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Abstract

To train a question answering model based on
machine reading comprehension (MRC), sig-
nificant effort is required to prepare annotated
training data composed of questions and their
answers from contexts. Recent research has
focused on synthetically generating a question
from a given context and an annotated (or gen-
erated) answer by training an additional gener-
ative model to augment the training data. In
light of this research direction, we propose a
novel pre-training approach that learns to gen-
erate contextually rich questions, by recover-
ing answer-containing sentences. We evalu-
ate our method against existing ones in terms
of the quality of generated questions, and
fine-tuned MRC model accuracy after train-
ing on the data synthetically generated by our
method. We consistently improve the ques-
tion generation capability of existing models
such as T5 and UniLM, and achieve state-of-
the-art results on MS MARCO and NewsQA,
and comparable results to the state-of-the-art
on SQuAD. Additionally, the data syntheti-
cally generated by our approach is beneficial
for boosting up the downstream MRC accu-
racy across a wide range of datasets, such as
SQuAD-v1.1, v2.0, KorQuAD and BioASQ,
without any modification to the existing MRC
models. Furthermore, our method shines espe-
cially when a limited amount of pre-training or
downstream MRC data is given.

1 Introduction

Machine reading comprehension (MRC), which
finds the answer to a given question from its accom-
panying paragraphs (called context), is an essential
task in natural language processing. With the re-
lease of high-quality human-annotated datasets for
the task, such as SQuAD-v1.1 (Rajpurkar et al.,
2016), -v2.0 (Rajpurkar et al., 2018), and Ko-

∗These authors contributed equally.

rQuAD (Lim et al., 2019), researchers have pro-
posed MRC models even surpassing human scores.
These datasets commonly involve finding a snippet
within a context as an answer to a given question.

However, these datasets require significant
amount of human effort to create questions and
their relevant answers from given contexts. Of-
ten the size of the annotated data is relatively
small compared to that of data used in other self-
supervised tasks such as language modeling, limit-
ing the accuracy.

To overcome this issue, researchers have studied
models for generating synthetic questions from a
given context along with annotated (or generated)
answers on large corpora such as Wikipedia. Golub
et al. (2017) suggested a two-stage network of gen-
erating question-answer pairs which first chooses
answers conditioned on the paragraph and then
generates a question conditioned on the chosen an-
swer. Dong et al. (2019) showed that pre-training
on unified language modeling from large corpora
including Wikipedia improves the question gener-
ation capability. Alberti et al. (2019) introduced a
self-supervised pre-training technique for question
generation via the next-sentence generation task.

However, self-supervised pre-training tech-
niques such as language modeling or next sentence
generation are not specifically conditioned on the
candidate answer and instead treat it like any other
phrase, despite the candidate answer being a strong
conditional restriction for the question generation
task. Also, not all sentences from a paragraph may
be relevant to the questions or answers, so the task
of their generation may not be an ideal candidate
as a pre-training method for question generation
tasks.

To address these issues, we propose a novel
training method called Answer-containing Sen-
tence Generation (ASGen) for a question generator.
ASGen is composed of two steps: (1) predicting
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Figure 1: Architecture of a simple generative model, BertGen. When applying our training method “ASGen” to
the model, the question generator takes as input the answer and the context with the answer-containing sentence
removed and generates the missing answer-containing sentence.

“answer-like” candidate answers in a given context
and (2) pre-training the question generator on the
answer-containing sentence generation task. We
evaluate our method against existing ones in terms
of the generated question quality as well as the fine-
tuned MRC model accuracy after training on the
data synthetically generated by our method.

Experimental results demonstrate that our ap-
proach consistently improves the question gen-
eration quality of existing models such as
T5 (Raffel et al., 2020) and UniLM (Dong
et al., 2019), and shows state-of-the-art re-
sults on MS MARCO (Nguyen et al., 2016),
NewsQA (Trischler et al., 2017), as well as com-
parable results to the state-of-the-art on SQuAD.
Additionally, we demonstrate that the syntheti-
cally generated data by our approach can boost
downstream MRC accuracy across a wide range
of datasets, such as SQuAD-v1.1, v2.0, KorQuAD
and BioASQ (Tsatsaronis et al., 2015) without any
modification to the existing MRC models. Further-
more, our experiments highlight that our method
shines especially when a limited amount of train-
ing data is given, in terms of both pre-training and
downstream MRC data.

