
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1873–1884
August 1–6, 2021. ©2021 Association for Computational Linguistics

1873

Structured Refinement for Sequential Labeling

Yiran Wang1∗, Hiroyuki Shindo2, Yuji Matsumoto3, Taro Watanabe2
1National Institute of Information and Communications Technology (NICT), Kyoto, Japan

2Nara Institute of Science and Technology (NAIST), Nara, Japan
3RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

yiran.wang@nict.go.jp, shindo@is.naist.jp,
yuji.matsumoto@riken.jp, taro@is.naist.jp

Abstract

Filtering target-irrelevant information through
hierarchically refining hidden states has been
demonstrated to be effective for obtaining in-
formative representations. However, previous
work simply relies on locally normalized at-
tention without considering possible labels at
other time steps, the capacity for modeling
long-term dependency relations is thus limited.
In this paper, we propose to extend previous
work with globally normalized attention, e.g.,
structured attention, to leverage structural in-
formation for more effective representation re-
finement. We also propose two implementa-
tion tricks to accelerate CRF computation and
an initialization trick for Chinese character em-
beddings to further improve performance. We
provide extensive experimental results on vari-
ous datasets to show the effectiveness and effi-
ciency of our proposed method.

1 Introduction

Sequential labeling tasks, e.g., named entity recog-
nition (NER) and part-of-speech (POS) tagging,
play an important role in natural language process-
ing. Figure 1 shows two examples of sequential
labeling tasks. Early studies focused on introducing
rich features to improve performance. For exam-
ple, to handle out-of-vocabulary words by introduc-
ing morphological features, Lample et al. (2016)
and Ma and Hovy (2016) leveraged character-level
features, whereas Heinzerling and Strube (2019)
exploited subword-level features. Moreover, intro-
ducing long-term dependency features is also found
to be beneficial for sequential labeling. Jie and Lu
(2019) attempted to explicitly exploit dependency
relations with additional annotations, while Zhang
et al. (2018) and Chen et al. (2019) endeavored to
learn these relations implicitly with more complex
encoders.

∗This work was done when the first author was at NAIST.

The

DT

financing

NN

system

NN

is

VBD

created

VBN

in

IN

the

DT

new

JJ

law

NN

The

O

chairman

O

of

O

the

B-ORG

Senate

I-ORG

Finance

I-ORG

Committee

E-ORG

Figure 1: Examples of NER (top) and POS tagging
(bottom). For NER, “the Senate Finance Committee”
is a named entity of type ORG (organization). The
prefixes S-, I-, or E- indicate this word is located
at the beginning, intermediate, or ending of the current
named entity, while O signifies this word is outside any
named entity. In the case of POS tagging, each tag is a
part-of-speech category. For instance, NN represents a
singular noun and VBN is the past participle of a verb.

However, as Tishby and Zaslavsky (2015)
pointed out, features are not created equal, only the
target-relevant features are profitable for improv-
ing model performance. Recently, Cui and Zhang
(2019) proposed a hierarchically-refined label at-
tention network (LAN), which explicitly leverages
label embeddings and captures long-term label de-
pendency relations through multiple refinements
layers.

Individually picking up the most likely label at
each time step is undoubtedly critical, however,
considering the entire historical progress is also
indispensable. We find that the locally normalized
attention, which Cui and Zhang (2019) used to
leverage information from label embeddings, can
eventually hurt performance. Since it only consid-
ers the current time step but ignores labels at other
time steps, thus we presume its ability to capture
long-term dependency relations is limited.

On the other hand, Kim et al. (2017) incorpo-
rated neural networks with probabilistic graphical
models to obtain structural distributions as an alter-
native to conventional attention mechanisms. Their
method relies on attending to cliques of linear-
chain conditional random fields (CRF). These in-
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Figure 2: The architecture of the proposed model. The dotted lines mean these components are shared across
layers.

ferred inner structures, i.e., represented as the
marginal probabilities, are not the targets of their
tasks but only serve as the latent variables, thus
they do not impose direct supervision on these at-
tention weights. In contrast, since we consider to
repeatedly refine these inferred structures to obtain
the final outputs, we compute structural attention
over these target labels instead, without introducing
unobserved variables.

