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Abstract

Domain Adaptation is a fundamental prob-
lem in machine learning and natural language
processing. In this paper, we study the do-
main adaptation problem from the perspective
of instance weighting. Conventional instance
weighting approaches cannot learn the weights
which make the model generalize well in target
domain. To tackle this problem, inspired by
meta-learning, we formulate the domain adap-
tation problem as a bi-level optimization prob-
lem, and propose a novel differentiable model-
agnostic instance weighting algorithm. Our
proposed approach can automatically learn the
instance weights instead of using manually de-
signed weighting metrics. To reduce the com-
putational complexity, we adopt the second-
order approximation technique during train-
ing. Experimental results1 on three different
NLP tasks (Sentiment Classification, Neural
Machine Translation and Relation Extraction)
illustrate the efficacy of our proposed method.

1 Introduction

Domain shift is a challenging problem which is
commonly encountered in Natural Language Pro-
cessing (NLP). Due to the data distribution dis-
crepancy between source and target domain, the
model trained on the data from source domain may
fail to achieve satisfying performance in target do-
main. Therefore we face the domain adaptation
problem. In some real-world situations, we may
only focus on the performance of our model on a
specific domain. To maintain the performance, we
need labeled training data for supervised learning.
However, we often cannot collect enough labeled
training data relevant to the domain we are inter-
ested in (in-domain). Thus, we need to introduce
more labeled data from other different domains

1The code is available at https://github.com/
CasparSwift/WIND

(out-of-domain). We aim to leverage the general
knowledge from out-of-domain dataset to enhance
the in-domain performance of our model.

We consider a specific domain adaptation sce-
nario in this work, where we have a few labeled
in-domain training data and meanwhile we have
sufficient labeled out-of-domain training data from
other general domains.

Training on these two datasets jointly is a
straightforward solution for this scenario, but not
all samples from out-of-domain dataset has equal
effect during the training procedure. Several stud-
ies (Koehn and Knowles, 2017) on neural machine
translation (NMT) task show that, out-of-domain
instances relevant to the in-domain data are benefi-
cial while the instances irrelevant to the in-domain
data may be even harmful to the translation quality.
Apart from that, for sentiment classification task,
some general expressions such as “I’m truly im-
pressed by the design.” may appear in all domains.
Taking them as training samples can help the model
to learn general syntactic and semantic knowledge,
which improves the cross-domain sentiment clas-
sification performance. But using examples like
“This chair is solid.” (negative sentiment, furniture
domain) may reduce the accuracy of classifying
“This knife is solid.” (positive sentiment, kitchen
domain), because “solid” has different meanings
in these two domains. Any domain-specific ex-
pression like this would probably introduce some
noise. So it is essential to find a suitable strategy to
measure the importance of each training sample.

There are many instance weighting (or instance
selection) methods to tackle this problem. They
assign a weight to each instance and transform the
loss function to a weighted-sum formula. Most of
the conventional methods (Jiang and Zhai, 2007;
Gretton et al., 2006, 2009; Axelrod et al., 2011;
Wang et al., 2017; Zhang and Xiong, 2018; Wang
et al., 2019; Dou et al., 2020) propose different

https://github.com/CasparSwift/WIND
https://github.com/CasparSwift/WIND
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kinds of manually designed metrics to calculate
the weights of instances. The core idea of these
methods is to weight the instances according to
their importance and similarity to the target do-
main. However, in our domain adaptation setting,
the size of out-of-domain corpus is much larger
than that of in-domain corpus. The weights learned
by the previous methods may be biased to the out-
of-domain data, which would unavoidably result in
poorer performance on the in-domain data. In this
paper, we seek to automatically learn the weights
which make the model generalize well on the unbi-
ased in-domain data.

Inspired by Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017), we introduce an-
other unbiased subset from in-domain data which
serves as a query set. We propose a novel model-
agnostic differentiable instance weighting approach
named “WIND” (means Weighting INstances
Differentially) which is a general framework and
can be applied to all tasks in our domain adaptation
settings. Moreover, we hope to get rid of manually
designed metrics and let the weights to be differ-
entiable. To reduce the computational complexity,
we adopt a second-order derivation approximation
approach for calculating the gradient of weights.
We conduct plenty of experiments on datasets from
three representative NLP tasks: sentiment classifi-
cation, machine translation and relation extrac-
tion. The results show that our proposed method
substantially outperforms several strong baselines.