2 Proposed Method

This section discusses our proposed training
method called Answer-containing Sentence Gen-
eration (ASGen). While ASGen can be applied
to any generative model, we use a simple Trans-
former (Vaswani et al., 2017) based generative
model as our baseline, which we call BertGen.
First, we will describe how the BertGen model
generates synthetic questions and answers from a
context. Next, we will explain the details of candi-

date answer prediction and how we pre-trained the
question generator in BertGen based on them. Bert-
Gen encodes given paragraphs with two networks,
the answer generator and the question generator.

Answer Generator. To make the contextual em-
beddings and to predict answer spans for a given
context without the question, we utilize a BERT
(Devlin et al., 2019) encoder (Fig. 1-(1), BERT
Encoder-A). We select top K candidate answer
spans from the context by sorting with confidence
score of span prediction. We use the K selected
answer spans as input to the question generator.

Question Generator. Next, we generate a ques-
tion conditioned on each answer predicted from the
answer generator. Specifically, we give as input to
a BERT encoder the context and an indicator for
the answer span location in the context (Fig. 1-(2),
BERT Encoder-Q). Next, a Transformer decoder
generates the question word-by-word based on the
encoded representation of the context and the an-
swer span. When pre-training the question gener-
ator on an answer-containing sentence generation
task, we exclude the answer-containing sentence
from the original context and train the model to
generate the excluded sentence given the modified
context and the answer span as input.

Finally, we generate synthetic questions and an-
swers from a large corpus, e.g., all the paragraphs
in Wikipedia. After generating this data, we train
the MRC model on the generated data in the first
phase and then fine-tune on the downstream MRC
dataset (e.g., SQuAD) in the second phase. In this
paper, we use BERT as the default MRC model,
since BERT or its variants achieve state-of-the-art
performance across numerous MRC tasks.
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2.1 Candidate Answer Prediction

In question generation, it is important to determine
which part of a given context can be a suitable
answer for generating questions. To this end, we
predict candidate answer span in the given context
W = {wt}Tt=0 to obtain a more appropriate set
of “answer-like” phrases. To calculate the score
si for start index i of a predicted answer span, we
compute the dot product of the encoder output with
a trainable vector vs. For each start index i, we
calculate the span end index score ei,j for index j
in a similar manner with a trainable vector ve, i.e.,

{wenc
t }Tt=0 = BERT Encoder-A(W ),

si = vs ◦wenc
i ,

ei,j = ve ◦ fs(wenc
j ⊕wenc

i ),

where T is the number of word tokens in the con-
text and fs represents a fully connected layer with
hidden dimension H and ⊕ indicates the concate-
nation operation. Token at t = 0 is “[CLS]”. For
training, we use cross-entropy loss on the si, ei,j
with ground truth start, end of the answer span for
each token.

During inference, we choose top K answer spans
with the highest score summation of start index
score and end index score, i.e.,

Aspan = {(i, j) | 1 ≤ i ≤ T and i ≤ j ≤ T},
ak = max({a | #{(i, j) | si + ei,j ≥ a} = K}),

Aspan
k = {(i, j) | si + ei,j ≥ ak}.

Selected answer Aspan
k is then given to the question

generator as input in the form of an indication of
the answer span location in the given context.

2.2 Pre-training Question Generator

In order to generate questions conditioned on dif-
ferent answers that may arise in a context, we gen-
erate a question for each of the K answers. Alberti
et al. (2019) proposed a pre-training method for this
generative model using the self-supervised task of
generating the next-sentence. We identify several
issues with this approach. This technique is not
specifically conditioned on the answer, despite the
answer being a strong condition for the question
generation task. Also, not all sentences from a para-
graph may be relevant to the questions or answers
from within that paragraph, so their generation is
not an ideal candidate for pre-training question gen-
eration model.