In this paper, we propose a novel structured re-
finement mechanism by combining representation
refinement and structured attention. Following and
extending Cui and Zhang (2019), we hierarchically
refine hidden representations with global normal-
ized structured attention, i.e., the marginal probabil-
ity of CRF. Besides, to impose direct supervision
on the target structures, we share the label em-
beddings and the transition matrix of CRF across
layers. Our method can be considered as iteratively
re-constructing hidden representations with only
label embeddings, and thus it is capable of filtering
target-irrelevant information out.

Besides, we propose a character embedding ini-
tialization trick to enhance performance on Chinese
datasets and two CRF implementation tricks to ac-
celerate computation.

Our contributions are considered as four-folds,
(a) we propose a novel structured refinement net-
work by combing representation refinement and

structured attention for sequential labeling tasks,
(b) we propose an initialization trick for Chinese
character embeddings, (c) we propose two imple-
mentation tricks to accelerate CRF training and de-
coding, (d) and we prove the effectiveness and effi-
ciency of our model through extensive experiments
for NER and POS tagging on various datasets.

2 Baseline

Formally speaking, given a token sequence
{xt}nt=1, the aim of sequential labeling tasks is
to find the most probable label sequence {yt}nt=1.

2.1 Label Attention Network

Label attention network (Cui and Zhang, 2019)
consists of an embedding layer followed by several
encoding and refinement layers alternatively. The
decoding layer is a bidirectional LSTM followed
by a refinement layer.

Embedding Layer Cui and Zhang (2019) em-
ployed the concatenation of word and character-
based word representations as the token represen-
tations xt = [wt, ct], they convert words to word
embeddings wt ∈ Rdw and use a character-level
bidirectional LSTM to build character-based word
embeddings ct ∈ Rdc .
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Encoding Layer They utilized an independent
bidirectional LSTM for each layer l as follows,

{h(l)
t }nt=1 = LSTM(l) ({h̃(l−1)

t }nt=1) (1)

where h̃
(l−1)
t is the refined representation from the

last refinement layer. Specially, hidden vector h̃
(0)
t

is the token representation xt. After this, they
employ a refinement layer, which is called “label-
attention inference sublayer” in the original paper,
to refine hidden states. They make use of attention
mechanism (Vaswani et al., 2017) to produce the
attention matrix α(l)

t,j as in Equation 2, and further

calculate the label-aware hidden states ĥ
(l)

t ∈ Rdh ,
which jointly encode information from the token
representation subspace and the label representa-
tion subspace.

α
(l)
t,j = softmax

j∈{1,...,m}

(
(Q(l)h

(l)
t )>(K(l)vyj )√

dh

)
(2)

ĥ
(l)

t =

m∑
j=1

α
(l)
t,j · (V

(l)vyj ) (3)

Where Q(l),K(l),V(l) ∈ Rdh×dh are all param-
eters, and vyj ∈ Rdh is the embedding of label
yj ∈ Y . In practice, they use multiple heads to
capture representations from multiple aspects in
parallel. After that, they concatenate the hidden

state h
(l)
t and the label-aware hidden state ĥ

(l)

t as

the refined representation h̃
(l)
t ∈ R2dh , and feed it

into the next encoding layer.

h̃
(l)
t = [h

(l)
t , ĥ

(l)

t ] (4)

Decoding Layer Similar to the encoding layer,
the decoding layer contains a bidirectional LSTM
and a refinement layer, but at this layer, the atten-
tion matrix α(L+1)

t,j only servers as the label proba-
bility distribution to predict the most probable label
sequence.

p (y | h) =
n∏
t=1

α
(L+1)
t,yt (5)

3 Proposed Method

3.1 Structured Refinement
A notable highlight of the model of Cui and Zhang
(2019) is that it is not equipped with the commonly
used CRFs (Lample et al., 2016; Ma and Hovy,