The contributions of our work can be summa-
rized as follows:

• We propose a novel differentiable instance
weighting algorithm for domain adaptation,
which learns the weights of instances with
gradient descent and does not need manually
designed weighting metrics.

• We adopt a second-order approximation tech-
nique to speed up the model training.

• We conduct experiments on three typical
NLP tasks: Sentiment Classification, Machine
Translation and Relation Extraction. Experi-
ment results demonstrate the effectiveness of
the proposed method. Code will be released.

2 Methodology

In this section, we first formulate our domain adap-
tation problem and introduce some notations. Then

we present the proposed gradient-based model-
agnostic instance weighting framework for our set-
ting and introduce the method to approximate the
second-order derivation of query loss. Finally, we
discuss some optimization details of our method.

2.1 Problem Formulation

Let Dtrain, Ddev and Dtest denote our train, de-
velopment and test datasets respectively. We use
Dtrain for model training,Ddev for hyperparameter
tuning and Dtest for model testing. Both Ddev and
Dtest are in-domain data. Differently, Dtrain con-
sists of sufficient labeled out-of-domain training
samples Dout = {(xi, yi)}mi=1 and a few labeled
in-domain training samples Din = {(xi, yi)}ni=1,
where n << m.

How to efficiently utilize Din is the key to bet-
ter domain transfer. To tackle this problem, in
this paper we first sample an in-domain train sub-
set Dit = {(xi, yi)}n1

i=1 from Din and we assign
a scalar weight wi to each instance (xi, yi) ∈
Dit∪Dout. We hope that during training, the model
can find the optimal weight w = (w1, ..., wn1+m)
by itself. For this purpose, the weight w should
be differentiable and can be optimized by gradi-
ent descent. Moreover, we denote the deep neural
network (DNN) as a function fθ : X → Y which
is parameterized by θ and maps xi from the input
space to the label space. In our instance weighting
setting, the training loss follows a weighted-sum
formula:

Ltrain(θ,w) =
1

n1 +m

∑
(xi,yi)∈

Dit∪Dout

wi`(fθ(xi), yi)

(1)
where ` denotes the loss function, which can be any
kind of loss such as cross entropy loss for classifi-
cation tasks, or label-smoothed cross entropy loss
for machine translation.

Jointly optimizing θ and w using Eq. 1 is a
straightforward solution. However, due to the
data distribution discrepancy of in-domain and
out-of-domain datasets, learning w directly from
Dit ∪ Dout by Eq. 1 may introduce bias. What
we expect is that the model trained on w can
be generalized to the in-domain data. In order
to achieve this goal, inspired by MAML (Finn
et al., 2017), we propose to sample another sub-
set Dq = {(xi, yi)}n2

i=1 named query set from Din.
We propose to use this query set to optimize w.
Specifically, we aim to obtain a weight vector w
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which minimizes the loss on Dq:

Lq(θ) =
1

n2

∑
(xi,yi)∈Dq

`(fθ(xi), yi) (2)

Note that we only weight n1 +m instances from
Dit ∪ Dout, so Lq(θ) has a standard form, not a
weighted-sum form.

Given a specific w, we can train a model with
the loss Ltrain(θ,w) and then get the optimized
parameter θ∗. We aim to minimize the loss on the
query set given θ∗. Therefore, our problem can be
formulated as the following bilevel optimization
problem (Colson et al., 2007):

min
w

Lq(θ∗)

s.t. θ∗ = argmin
θ

Ltrain(θ,w)
(3)

This bilevel formulation arises in many meta-
learning or hyperparameters optimization (HPO)
problems (Bergstra et al., 2013; Franceschi et al.,
2018), where the optimization of the outer objective
Lq depends on the optimization of inner objective
Ltrain. In fact, Eq. 3 is a special case of hyper-
paramter optimization, because w can be viewed
as special hyperparameter of our model. In Sec-
tion 2.2, we will introduce our proposed algorithm
to solve this nested formulation.

2.2 Optimization of Instance Weights
It is difficult to directly solve the above-mentioned
bilevel optimization problem because of its high
complexity of solving the inner objective. There
are many gradient-based methods (Maclaurin et al.,
2015; Franceschi et al., 2018) to solve this problem.
However, unlike typical hyperparameters such as
learning rate, the instance weight w is of high di-
mension. It is even harder to optimize this problem
in our setting.