To address these issues, we modify the context
to exclude the sentence containing the previously
generated answer and pre-train the question gener-
ation model on the task of generating this excluded
answer-containing sentence, conditioned on the an-
swer and the modified context.

Specifically, we exclude answer-containing sen-
tence Sans while retaining the answer, modifying
the original context D to Dans as

Sstart = {p | sentence start index = p} ∪ {T},
Sans = {(ps, pe, i, j) | ps = max({p≤i}),

pe = min({p≥j}), p ∈ Sstart, (i, j) ∈ Aspan
k },

Dans = [D[:ps];D[i:j];D[pe:]], (ps, pe, i, j) ∈ Sans,

Note that we change Sans to not exclude the
answer-containing sentence for fine-tuning the
question generator, i.e.,

Sans = {(ps, pe, i, j)|ps = i, pe = j}.

In BertGen, we pass the previously generated an-
swer to the generation model in the form of an
additional position encoding Mans that indicates
the answer location within the context, i.e.,

Mans = [m0 ∗ ps;m1 ∗ (j − i);m0 ∗ (T − pe)],

where m0 and m1 indicate trainable vectors cor-
responding to encoding id 0 and 1, respectively.
That is, we assign the encoding id for each word in
the context as 0 and each word in the answer as 1.
A ∗B indicates the operation of stacking vector A
for B many times.

Next, we generate answer-containing sentence
output words’ probability W o = {wo

y}Yy=1 as

Cenc = BERT Encoder-Q(Dans,Mans),

wg
y = Transformer Decoder({wo

i }
y−1
i=0 , C

enc),

{wo
y}Yy=1 = {Softmax(wg

yE)}Yy=1,

where Cenc is encoded representation of the con-
text and E ∈ Rd×V represents a word embedding
matrix with vocabulary size V shared between the
BERT Encoder-Q and the decoder. Note that wo

0 is
a zero vector for starting the decoding.

Finally, we calculate the loss of the generated
words using the cross-entropy loss as

L = −

 Y∑
y=1

V∑
v=1

zy,vlog(wo
y,v)

 /Y,



1519

where z indicates a ground-truth one-hot vector of
the answer-containing sentence word. Note that z
is the question word in the case of fine-tuning.

In this manner, we pre-train the question genera-
tion model using a task similar to the final task of
conditionally generating the question from a given
answer and a context.

3 Experimental Setup

Pre-training Dataset. To build the dataset for
answer-containing sentence generation tasks (AS-
Gen) and the synthetic MRC data for pre-training
the downstream MRC models, we collect all para-
graphs from the entire English Wikipedia dump
and synthetically generate questions and answers
on these paragraphs. Note that we removed all pas-
sages from Wikipedia overlapping with SQuAD
dataset (Rajpurkar et al., 2016). We apply filtering
and clean-up steps that are detailed in the appendix.

Using BertGen, we extract answers from each
given paragraph, and then generate questions
for each answer-paragraph pair. Finally, we ob-
tain 43M triples of question-answer-paragraph for
the synthetic data. For pre-training on answer-
containing sentence generation, we sample 25M
answer-paragraph pairs (Full-Wiki) from the final
Wikipedia dataset to avoid extremely short con-
texts less than 500 characters. For ablation studies
on pre-training approaches, we sample 2.5M pairs
(Small-Wiki)1 from Full-Wiki and split 25K pairs
(Test-Wiki) to evaluate the pre-training method.
Benchmark Datasets. In most MRC datasets, a
question and a context are represented as a se-
quence of words, and the answer span (indices
of start and end words) is annotated from the con-
text words based on the question. Among these
datasets, we choose SQuAD as the primary bench-
mark dataset for question generation, since it is
the most popular human-annotated MRC dataset.
For fair comparison with existing question gener-
ation methods, we use the same splits of SQuAD-
v1.1, as previously done in Du et al. (2017), Kim
et al. (2019), and Dong et al. (2019). We refer to
this dataset as Split1. This split has 77K/10K/10K
samples for train/dev/test sets. We also evalu-
ate on the reversed dev-test split, referred to as
Split2.2 Additionally, we test our question gen-
eration on MS MARCO (Nguyen et al., 2016)
and NewsQA (Trischler et al., 2017) to evaluate