2016), however, it still can achieve remarkable per-
formance. And just because of abandoning the
computationally expensive CRFs, their model ob-
tains a significant acceleration on both training and
decoding stages. However, we find that the time
step independent attention, i.e., the softmax oper-
ation in Equation 2, only considers these labels at
the current time step and ignores all the possible
label combinations at other time steps, thus the per-
formance is eventually degraded since the ability
of capturing long-term dependency relation is local
and limited. We thus bring CRF back and use the
marginal probability to construct refined represen-
tations. We claim replacing the attention matrix
α
(l)
t,j with the globally normalized marginal proba-

bility can capture long-term dependency relations
more effectively.

The potential function of CRF is defined as,

φ (yt−1, yt,h
(l)
t ) = Ayt−1,yt + h

(l)>
t vyt (6)

where A ∈ R|Y|×|Y| is the transition matrix,
Ayt−1,yt denotes the transition score from label
yt−1 to label yt, and vyt is the embedding of la-
bel yt. The conditional probability of a specified
label sequence y can be described as

p (y | h(l)) =
1

Z (h(l))
exp

n∑
t=1

φ (yt−1, yt,h
(l)
t )

(7)

Z (h(l)) =
∑

y′∈Yn

exp

n∑
t=1

φ (y′t−1, y
′
t,h

(l)
t ) (8)

where Z (h(l)) is the global normalization term,
commonly known as the partition function. Fur-
thermore, the marginal probability is defined as
follow.

µt (yj ,h
(l)) =

∑
y′:Y ′t=yj

p (y′ | h(l)) (9)

Marginal probability stands for the sum of the
probabilities of all possible label sequences that
emit label yj at time step t. Calculating marginal
probability requires enumerating all possible struc-
tures, and it thus can be called globally normalized
probability or structured attention.

We replace the locally normalized attention α(l)
t,j

in Equation 3 with our globally normalized one,
i.e., µt (yj ,h

(l)). Furthermore, we employ residual
connection (He et al., 2016) and layer normaliza-
tion (Ba et al., 2016), instead of concatenation, to
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construct the refined representation h̃
(l)
t ∈ Rdh ,

ĥ
(l)

t =
m∑
j=1

µt (yj ,h
(l)) · (V(l)vyj ) (10)

h̃
(l)
t = LayerNorm

(
h
(l)
t +max (0, ĥ

(l)

t )
)

(11)

where V(l) ∈ Rdh×dh is a matrix parameter. The
obtained refined representation h̃

(l)
t is then fed into

the next layer.

3.2 Computing Marginal probability
Conventional method to compute the marginal
probability µt (yj ,h

(l)) requires running the
forward-backward algorithm. Fortunately, as Eis-
ner (2016) indicates, merely computing the log-
partition function, logZ (h(l)), and differentiating
it with an automatic differentiation library yields
equivalent marginal probability efficiently. Thus,
we use the torch.autograd.grad function
of PyTorch to compute the marginal probability
as follow.

µt (yj ,h
(l)) =

∂ logZ (h(l))

∂ (h
(l)>
t yj)

(12)

3.3 Training and Decoding
We train our model by maximizing the log-
likelihood with the back-propagation algorithm.
The objective function is defined as follow,

L = − log p (y | h(L+1)) (13)

We apply the Viterbi algorithm (Forney, 1973)
to efficiently search for the most probable label
sequences on the decoding stage.

ŷ = argmax
y′∈Yn

p (y′ | h(L+1)) (14)

3.4 Complexity and Implementation Tricks
One concern regarding our proposed method is its
computational complexity, as it requires to com-
pute not only the partition function but also the
marginal probability. Calculating the partition func-
tion, as in Equation 8, is the well-known bottle-
neck of CRF computation. And this is commonly
achieved through reducing potential matrices by
applying matrix multiplications. Similar to Rush
(2020), we make use of the associative property
of matrix multiplication to accelerate computation.
The product of multiplying matrices A, B, C, and
D is equivalent to the product of AB and CD.