Inspired by the optimization techniques used
in model-agnostic meta-learning (MAML) (Finn
et al., 2017), we split the training procedure of each
iteration into the following three steps.

2.2.1 Pseudo Update
Firstly, we sample two mini-batches of data from
Dit ∪ Dout and Dq respectively, Then we compute
the model’s parameters after one step update by the
gradient of Ltrain(θ,w) respect to θ:

θ̂ = θ − β · ∇θLtrain(θ,w) (4)

where β denotes the learning rate of this step.

This step is just “pseudo update”. After updating,
we do not replace original parameters θ with the
adapted parameters θ̂. Instead, we store both θ and
θ̂. We will use θ̂ to calculate the gradient of w
in the second step. So in our proposed algorithm,
θ̂ is just an intermediate variable which will be
abandoned in the end of current iteration.

2.2.2 Instance Weight Update
Then we calculate the instance weightsw using θ̂.
In this step, our goal is to find an optimal w∗. We
expectw∗ to have the property that: optimizing one
step by Ltrain(θ,w∗) should result in a decrease
of query loss. In other words, we expect w∗ to
minimize the loss on the query set after one step
update:

w∗ = argmin
w

Lq(θ̂)

= argmin
w

Lq(θ − β · ∇θLtrain(θ,w))
(5)

Note that this is an approximation for the outer
objective of Eq. 3. Theorectically, we can perform
gradient descent for many steps to find w∗. But
it is time-consuming. So basically we optimize w
with the gradient of Lq(θ̂) with respect to w for
only one step:

ŵ = w − γ · ∇wLq(θ̂) (6)

where γ denotes the learning rate of w.
We take ŵ as an approximation of w∗. Using

multiple gradient updates forw is a straightforward
extension of this step, which will lead to more
accurate approximation for w∗ while increasing
the computational complexity at the same time.

2.2.3 Final Update
In the previous two steps, we have an approxi-
mately optimal weights ŵ. We use it for actual
update for θ:

θ ← θ − β · ∇θLtrain(θ, ŵ) (7)

Current iteration ends after this step. As men-
tioned before, θ̂ will be abandoned, but we can
choose whether ŵ to be abandoned or not. This
will be further discussed in Section 2.4.3.

2.3 Second-Order Derivation Approximation

There is a fatal problem when calculating the gra-
dient∇wLq(θ̂) in the instance weight update (Sec-
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tion 2.2.2). We apply the chain rule to Eq. 6:

ŵ = w − γ · ∇wLq(θ̂)

= w − γ · ∇
θ̂
Lq · ∇wθ̂

= w + βγ · ∇
θ̂
Lq · ∇2

θ,wLtrain

(8)

We use |θ|, |w| to denote the dimensions of
θ,w respectively. The second-order derivation
∇2
θ,wLtrain is a |θ|× |w|matrix which is too huge

to calculate and store. Apart from that, calculating
the matrix-vector product is also expensive. Pre-
cisely calculating the results is unrealistic. Fortu-
nately, we can adopt the approximation technique
used in DARTS (Liu et al., 2018) to solve this
problem. This technique uses the finite difference
approximation:

∇
θ̂
Lq · ∇2

θ,wLtrain ≈
∇wLtrain(θ+,w)−∇wLtrain(θ−,w)

2ε

(9)

θ+ = θ + ε∇
θ̂
Lq

θ− = θ − ε∇
θ̂
Lq

(10)

where ε is a small scalar. We follow Liu et al.
(2018) to set ε = 0.01/‖∇

θ̂
Lq‖2 which is accurate

enough for approximation. Let α = βγ, we can
adjust the learning rate of w by tuning α.

Calculating this approximated gradient needs
only another two forward passes for θ+ and θ−,
which greatly accelerates the training procedure.
More details about the training process are de-
scribed in Algorithm 1.

2.4 Optimization Details

2.4.1 Dataset Split Strategy

The data split of query set Dq is critical. As men-
tioned in Section 2.1, we randomly sample Dit and
Dq from in-domain training set Din. If we have
enough in-domain data, Dit and Dq should be dis-
joint. However, our in-domain training set is not
so large, and splitting it will make it even smaller.
As a result, we use Din = Dq = Dit instead of
sampling. The ablation studies about this issue are
shown in Section 3.5.