1We use the Korean Wikipedia for KorQuAD.
2We use the same splits as provided by Du et al. (2017)

the generalization of our method to other datasets.
In the case of MS MARCO, questions are col-
lected from real user query logs in Bing. For
these datasets, we follow pre-processing of Tuan
et al. (2020), sampling a subset of original data
where the answers are sub-spans of their corre-
sponding paragraphs to obtain train/dev/test sets
with 51K/6K/7K samples for MS MARCO and
76K/4K/4K samples for NewsQA. We also con-
duct experiments on question generation with Nat-
ural Questions (Kwiatkowski et al., 2019) and
BioASQ (Tsatsaronis et al., 2015). We calculate
BLEU-4, METEOR, and ROUGE-L with the script
from Du et al. (2017).

To evaluate the effectiveness of generated syn-
thetic MRC data, we test the fine-tuned MRC
model on the downstream MRC dataset after train-
ing on the generated synthetic data. We calculate
the EM/F1 score of the MRC model on SQuAD-
v1.1 and v2.0 development set. We also evaluate on
the test set of KorQuAD, a Korean dataset created
with the same procedure as SQuAD-v1.1.

Implementation Details. For all experiments
and models, we use all official original hyper-
parameters unless otherwise stated below. For Bert-
Gen model, we use pre-trained BERT (Base and
Large) as encoder and 12 stacked layers of Trans-
former as decoder. For large version of the model,
we use 24 layers of the encoder and the decoder
with 737M parameters. For answer prediction, we
select top-5 (K = 5) for the answer spans. For the
generation of unanswerable questions in SQuAD-
v2.0, we separate unanswerable and answerable
cases and then train separate generation models.
For all BertGen models, we pre-train the question
generator for 5 epochs on Wikipedia and fine-tune
it for 30 epochs on MRC dataset with batch size of
32. For other question generation models, we pre-
train for 1 epoch on Wikipedia. For UniLM and T5,
the input is formulated as sequence-to-sequence,
the first input segment is the concatenation of con-
text and answer, while the second output segment
is a missing answer-containing sentence or a ques-
tion to be generated. We use all official settings for
UniLM, ProphetNet (Qi et al., 2020) and ELEC-
TRA (Clark et al., 2020), and use the official pre-
trained weights. The training time depends on the
data size and the model complexity. For Zhao et al.
(2018), pre-training on Full-Wiki takes 48 hours.
Pre-training BertGen on Small-Wiki in Table 3
takes 48 hours with 8 Tesla V100 GPU, resulting
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Table 1: Comparison with existing question generation methods on the test set of SQuAD Split1 and Split2. Models
marked as ‘*’ indicate results we reproduced.

Group Question Generation Model Split1 Split2
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

Du et al. (2017) 12.3 16.6 39.8 - - -
ASs2s (Kim et al., 2019) 16.2 19.9 44.0 - - -
Zhao et al. (2018)* 13.0 18.2 41.2 15.1 19.5 43.4
Zhao et al. (2018)* + ASGen 14.2 19.4 42.8 16.4 20.6 44.7

Applying T5(Small)* 15.6 23.3 37.1 18.8 25.2 40.5
to T5(Small)* + ASGen 17.0 24.2 38.9 19.6 26.1 41.9

other T5(Large)* 18.9 26.2 41.8 21.7 27.4 44.5
methods T5(Large)* + ASGen 19.4 26.7 42.0 22.0 27.8 45.1

UniLM (Dong et al., 2019) 22.1 25.1 51.1 23.8 25.6 52.0
UniLM + ASGen 23.7 25.9 52.3 25.3 26.7 53.3
ProphetNet (Qi et al., 2020) 23.9 26.6 52.3 25.8 27.5 53.7
ProphetNet + ASGen 24.4 26.7 52.8 26.1 27.6 53.9
BertGen (Large) + ASGen 22.8 25.3 51.2 24.6 25.8 53.0

Table 2: Comparison with existing question generation
methods on MS MARCO and NewsQA. We also test
our method on Natural Questions. BL-4, MTR, RG-L
indicate BLEU-4, METEOR, ROUGE-L.