Leveraging the power of GPU to compute AB
and CD in parallel, and recursively applying this
trick, we can reduce the time complexity of obtain-
ing the partition function from O (

∑|B|
i=1 |x|i) to

O (
∑|B|

i=1 log |x|i), where |x|i is the length of i-th
sentence in batch B. Moreover, instead of padding
the sequence length |xi| out to the nearest power
of two as Rush (2020) does, we pre-compile argu-
ment indices of the matrix multiplication to handle
the variant sentence length issue in a batch. Our
method can effectively avoid out-of-memory error
since we don’t waste memory for paddings. This
pre-compiling trick can further reduce the time
complexity to O (maxi log |x|i). We release our
CRF implementation with these two tricks as an
independent library1 for future study and use.

3.5 Character Embeddings Initialization
We describe a trick for Chinese character embed-
dings initialization. The most striking difference
between Chinese and English is that the minimal
semantic units, i.e., sememes, of Chinese are char-
acters instead of words or subwords. The character
vocabulary size of Chinese, e.g., around 2,000 on
the OntoNote 5.0 dataset, is markedly larger than
English, e.g., around 100 on the OntoNotes 5.0 En-
glish dataset. Existing models (Zhang and Yang,
2018; Li et al., 2020a) generally focused on intro-
ducing additional pre-trained character embeddings
on the top of lexicon embeddings, and attempted
to selectively leverage information from both of
them according to the different word segmentation
schemes. However, we notice that most of these
characters already exist in the word vocabulary
as single-character words, thus we employ a ran-
domly initialized orthogonal matrix2 to project the
pre-trained word embeddings into the same dimen-
sion as the character embeddings, and use these
projected embeddings for initialization.

4 Experiments

4.1 Datasets
We conduct experiments on the CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) and the
OntoNotes 5.0 (Weischedel et al., 2013) datasets
for English NER, and on the OntoNotes 5.0 and
the OntoNotes 4.0 datasets for Chinese NER exper-
iments. We also conduct experiments on the Wall

1https://github.com/speedcell4/
torchlatent

2torch.nn.init.orthogonal

https://github.com/speedcell4/torchlatent
https://github.com/speedcell4/torchlatent
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Task Dataset Language Sentences |Y|

NER

OntoNotes 5.0 English 59,924 / 8,528 / 8,262 73
CoNLL 2003 English 14,987 / 3,466 / 3,684 17
OntoNotes 5.0 Chinese 36,487 / 6,083 / 4,472 73
OntoNotes 4.0 Chinese 15,724 / 4,301 / 4,346 17

POS WSJ English 38,219 / 5,527 / 5,462 45
UD 2.2 English 12,544 / 2,003 / 2,078 50

Table 1: Dataset statistics, where the “Sentences” col-
umn displays the number of sentences in train/dev/test
split respectively, the |Y| column displays the number
of target label types. For NER datasets, we count types
with the IOBES labeling scheme.

Street Journal (WSJ) dataset (Marcus et al., 1993)
and the Universal Dependencies (UD) v2.2 English
dataset for POS tagging experiments.

The only data pre-processing that we have per-
formed is replacing digital tokens with a special
token. And we convert labels to the IOBES label-
ing scheme (Ramshaw and Marcus, 1995; Ratinov
and Roth, 2009) on NER datasets. The dataset
statistics are provided in Table 1.

4.2 Hyper-parameter Settings

Following Cui and Zhang (2019) and Jie and Lu
(2019), 100-dimensional Glove (Pennington et al.,
2014) word embeddings are utilized for all the En-
glish experiments, and 300-dimensional FastText
(Mikolov et al., 2018) word embeddings are em-
ployed for Chinese experiments. The dimension of
character embeddings is 30, and the hidden states
dimension dc of the character bidirectional LSTM
is 100, i.e., 50 in each direction. We apply dropout
(Srivastava et al., 2014) on token representations
with a rate of 0.5.

For encoding and refinement layers, the dimen-
sion of the hidden state dh of bidirectional LSTMs
is 600, i.e., 300 in each direction. We apply dropout
on hidden states h(l)

t with a rate of 0.5 before feed-
ing into refinement layers. The number of refine-
ment layers L is just 1.