2.4.2 Scaling the Weights

In this work, an extreme value of wi may make
the training unstable. It is important to scale it to
an appropriate range. In practice, we use sigmoid

Algorithm 1 WIND (Weighting INstances
Differentially)

1: Input: In-domain training set Dit, out-of-
domain set Dout, query set Dq, model parame-
ter θ

2: Initialize the weights w (see Section 2.4.3)
3: for i = 1 to epochs do
4: for j = 1 to steps per epoch do
5: Get a mini-batch (xt,yt) ∈ Dit ∪ Dout

6: Get a mini-batch (xv,yv) ∈ Dq

7: for k = 1 to inner steps do
8: Obtain θ̂ by Eq. 4
9: Obtain ŵ by Eq. 6 and Eq. 9

10: Update w in the storage by ŵ
11: end for
12: Update θ by Eq. 7
13: end for
14: end for

function to normalize it into [0, 1]:

Ltrain =
1

n1 +m

∑
(xi,yi)∈

Dit∪Dout

σ(wi)`(fθ(xi), yi)

(11)
2.4.3 Initialization of Instance Weight
How to initialize w is an important issue. In this
paper, we assume that all the training samples from
in-domain training setDit are beneficial and should
be highly weighted. For samples inDit, we fix their
weights to a very large number at the beginning
of training, which is close to 1 after calculating
by the sigmoid function. For samples in Dout, we
initialize their weights all by zeros. During training,
we do not optimize the weights of the in-domain
training samples and only update the weights of the
out-of-domain training samples.

Moreover, when to initialize w is another im-
portant issue. We propose two different kinds of
initialization strategy. One is to initialize w at the
beginning of each iteration. Another alternative is
to initialize w at the beginning of the training, and
update w in the storage every iteration. In practice,
we choose the latter. Although the former is more
easy to implement, it cannot make use of ŵ from
previous iterations.

3 Experiments

To evaluate the effectiveness of our proposed
method introduced in Section 2 and demonstrate its
model-agnostic property, we apply our method to
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Dataset Sentences
B-train (Din) 500
D,E,K (Dout) 18,000
B-dev (Ddev) 1,500
B-test (Dtest) 4,000

Table 1: Statistics of sentiment classification setting
with books domain as the in-domain.

Dataset Sentences
TED training (Din) 202,356
WMT14 subset (Dout) 500,000
TED tst2012 (Ddev) 1,700
TED tst2013 (Dtest) 993
TED tst2014 (Dtest) 1,305

Table 2: Statistics of machine translation setting.

Dataset Docs Relations
bc-train (Din) 10 222
nw & bn (Dout) 332 4,695
bc-dev (Ddev) 10 347
bc-test (Dtest) 40 1,036

Table 3: Statistics of relation extraction setting.

three different dataset settings of three tasks: Sen-
timent Classification, Machine Translation (MT)
and Relation Extraction, respectively.

3.1 Datasets

For sentiment classification task, we conduct the
experiments on the widely-used Amazon Review
Dataset (Blitzer et al., 2007). This dataset con-
tains four domain: books (B), dvd (D), electronics
(E) and kitchen (K). Each domain contains the re-
views of a specific category of products. We use
the data processed by He et al. (2018) and collect
6000 labeled samples for each domain. We split
the data of each domain into training (Din), devel-
opment (Ddev) and test (Dtest) set. In each domain
adaptation setting, we choose the training data of
one domain as the in-domain data (Din) and all
data of other three domains as the out-of-domain
data (Dout). Table 1 shows an example with books
domain as the in-domain.

For machine translation task, similar to the set-
tings of Luong and Manning (2015); Wang et al.
(2017); Zeng et al. (2019), we use the IWSLT 2016
English (EN) to German (DE) corpus (Cettolo et al.,
2016) as the in-domain data. This corpus contains
about 202K sentences from TED talks. For out-of-
domain data, we randomly sample a subset of 500K
sentences from the WMT 2014 English-German
corpus. Table 2 show the statistics of the datasets.

For relation extraction task, we evaluate our
method on the ACE 2005 dataset. This dataset

is suitable for evaluating domain adaptation be-
cause it contains six different domains. It has been
adopted by many previous works (Nguyen and Gr-
ishman, 2014; Gormley et al., 2015; Fu et al., 2017)
for cross-domain relation extraction. In this work,
we take broadcast news (bn) and newswire (nw)
domain as out-of-domain, and split broadcast con-
versation (bc) domain into train/dev/test sets with
the ratio of 1 : 1 : 4. Table 3 shows the detailed
statistics.