MS MARCO (test set) BL-4 MTR RG-L
Zhao et al. (2018) 17.2 - -
Tuan et al. (2020) 18.3 19.4 42.8
Ma et al. (2020) 20.5 24.7 49.9
BertGen (Large) + ASGen 22.9 26.7 51.8
NewsQA (test set) BL-4 MTR RG-L
Zhou et al. (2017) 9.9 16.7 42.3
Liu et al. (2019) 11.1 17.4 43.2
Tuan et al. (2020) 12.4 19.0 44.1
BertGen (Large) + ASGen 13.8 18.6 44.5
Natural Questions (dev set) BL-4 MTR RG-L
BertGen (Large) 31.5 30.4 60.2
BertGen (Large) + ASGen 35.3 32.9 61.3

in 5.1, 4.3 BLEU-4 improvement on Split1, Split2
respectively. The pre-training for BertGen (Large)
with Full-Wiki takes 1,224 hours and fine-tuning
takes 72 hours. Mecab (Kudo, 2006) is used for
Korean tokenizer.

Comparison of the Pre-training Method. We
compare ASGen with a method from Alberti et al.
(2019), which is pre-training on next-sentence gen-
eration task (NS), and with a method from Golub
et al. (2017), which only trains the generative
model on the final MRC dataset. We reproduced
these methods on BertGen as described in their
original work and evaluate question generation
scores on the SQuAD splits as well as correspond-
ing sentence generation scores on Test-Wiki.

Comparison of Downstream Results. To check
the effectiveness of our method on downstream
MRC tasks, we evaluate our generated synthetic

Table 3: Ablation of pre-training methods, i.e., pre-
training on NS, ASGen, and ASGen without condi-
tioning on a given answer (w/o A), on the test set of
SQuAD splits and on Test-Wiki.

Pre-train on Small-Wiki Wiki Split1 Split2
BertGen (w/o pre-train) - 15.0 17.1
BertGen+NS 1.4 19.0 20.2
BertGen+ASGen w/o A 5.2 19.9 21.0
BertGen+ASGen 5.2 20.1 21.4
Pre-train on Full-Wiki Wiki Split1 Split2
BertGen+NS 3.4 20.6 22.6
BertGen+ASGen 8.2 22.2 24.2
BertGen(Large)+ASGen 8.3 22.8 24.6

Table 4: Average of 10 human evaluation scores over
random samples from SQuAD. Each column indicates
Syntax (ST), Semantics (SM), Context-Relevance (CR)
and Answer-Relevance (AR) in the range 1 to 5.

Model ST SM CR AR
BertGen 4.04 3.93 4.20 3.25
BertGen+NS 4.60 4.54 4.49 3.63
BertGen+ASGen 4.71 4.69 4.74 4.14
UniLM 4.25 4.31 4.54 4.06
UniLM+ASGen 4.71 4.79 4.70 4.17

data on SQuAD-v1.1, v2.0, and KorQuAD by train-
ing MRC models (BERT, BERT+CLKT and ELEC-
TRA) on generated data followed by fine-tuning
on the train set for each dataset. The structure of
BERT+CLKT model is the same as that of original
BERT except that the model is pre-trained for the
Korean language. Due to the absence of common
pre-trained BERT for Korean, we used this model.
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4 Experimental Results

4.1 Question Generation Performance

Comparison to Existing Methods. To evaluate
ASGen, we fine-tune the question generation mod-
els on both SQuAD splits, after pre-training on
answer-containing sentence generation task. As
shown in Table 1, ‘BertGen (Large) + ASGen’ and
‘UniLM + ASGen’ outperforms UniLM on both
splits. Moreover, ASGen consistently improves the
performance when applied to other question gener-
ation models such as Zhao et al. (2018), T5 (Small
and Large), and UniLM across all metrics for both
splits. In particular, applying ASGen on UniLM
further improves its question generation capability,
achieving BLEU-4, METEOR, and ROUGE-L as
23.7, 25.9, 52.2, and 25.3, 26.7, 53.3 on both splits,
respectively. We reproduce Zhao et al. (2018) and
T5, and use the official code of UniLM with no
architecture or parameter changes.