We optimize our model by applying stochastic
gradient descent (SGD) with decaying learning rate
ητ = η0/(1 + 0.075 · τ), where τ is the index of
the current epoch, and the initial learning rate η0
for Chinese experiments without contextual word
representations is 0.05, and for all the other experi-
ments we use 0.1. The weight decay rate is 10−8,
the momentum is 0.15, the batch size is 10, the
number of epochs is 100, and gradients exceed 5
will be clipped.

In addition, since the pre-trained contextualized

word embeddings technique is widely accepted as
a new fundamental utility of natural language pro-
cessing, we also conduct experiments with ELMo
(Peters et al., 2018) and BERT (Devlin et al.,
2019). In these settings, tokens are represented
as xt = [wt, ct, et], where et is the contextual
word representation.

ELMo vectors are obtained by averaging output
vectors over all layers of ELMo. For English ex-
periments, we use the original checkpoint, and
use the checkpoints provided by Che et al. (2018)
for Chinese experiments.

BERT representations are the averages all BERT
subword embeddings in the last four layers.
Following Li et al. (2020b) and Li et al.
(2020a), we utilize bert-large-cased and
hfl/chinese-bert-wwm checkpoints for En-
glish and Chinese experiments respectively.

4.3 Evaluation
NER experiments are evaluated by using F1 scores,
and POS tagging experiments are evaluated with
accuracy scores. All of our experiments were run
4 times with different random seeds, and the aver-
aged scores are reported in the following tables.

Our models3 are implemented with deep learn-
ing framework PyTorch (Paszke et al., 2019) and
we ran experiments on GeForce GTX 1080Ti
with 11 GB memory.

4.4 Experimental Results
4.4.1 Named Entity Recognition
Table 2 compares the performance of our proposed
method and baselines on the OntoNotes 5.0 En-
glish dataset. Our model significantly outperforms
Cui and Zhang (2019) and Jie and Lu (2019) by
0.49 and 0.13 F1 scores respectively. These results
demonstrate that our model can filter irrelevant in-
formation more effectively than Cui and Zhang
(2019). Notably, the model of Jie and Lu (2019)
relies on external dependency annotations, whereas
our model requires no external knowledge4. In the
case of employing ELMo, our model outperforms
Jie and Lu (2019) by 0.11 F1 score.

On the CoNLL 2003 English dataset, our model
performs worse than these baseline models, but,
with ELMo, it outperforms Jie and Lu (2019) and

3https://github.com/speedcell4/refiner
4In this paper, we use “external knowledge” to denote

any additional resources other than word embeddings and
contextual word representations.

https://github.com/speedcell4/refiner
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Model EK P R F1

Chiu and Nichols (2016) X 86.04 86.53 86.28
Strubell et al. (2017) - - - 86.84
Li et al. (2017) X 88.00 86.50 87.21
Ghaddar and Langlais (2018) - - - 87.95
Fisher and Vlachos (2019) - - - 87.59
Cui and Zhang (2019) - - - 88.16
Yan et al. (2019) - - - 88.43
Jie and Lu (2019) X 88.53 88.50 88.52
Our Method - 88.71 88.60 88.65

Yan et al. (2019) [E] - - - 89.78
Jie and Lu (2019) [E] X 89.59 90.17 89.88
Our Method [E] - 89.51 90.48 89.99

Devlin et al. (2019) [B] - 90.01 88.35 89.16
Fisher and Vlachos (2019) [B] - - - 89.71
Li et al. (2020b) [B] - 92.98 89.95 91.11
Yu et al. (2020)[B] - 91.1 91.5 91.3
Our Method [B] - 90.00 91.17 90.93

Table 2: Experimental results on the OntoNotes 5.0 En-
glish dataset. Checkmark X in the “EK” column indi-
cates that external knowledge is utilized in that model.
[E] and [B] stands for ELMo and BERT respectively.
Bold and underlined numbers indicate the best and the
second-best results respectively.