3.2 Implementation Details

For sentiment classification task, we use the pre-
trained BERT-base-uncased (Devlin et al., 2018)
model provided by HuggingFace (Wolf et al., 2019)
as our feature extractor. Our sentiment classifier
is a one-hidden-layer MLP with ReLU as the ac-
tivation function. For the optimization of model
parameters θ, we use the AdamW (Loshchilov and
Hutter, 2018) as the optimizer with a learning rate
of 2e−5, a warmup of 0.1 (of the total steps) and a
linearly decayed learning rate scheduler. The com-
putational cost is about 8-12 GPU hours on Tesla
V100.

For machine translation, we choose a vanilla
Transformer (Vaswani et al., 2017) as our back-
bone. We implement some baseline methods and
our method via fairseq toolkit (Ott et al., 2019).
We use MOSES2 scripts to tokenize the English
and German sentences, and then we apply Byte
Pair Encoding (BPE) (Sennrich et al., 2015) algo-
rithm to split the words into subwords. We limit the
maximum length of the sentences to 250 subwords.
We choose to share the embeddings of English and
German with the vocabulary size of 32,000. We
use Adam (Kingma and Ba, 2014) as the optimizer
and a decayed learning rate of 7e− 4.

For relation extraction, we only focus on rela-
tion classification when the entity pairs are given
for simplicity. We use the RBERT (Wu and He,
2019) model as our backbone. The configurations
of optimizer and learning rate are the same as those
in our sentiment classification experiments.

3.3 Baselines

We implemented the following baseline methods
for comparison with our methods. It’s worth noting
that we don’t choose some baselines (Jiang and
Zhai, 2007; Wang et al., 2017) of instance weight-

2https://github.com/moses-smt/
mosesdecoder

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
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Method B D E K Avg.

In 87.50 86.75 89.38 89.50 88.28
Out 90.17 90.17 92.58 92.95 91.47
In+Out 91.20 90.78 92.58 93.12 91.92
Ensemble (Wang et al., 2017) 90.55 90.00 92.83 92.83 91.55
IW-Fit (Wang et al., 2019) 90.40 90.00 92.85 92.62 91.47
DANN (Ganin et al., 2016) 91.15 90.88 93.35 93.35 92.18
WIND (ours) 91.65 91.08 93.10 94.00 92.46

Table 4: Experiment results (Accuracy) of domain adaptation for sentiment classification.

Method tst2012 tst2013 tst2014

In - 29.47 25.18
Out 21.45 22.50 19.63
In+Out 29.60 32.50 28.72
DM (Britz et al., 2017) - 31.57 27.60
IDDA (Zeng et al., 2019) - 32.93 28.88
WIND (ours) 30.77 33.58 29.26

Table 5: Experiment results (BLEU) of domain adap-
tation for machine translation.

Method test set

In 68.05
Out 88.22
In+Out 89.58
DANN (Fu et al., 2017) 89.38
WIND (ours) 90.54

Table 6: Experiment results (Accuracy) of domain
adaptation for relation extraction.

ing because they are quite early work and it’s unfair
to compare with them.

For sentiment classification:

• In A pre-trained BERT only fine-tuned on the
in-domain training set.

• Out A pre-trained BERT only fine-tuned on
the out-of-domain training set.

• In+Out A pre-trained BERT fine-tuned on
both in-domain and out-of-domain data.

• Ensemble It ensembles the in model and the
out model by adding their predictions. Note
that this method is used as a baseline in Wang
et al. (2017). Although Wang et al. (2017)
conducted the experiments on machine trans-
lation, we can still adopt this method on senti-
ment classification task.

• IW-Fit It uses the weighting strategy pro-
posed by Wang et al. (2019) for domain trans-
fer.

• DANN It introduces the domain classifier and
adversarial training as proposed by Ganin et al.
(2016).

For machine translation, the meanings of In,
Out and In+Out is the same as those in the senti-
ment classification setting. There are some other
baselines for machine translation setting:

• DM This indicates the Discriminative Mixing
method proposed by Britz et al. (2017), which
adds a domain classifier to the encodings of
source sentences similar to DANN (Ganin
et al., 2016).

• IDDA This indicates Iterative Dual Domain
Adaptation methods proposed by Zeng et al.
(2019), which iteratively performs bidirec-
tional translation knowledge transfer using
knowledge distillation between in-domain and
out-of-domain. Note that this method focuses
on the performance of both domains but in
this paper we only focus on in-domain perfor-
mance.