Additionally, as shown in Table 2, ‘BertGen
(Large) + ASGen’ outperforms all existing mod-
els on all scores on both MS MARCO and
NewsQA, except for comparable METEOR scores
in NewsQA. Our method also shows improvement
on Natural Questions (Kwiatkowski et al., 2019)
(short answer) dataset, where questions are col-
lected from real user query logs on Google.
Ablation Study of Pre-training Task. We also
compare the BLEU-4 scores between various pre-
training tasks to show the effectiveness of ASGen.
As shown in Table 3, ASGen outperforms NS in the
recreation score of sentence on Test-Wiki, e.g. 5.2
vs. 1.4 in Small-Wiki and 8.2 vs. 3.4 in Full-Wiki.
ASGen outperforms NS in question generation, e.g.
22.2 vs. 20.6 and 24.2 vs. 22.6 in the two splits,
respectively. We also observe that conditioning on
a given answer improves ASGen, e.g. 20.1 vs. 19.9
in Split1 and 21.4 vs. 21.0 in Split2.
Human Evaluation. As Sultan et al. (2020) men-
tioned in their paper, accuracy-based measurements
such as BLEU-4, METEOR and ROUGE-L may
not be adequate to test the diversity of a question.
Due to this, we also judge the quality of questions
by human evaluation involving 10 evaluators over
metrics such as syntax, validation of semantics,
question to context relevance and question to an-
swer relevance on 50 randomly chosen samples on
SQuAD-v1.1 dev set. As shown in Table 4, ap-
plying ASGen consistently improves the human
evaluation scores.

Table 5: Effectiveness of synthetic data for MRC model
on SQuAD (SQD) and KorQuAD (KQD).

MRC Dev-SQDv1.1 Dev-SQDv2.0
model EM F1 EM F1

BERT (Large) 83.9 90.9 78.8 81.8
+synthetic data 86.3 92.7 84.5 87.4
BERT (WWM) 86.5 92.8 83.1 85.9

+synthetic data 87.4 93.5 85.5 88.4
ELECTRA (Large) - - 87.4 90.2
+synthetic data - - 88.2 91.3

MRC Dev-KQD Test-KQD
model EM F1 EM F1

BERT+CLKT 87.1 94.5 86.2 94.1
+synthetic data 87.8 95.0 86.7 94.6

Table 6: Comparison of downstream EM/F1 scores us-
ing BERT(Large) MRC model with the synthetic data
from different pre-training methods.

Synthetic Data Dev-v1.1 Dev-v2.0
EM F1 EM F1

BertGen (w/o pre-train) 85.1 91.4 80.9 83.9
BertGen+NS 85.6 92.3 81.5 85.8
BertGen+ASGen 86.3 92.7 84.5 87.4

4.2 Downstream MRC Task Performance

To show the effectiveness of the generated synthetic
data, we train MRC models on generated data, be-
fore fine-tuning on the downstream data. As shown
in Table 5, the synthetic data generated by ‘Bert-
Gen (Large) + ASGen’ consistently improves the
performance of BERT (Large, WWM) by a signifi-
cant margin. Pre-training BERT on synthetic data
improves F1 scores by 1.8 on SQuAD-v1.1 and
5.6 on SQuAD-v2.0 for BERT (Large), and 0.7 on
SQuAD-v1.1 and 2.5 on SQuAD-v2.0 for BERT
(WWM). Synthetic data also improves ELECTRA
performance on SQuAD-v2.0, and BERT+CLKT
performance on KorQuAD.