Model EK P R F1

Huang et al. (2015) X - - 88.83
Lample et al. (2016) - - - 90.94
Ma and Hovy (2016) - - - 91.21
Zhang et al. (2018) - - - 91.57
Chiu and Nichols (2016) X - - 91.62
Liu et al. (2019a) - - - 91.80
Yan et al. (2019) - - - 91.33
Liu et al. (2019b) X - - 91.96
Our Method - 90.70 90.81 90.76

Jie and Lu (2019) [E] X - - 92.40
Yan et al. (2019)[E] - - - 92.62
Our Method [E] - 92.60 93.19 92.89

Devlin et al. (2019) [B] - - - 92.8
Li et al. (2020b) [B] - 92.33 94.61 93.04
Yu et al. (2020) [B] - 93.7 93.3 93.5
Our Method [B] - 92.66 92.98 93.23

Table 3: Experimental results on the CoNLL 2003 En-
glish dataset.

Yan et al. (2019) by 0.49 and 0.27 F1 score. Our
hypothesis is that the CoNLL 2003 dataset contains
much fewer examples and entity categories, thus
the label dependency relations are not as important
as on the OntoNotes 5.0 English dataset, thus our
method could bring about limited improvement.

A similar phenomenon can be noticed on the
OntoNotes 4.0 Chinese dataset, as in Table 4, our
model is inferior to Li et al. (2020a), but on the
contextual word representations experiment setting,

our model significantly outperforms them by 1.41
F1 score with BERT. Moreover, on the OntoNotes
5.0 Chinese dataset, our model constantly outper-
forms the best previous work (Jie and Lu, 2019) by
0.65 F1 score without utilizing external knowledge.

Besides, we can notice initializing character
embeddings with our trick remarkably improves
model performance by 0.76 F1 score on the
OntoNotes 4.0 Chinese dataset, even this improve-
ment reduces to only 0.00 and 0.20 F1 scores
on ELMo and BERT experiments. We hypothe-
size that contextual word representation already
provides rich enough morphological information,
thus careful character embeddings initialization can
only bring little benefit. On the OntoNotes 5.0 Chi-

Model EK P R F1

Zhang and Yang (2018) X 76.35 71.56 73.88
Mengge et al. (2019) X 76.78 72.54 74.60
Gui et al. (2019a) X 76.40 72.60 74.45
Gui et al. (2019b) X 76.13 73.68 74.89
Yan et al. (2019) X - - 72.43
Li et al. (2020a) X - - 76.45
Our Method - 75.28 72.39 73.80
Our Method (init) - 75.49 73.69 74.56

Our Method [E] - 80.21 78.50 79.34
Our Method (init) [E] - 79.75 78.94 79.34

Devlin et al. (2019) [B] - 78.01 80.35 79.16
Zhang and Yang (2018) [B] X 79.79 79.41 79.60
Gui et al. (2019a) [B] X 79.41 80.32 79.86
Mengge et al. (2019) [B] X 79.62 81.82 80.60
Li et al. (2020a) [B] X - - 81.82
Li et al. (2020b) [B] - 82.98 81.25 82.11
Our Method [B] - 81.80 84.31 83.03
Our Method (init) [B] - 81.73 84.79 83.23

Table 4: Experimental results on the OntoNotes 4.0
Chinese dataset. “init” stands for utilizing projected
FastText embeddings to initialize the character embed-
dings.