For relation extraction, besides the In, Out
and In+Out approaches, we also choose Fu et al.
(2017) as our baseline. This method simply intro-
duces DANN (Ganin et al., 2016) to cross-domain
relation extraction. Note that it is implemented by
convolutional neural network, we reimplement a
RBERT (Wu and He, 2019) version of it.

3.4 Experiment Results

Table 4 shows the overall performance of our meth-
ods in the domain adaptation setting on the senti-
ment classification task. Our method achieves an
absolute improvement of 0.45, 0.40, 0.52 and 0.88
points on four settings respectively in comparison
to the In+Out baseline. Moreover, our method out-
performs all the domain adaptation methods on the
settings with B, D, K as the in-domain data except
the E domain. Although our method does not beat
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all baselines on all settings, it achieves the best
average performance across the four settings. On
average, we achieve an improvement of 0.28 point
over DANN and 0.54 point over In+Out.

Table 5 shows the performance for the ma-
chine translation task. We use BLEU (Papineni
et al., 2002) scores to measure the performance.
Our method beats all baselines on all test sets
(tst2013,tst2014) and the development set (tst2012).
On these three datasets, we observe an improve-
ment of 1.17, 1.08 and 0.54 BLEU points com-
pared to In+Out. On tst2013 and tst2014 test sets,
we also achieve an improvement of 0.65 and 0.38
BLEU points compared to IDDA (Zeng et al., 2019)
method. Table 6 further shows our method’s effec-
tiveness on the relation extraction task.

Furthermore, from the results in Tables 4, 5 and
6, we can make the following observations:

(1) In comparison to the method in (Wang et al.,
2019) which uses manually designed weighting
metrics, our differentiable weighting approach out-
performs it in the sentiment classification task. This
result demonstrates that designing the metrics man-
ually may not be the best solution for all the tasks.
Designing them requires many prior human ex-
pert knowledge which is hard to generalize well
across tasks. By contrast, our method can learn
instance weights with the help of meta-learning
based algorithm to improve the models’ in-domain
generalization capability.

(2) Domain adversarial based method is a strong
baseline which is surpassed only by our method
in the sentiment classification task and the rela-
tion extraction task. However, it performs not so
well for the machine translation task. The poten-
tial reason may be that Britz et al. (2017) intro-
duces the domain classifier after the encoder to
learn domain-invariant features of sentences from
source language, but both domains share the same
decoder which cannot discriminate the features en-
coded by the encoder. In other words, this type of
method may only pay attention to the encoder and
ignore the domain transfer of decoder. In contrast,
our method overcomes this problem by consider-
ing weighting the loss of the whole model and thus
achieves better performance.

(3) For all three tasks, adding out-of-domain
corpus to the training set will improve the over-
all performance. We believe that adding the data
of some general domains can help the model bet-
ter learn domain-invariant syntactic and semantic

Method B D E K

WIND+split-init 91.10 90.55 92.68 93.60
WIND+split 91.50 91.12 93.42 94.00
WIND+rand 91.17 91.03 93.33 93.95
WIND 92.12 91.28 93.65 94.15

Table 7: The comparison between different variants of
our method on the sentiment classification task. Note
that the results in this table are evaluated under |Din| =
1, 000 setting. “+rand” means randomly initializing w.
“+split” means splittingDin into disjointDit andDq . “-
init” means not assigning a large number to in-domain
data weights.

knowledge, so it can improve the performance on
the in-domain data. This is consistent with the
conclusions reached by transfer learning. Interest-
ingly, this result is contradictory to the observation
of Wang et al. (2017), whose experiment results
show that adding out-of-domain to in-domain data
degraded machine translation performance. We sus-
pect that there is a problem with their training strat-
egy. The hyperparameters required under each set-
ting may be different. Some hyperparameters that
are set incorrectly (e.g. the same as In) may make
the result of In+Out even worse. Another reason
may be that the RNN-based sequence-to-sequence
NMT system they used tends to be more sensitive
to the noise while the Transformer (Vaswani et al.,
2017) model we used is more robust.

All in all, as we expected, our proposed method
WIND achieves the best performance under the
three task settings. This illustrates the advantages
of using differentiable method for data weighting.

