attention.

Through Figure 4 and Figure 7 in Appendix, we
can see that the introduction of attention on the SST
dataset has led to substantial improvements for all
indicators, and the improvements on the AGNews
dataset are significantly lower. Furthermore, for
CIO indicators, RNN results are similar to LSTM
and GRU after the introduction of attention. The
CIO indicator measures the offset between central
ideas and is directly related to the vector that the
model finally uses to make predictions (see For-
mula 8 and Formula 15). Therefore, the high per-
formance of RNN with dot-attn on SST validation
set is explainable, especially a single-directional
RNN model with dot-attn on the SST validation set
reached 0.948.

All of these results verify that the analysis frame-
work in our paper can objectively reflect the at-
tention mechanism’s effectiveness on the semantic
expression ability.

6 Related Work

Guidotti et al. (2018) divided the problem of black-
box models in detail, and the interpretability prob-
lem of attention discussed in this paper belongs to
the model explanation problem.

RNNs can be said to be the basic ancestor model
that introduced the attention mechanism in NLP
tasks. Karpathy et al. (2015) established a map-
ping between the neurons of hidden layers and the
content represented to explore the RNNs, Du et al.
(2019) proposed a quantitative analysis framework
to pave the way for effective quality analysis of
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Figure 5: From the shift perspective observe the impact
of the introduction of attention on the model. In each
bin, top (blue) is the model without attention, bottom
(red) is the model with attention.

RNNs, Zhang et al. (2020) assessing the memory
ability of RNNs.

Bahdanau et al. (2014b) explained the attention
from the perspective of translation alignment, Lee
et al. (2017) presented an interactive interface for
visualizing and intervening behavior of attention.
Recently, a large amount of quantitative analy-
sis work on the interpretability of attention has
emerged, such as Vashishth et al. (2019); Jain and
Wallace (2019); Serrano and Smith (2019); Wiegr-
effe and Pinter (2019); Jain et al. (2019), which
explained the attention only focused on the atten-
tion distribution itself, and used an erase method.

7 Conclusions

In this paper, we have proposed a novel framework,
based on a convex hull representation of sequence
semantics over a Semantic Euclidean Space, to ana-
lyze the effect of attention on the semantic capacity
of a RNN model and how the effect differs on dif-
ferent network structures. Extensive experiments
on two NLP tasks provide in-depth insights on how
and why attention impacts the model. From the
corresponding perspective, the introduction of at-
tention directly leads to (1) a reduction of semantic
unsaturation in the hidden layer of RNNs, that is,

an increase in accuracy of the original semantic
expression, (2) narrowing the central idea distance
between the hidden layer sequence and the embed-
ding layer sequence, (3) an improved performance
of semantic coverage between embedding layer se-
quence and hidden layer sequence. These are criti-
cal impacts of attention on the model and improve
the capabilities of different types of RNNs. From
the shift perspective, the attention layer sequence
further reduces the degree of semantic unsaturation,
and gets a closer proximity to the embedding layer
sequence in the central idea. This is a critical factor
in improving the model’s accuracy. Our method
illustrates how attention affects the model from the
perspective of semantic transformation and makes
up the limitations of the previous studies in which
they only uses a single model to analyze attention.

We believe that the method proposed in this pa-
per will help carry out more in-depth analysis of
the role of attention and provide a brand-new per-
spective for semantic visualization in NLP tasks.
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A Datasets Detail

The statistics of sentence length in the test dataset
of SST and AGNews are shown in Figure 6. The
distribution of sentence length in the figure shown
the sentence length in the AGNews’ test set is
mainly concentrated in (0, 80), in the SST’s test
dataset is mainly concentrated in (0, 40).
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Figure 6: Sentence length statistics. The abscissa indi-
cates the length of the sentence, and the ordinate indi-
cates the count number.

B Reproducibility

Our experiment uses public dataset SST and AG-
News. At the same time, in order to reproduce the
experimental results more conveniently, we store
the scores of each set of sequences in the dataset on
defined indicators in a pickle binary file 2, which
is convenient for you load it in and use Pandas 3

to view it. We uploaded all the pickle files saved
under different models and different datasets to the
code part and provided our drawing part of the code
to view the experimental results disclosed in our
paper, and the model code and training code will
be released after some sorting.

2https://docs.python.org/3/library/
pickle.html

3https://pandas.pydata.org/

C Experiment

Figure 7 from the corresponding perspective ob-
serve the impact of the introduction of attention.
Each set of pictures shows the experimental results
under different experimental settings. Contains the
dataset used in the experiment (SST or AGNews)
and the directionality of RNNs (uni-directional or
bi-directional), different types of recurrent units are
compared on the ordinate of each picture.

Figure 8 from the shift perspective observe the
impact of the introduction of attention. Each set of
pictures shows the experimental results under dif-
ferent experimental settings. Contains the dataset
used in the experiment (SST or AGNews) and
the directionality of RNNs (uni-directional or bi-
directional), different types of recurrent units are
compared on the ordinate of each picture.

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://pandas.pydata.org/
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(c) AGNews, uni-directional

Figure 7: From the corresponding perspective observe the impact of the introduction of attention.
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Figure 8: From the shift perspective observe the impact of the introduction of attention.