Also, to show improvement due to our pre-
training method in the downstream MRC task, we
compare the EM/F1 scores of BERT (Large) mod-
els trained on synthetic data generated by different
question generation models, ‘BertGen’, ‘BertGen
+ NS’ and ‘BertGen + ASGen’. As shown in Ta-
ble 6, our method outperforms other methods both
on SQuAD-v1.1 and SQuAD-v2.0.

4.3 Effects of Training Data Size

Fig. 2 shows the effects of varying amounts of
downstream MRC data and synthetic data on F1
scores of BERT (Large). In Fig. 2-(a), where we fix
the size of synthetic data as 43M, pre-training with
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Table 7: The performance of our method on limited-data domain (BioASQ). Note that the scores of question
generation are obtained from BioASQ factoid-type 6b. All experiments used the official code of Yoon et al. (2020).

Question Generation Model BLEU-4 METEOR ROUGE-L
BertGen (Large) 6.6 10.0 33.1
BertGen (Large) + ASGen (Full-Wiki) 12.6 17.8 40.0
MRC model Pre-training Data Factoid (MRR) Yes/No (Macro F1) List-Type (F1)
BERT(Large) - 34.3 53.8 36.1
BERT(Large) ASGen (Full-Wiki) 49.2 81.1 39.8
BioBERT(Large) PubMed 52.3 80.1 38.1
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Figure 2: F1 scores of BERT (Large) on SQuAD-v1.1
dev by limiting size of MRC and synthetic data.

‘BertGen + ASGen’ consistently outperforms ‘Bert-
Gen + NS’ for all sizes of downstream data. While
the performance difference is particularly apparent
for smaller sizes of downstream data, it persists
even on using the entire MRC data (SQuAD-v1.1).
In Fig. 2-(b), we also conduct experiments by train-
ing BERT (Large) using different amounts of gen-
erated synthetic data while keeping the number of
pre-training steps constant and using the full size
of downstream MRC data. Increasing the amount
of synthetic data used consistently improves the
accuracy of the MRC model.

4.4 Transfer Learning to Limited Domain

We also conduct experiments on BioASQ (Tsatsa-
ronis et al., 2015) dataset to show the effectiveness
of our model in limited-data domains having less
annotated data. As shown in Table 7, ASGen im-
proves the question generation scores by 6.0 BLEU-
4, 7.8 METEOR and 6.9 ROUGE-L on BioASQ
factoid-type 6b. Moreover, using ‘Full-Wiki’ data
enhances the performance of BERT(Large) by a
large margin and outperforms BioBERT (Lee et al.,
2019a), by 0.95 Macro F1 (Yes/No) and 1.63 F1
(List). Note that BioBERT is specifically pre-

Table 8: Manual categorization of the reasoning type
for generated answerable questions. Note that each ex-
ample can be assigned to multiple types.

Reasoning Type BertGen SQuAD
+ASGen v1.1

Lexical Variation (Synonymy) 40.7% 33.3%
Lexical Variation (World Knowledge) 4.0% 9.1%
Syntactic Variation 53.3% 64.1%
Multi Sentence Reasoning 21.3% 13.6%
Ambiguous/Unanswerable 4.0% 6.1%

trained on a medical corpus (PubMed) whereas
we use a generic Wikipedia corpus (‘Full-Wiki’),
with our generation models fine-tuned on SQuAD.

4.5 Qualitative Analysis of Generation

Comparison of Sample Questions. We qualita-
tively compare the generated questions after pre-
training BertGen with NS and ASGen to demon-
strate the effectiveness of our method. For the
correct answer “49.6%” as shown in the first sam-
ple in Table 9, the word “Fresno”, which is crit-
ical to make the question specific, is omitted by
NS, while ASGen’s question does not suffer from
this issue. Note that the word “Fresno” occurs in
the answer-containing sentence. This issue also
occurs in the second sample, where NS uses the
word “available” rather than relevant words from
the answer-containing sentence, but ASGen uses
many of these words such as “most” and “popular”
to generate contextually rich questions. Also, the
question from NS is about “two” libraries, while
the answer is about “three” libraries, showing the
lack of sufficient conditioning on the answer. Sim-
ilarly, the third example also shows that ASGen
generates more contextual questions than NS by
including the exact subject “TARDIS” based on the
corresponding answer. Based on these observations
and from the score improvements in Table 3, we
conjecture that ASGen leads the question genera-
tion model to better condition on the answer and to
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Table 9: Examples of questions generated on SQuAD-v1.1 development set. We compare generated questions
from ‘BertGen + ASGen’ with ‘BertGen + NS’. Colored Text indicates given answers.