3.5 Ablation Study

In this part, we study the effect of the strategies
mentioned in Section 2.4.1 and Section 2.4.3. The
experiment results shown in Table 7 demonstrate
that:

(1) Assigning the weights of in-domain instances
to a large number (1e8) and fixing them during
training can improve the accuracy. The weights of
this part do not actually need to be learned. Fixing
them may reduce the interference to the learning
process from the out-of-domain data.

(2) Zero initialization for weights of out-of-
domain instances is better than the random initial-
ization. The underlying reason for this may be that
random initialization may easily make the model
stuck into a local minima.

(3) No splitting for Din can improve the perfor-
mance as well. Intuitively, this improvement comes
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Figure 1: The effect of in-domain dataset size on the
sentiment classification task.

from the increased size of in-domain training set,
which enables us to make more use of the scarce
in-domain training samples.

3.6 Effect of In-Domain Dataset Size
In this part, we aim to study the impact of in-
domain dataset size n. Besides n = 500 setting,
we sample another two different Din with n = 100
and n = 1000. The rest of in-domain data is used
as development set. We evaluate all three settings
on the same Dtest mentioned in Table 1.

Figure 1 shows the average accuracy over four
domain settings when using different domain adap-
tation methods. We found that DANN (Ganin et al.,
2016) may not perform so well when in-domain
data are scarce. But our method can still achieve
consistent improvements in this three dataset size
settings.

4 Related Work

4.1 Domain Adaptation
Domain Adaptation is a fundamental problem in
machine learning and NLP. We aim to train a well-
performing model on a source domain which can
be generalized to a target domain.

The basic idea for domain adaptation is to learn
domain-invariant representations which generalize
across the domains. To achieve this, the most pre-
vailing method Domain Adversarial Neural Net-
work (DANN) (Ganin et al., 2016; Qu et al., 2019;
Xue et al., 2020) introduces a domain classifier
and uses adversarial training to make the features
unable to discriminate between source and target
domains. This method has been applied to many
NLP tasks. However, out-of-domain data is far
more than in-domain data in our setting. DANN
may cause some bias in this unbalanced dataset.
Another type of methods (Fang and Xie, 2020; Li
et al., 2020) propose to learn domain-general rep-
resentations by contrastive learning (Chen et al.,

2020a; He et al., 2019; Chen et al., 2020b). But
they mainly focus on classification task and the
methods are not model-agnostic frameworks.

4.2 Cross-Domain Sentiment Classification

Sentiment classification task aims to automatically
classify the sentiment polarity of the given texts.
Cross-domain sentiment classification aims to gen-
eralize the sentiment classifier from source domain
to target domain.

Besides the domain adaptation methods intro-
duced in Section 4.1, there are some methods which
are specific for cross-domain sentiment classifi-
cation. An important line of works follow the
Structural Correspondence Learning (SCL) (Blitzer
et al., 2006), and they design an auxiliary task
called pivot prediction to transfer domain-invariant
knowledge (Pan et al., 2010; Yu and Jiang, 2016;
Ziser and Reichart, 2016, 2018, 2019). But the
pivot words need human knowledge to select,
which may be not so accurate. Recently, the pre-
trained language models such as BERT (Devlin
et al., 2018) have achieved state-of-the-art on many
NLP tasks. DAAT (Du et al., 2020) performs a
novel post-training procedure on BERT and uses
adversarial training to transfer domain knowledge.
But this method only works for classification task
while our method is model-agnostic and does not
need two-stage post-training and fine-tuning.

4.3 Meta-Learning

The goal of meta-learning is to train a model that
can adapt to a new task quickly given a few new
samples. In other words, meta-learning can learn
the initial value of the model that is close to the
optimums of many different tasks. MAML (Finn
et al., 2017) is a classical method for meta-learning.
Each entry of the meta-training set of MAML is a
subset contains training data (support set) and test
data (query set). MAML calculates the loss on the
query set based on the parameters after one-step op-
timization on support set, and uses the gradient of
this loss to update the model parameters. MAML
has also been adopt for natural language under-
standing task before (Dou et al., 2019). Despite our
domain adaptation setting is quite different from
that in MAML, we can still utilize the idea of their
work to help domain generation.
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5 Conclusion

In this paper, we propose WIND, a differentiable
instance weighting method for model-agnostic do-
main adaptation, which is inspired by the ideas of
meta-learning to learn the weights on the in-domain
query set. Experiment results on three typical NLP
tasks show the efficacy of our framework.

It remains an open question how to efficiently
transfer the domain knowledge. In the future, we
plan to evaluate our method on more different tasks.
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