Model EK P R F1

Pradhan et al. (2013) - 78.20 66.45 71.85
Zhang and Yang (2018) X 76.34 77.01 76.67
Jie and Lu (2019) X 77.40 77.41 77.40
Our Method - 77.09 77.50 77.29
Our Method (init) - 77.99 78.11 78.05

Jie and Lu (2019) [E] X 78.86 81.00 79.92
Our Method [E] - 79.75 79.83 79.78
Our Method (init) [E] - 79.49 80.32 79.92

Our Method [B] - 79.61 82.47 81.01
Our Method (init) [B] - 79.66 82.45 81.03

Table 5: Experimental results on the OntoNotes 5.0
Chinese dataset.
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Model EK WSJ UD v2.2

Huang et al. (2015) X 97.55 -
Ma and Hovy (2016) - 97.55 -
Zhang et al. (2018) - 97.55 -
Yasunaga et al. (2018) - 97.58 95.41
Xin et al. (2018) - 97.58 -
Cui and Zhang (2019) - 97.58 95.59
Our Method - 97.64 95.62

Our Method [E] - 97.83 96.86

Our Method [B] - 97.85 97.15

Table 6: Experimental results on the WSJ and the UD
v2.2 datasets.

nese dataset, the performance improvements are
0.76, 0.16, and 0.02 F1 scores, respectively.

4.4.2 Part-of-speech Tagging
Table 6 shows the experimental results on the Wall
Street Journal English and the Universal Dependen-
cies v2.2 English dataset respectively. Although
Cui and Zhang (2019) claimed that the simple
Markov label transition model of CRF can barely
bring information gain over bidirectional LSTM,
we observe 0.06 and 0.03 gain in accuracy scores.
Besides, our model achieves 97.83 and 96.86 accu-
racy scores with ELMo, and further improves the
performance to 97.85 and 97.15 accuracy scores
with BERT.

4.5 Discussion
Influence of Weight Tying The major difference
between our method and Kim et al. (2017) is that
we use only observed labels, while they employ un-
observed labels as latent variables. In the actual im-
plementation, this difference is reflected in whether
to share label embeddings and the transition matrix
of CRF across layers. Intuitively, completely rely-
ing on unobserved variables would implicitly per-
forming clustering on latent representation space,
and it might introduce noise. Besides, the state
transitions in a different layer may obey different
dynamics. Thus sharing the transition matrix across
layers might have an impact on performance.

We conducted experiments on the OntoNotes
5.0 English dataset to compare the performance
of all the above-mentioned settings, as reported
in Table 7. Notably, our model, with both the la-
bel embeddings {vyj}mj=1 and the transition matrix
A shared, surpasses all separated models. These
results support our claim that tying the weights
of embeddings and the label transition matrix can

{yj}mj=1 |Y| A |θ| F1

separated 10 separated 8,212,505 88.51
separated 20 separated 8,218,825 88.55
separated 50 separated 8,238,985 88.62
separated 73 separated 8,255,660 88.48
separated 100 separated 8,276,585 88.58

shared 73 separated 8,211,860 88.41
shared 73 shared 8,206,385 88.65

Table 7: Influence of weight tying, where {yj}mj=1

stands for whether share label embeddings across lay-
ers, |Y| denotes the number of labels, A is the CRF
transition matrix in Equation 6, and |θ| is the number
of parameters.

indeed leverage annotation information and thus
is better than completely relying on unobserved
variables. Besides, we did not notice significant
performance changes when varying the number of
labels |Y|. Furthermore, the number of parame-
ters of our shared model is, in fact, the smallest
one, even compared to LAN (about 10.0 million
parameters).

Influence of the Connection Mechanism A mi-
nor difference between our method and Cui and
Zhang (2019) is that we utilize residual connection
(He et al., 2016) and layer normalization (Xu et al.,
2019), as in Equation 11, while Cui and Zhang
(2019) only use concatenation, as in Equation 4.
Table 8 shows the comparison on the OntoNotes
5.0 English dataset, measuring the influence of
these two connection mechanisms. We find that the
residual connection works better than the concate-
nation connection, that might because the residual
connection can make training more smoothly by
preventing the chaotic loss surface (Li et al., 2018).

Connection F1

Concatenation 88.54
Residual 88.65

Table 8: Influence of the connection mechanism.

Influence of Parameter Size As in Table 9, we
did not observe performance increase along with
the increasing of the number of refinement layers.
Therefore, we claim that one refinement layer is
enough for our model, while Cui and Zhang (2019)
needs two refinement layers. Our hypothesis is that
the long-term dependency modeling capacity of the
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L dh |θ| F1

1
400 6,227,985 88.28
600 8,206,385 88.65
800 10,904,785 88.64

2
400 7,352,385 88.51
600 10,732,985 88.36
800 15,393,585 88.49

Table 9: Influence of parameter size, where L is the
number of refinement layers, dh is the hidden state di-
mension of the bidirectional LSTM, and |θ| represents
the number of parameters.

first-order CRF is relatively limited, and we remain
the use of the higher-order CRF as future work.

Training and Decoding Speeds We report the
training and decoding speeds on the OntoNotes 5.0
English dataset. We demonstrate the efficiency of
our CRF implementation tricks by comparing it
with a widely used library, pytorch-crf5. Ac-
cording to Table 10, our CRF implementation tricks
remarkably accelerate both training and decod-
ing. In particular, with our CRF implementation,
our computation extensive model even achieves
a greater training speed than BiLSTM-CRF with
pytorch-crf. Therefore, we claim that the effi-
ciency of our model is acceptable.

Model CRF Training Decoding

BiLSTM-CRF pytorch-crf 82.25 480.08
ours 205.96 850.08

Our Model pytorch-crf 45.06 219.48
ours 93.04 296.91

Table 10: Training and decoding speeds on the
OntoNotes 5.0 English dataset. The “training” and “de-
coding” columns indicate the numbers of sentences our
model can process per second on average.

5 Related Work

Early-stage research of NER and POS tagging fo-
cused on introducing rich features, for example,
Yang et al. (2016) conducted experiments on the
influence of discrete manual features, Chiu and
Nichols (2016); Ma and Hovy (2016) introduced
morphological features by employing a convolution
network to encode character-level features, while
Lample et al. (2016) chose bidirectional LSTM.

5https://github.com/kmkurn/pytorch-crf

Some other research aimed at leveraging syn-
tactic information, Li et al. (2017) and Jie and
Lu (2019) proposed to run external parsers first
and directly encode this syntactic information.
Other work attempted to infer dependency relations
among words implicitly, such that, Strubell et al.
(2017) introduced iterative dilated convolution net-
works as an alternative to BiLSTM, and Zhang et al.
(2018) and Liu et al. (2019b) designed encoders
which maintain and update global representations
along with local token representations.

Recently, Li et al. (2020b) unified flat and nested
NER by formulating them as a machine reading
comprehension task. Yu et al. (2020) proposed
to enumerate all possible spans and to utilize a
biaffine classifier to assign category labels to them.

Besides, the widespread use of contextual word
representations, e.g., ELMo (Peters et al., 2018),
Flair (Akbik et al., 2018), and BERT (Devlin et al.,
2019), greatly improves the performance of NER
models and they are accepted as new fundamental
techniques of natural language processing.

Intuitively speaking, the refinement mechanism
provides the models with additional chances to
revise previous decisions. In existing work, this
method was successfully applied to various tasks,
e.g., text classification (Yu et al., 2017), sequential
labeling (Cui and Zhang, 2019; Lyu et al., 2019),
machine translation (Lee et al., 2018), and question
answering (Nema et al., 2019). Our work is not
the first attempt of introducing refinement mecha-
nism to sequential labeling tasks. Cui and Zhang
(2019) relied on locally normalized attention to
softly refine hidden representations layer by layer,
while Liu et al. (2019a) chose to discretely filter out
target-irrelevant semantic aspects and thus could
be considered as a hard refinement mechanism.

6 Conclusion

Motivated by the structured attention, we enhanced
the previous refinement mechanism by replacing
the locally normalized attention with our glob-
ally normalized attention. Experimental results on
various tasks and datasets demonstrate that struc-
tured refinement is capable of filtering out target-
irrelevant information through capturing long-term
dependency relations. Besides, we remarkably ac-
celerated training and decoding through two im-
plementation tricks for CRF, and obtained further
model performance improvement with an initializa-
tion trick for Chinese character embeddings. We

https://github.com/kmkurn/pytorch-crf
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remain to employ the higher-order CRF as future
work.
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