Context (omit) ... The population density was 4,404.5 people per square mile. (1,700.6km).
The racial makeup of Fresno was 245,306 ( 49.6% ) White, 40,960 (8.3%) ... (omit)

BertGen + NS What percent of the population is White?
BertGen + ASGen What percentage of the Fresno population is White?

Context (omit) ... in the world. Cabot Science Library, Lamont Library, and Widener Library
are three of the most popular libraries for undergraduates to use ... (omit)

BertGen + NS Which two libraries are available for undergraduates to use?
BertGen + ASGen What are the three most popular libraries for undergraduates?

Context (omit) ... in a stolen Mark I Type TARDIS “Time and Relative Dimension in Space”
time machine which allows him to travel across time and space. ... (omit)

BertGen + NS What does the doctor refer to?
BertGen + ASGen What does the TARDIS stand for?

Table 10: Manual categorization of the reasoning type
for unanswerable questions.

Reasoning Type BertGen SQuAD
+ASGen v2.0

Negation 8.0% 9.0%
Antonym 14.7% 20.0%
Entity Swap 36.0% 21.0%
Mutual Exclusion 9.3% 15.0%
Impossible Condition 7.3% 4.0%
Other Neutral 19.3% 24.0%
Answerable 5.3% 7.0%

generate more contextualized questions than NS.
Categorization of Reasoning Type. We manually
categorized the reasoning type of 150 randomly
sampled generated questions on Wikipedia for both
answerable and unanswerable questions. The re-
sults Table 8 and Table 10 show that generated
questions using ASGen often require multi-hop or
other non-trivial reasoning. We follow the same
categorization as done by Rajpurkar et al. (2016,
2018).

5 Related Work

Question Generation. Researchers have actively
studied question generation for various purposes,
including for data augmentation in question an-
swering. Du et al. (2017) proposed an attention-
based model for question generation by encod-
ing sentence-level as well as paragraph-level in-
formation. Zhao et al. (2018) utilized a gated self-
attention encoder with a max-out unit to handle
long paragraphs. Song et al. (2018) introduced
a query-based generative model to jointly solve
question generation and answering tasks. Kim
et al. (2019) separately encoded the answer and
the rest of the paragraph for question generation.

Ma et al. (2020) suggested sentence-level seman-
tic matching and answer-position-aware question
generation. Tuan et al. (2020) show that incorporat-
ing interactions across multiple sentences enhances
question generation performance. Our approach
can further improve the question generation qual-
ity of these methods by pre-training them with the
answer-containing sentence generation task.
Transfer Learning. Pre-training methods are pop-
ular in natural language processing for learning
contextualized word representations. Open-GPT
(Radford et al., 2018), BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019), PEGASUS (Zhang et al.,
2019), ERNIE-GEN (Xiao et al., 2020), UniLM
(Dong et al., 2019), UniLMv2 (Bao et al., 2020),
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020) utilize Transformer (Vaswani et al., 2017) to
learn different types of language models on a large
dataset followed by fine-tuning on a downstream
task. These pre-training approaches tend to be very
generic, while our approach is a more appropriate
pre-training method focused on the specific task of
question generation. Lee et al. (2019b) suggested a
pre-training method for information retrieval called
Inverse Cloze Task. Unlike this method, our pre-
training task for the question generator is strongly
conditioned on the answer and focuses on gener-
ating missing answer-containing sentence in the
context to learn better representations more suit-
able to the question generation task.
Synthetic Data Generation. Subramanian et al.
(2018) show that neural models generate better can-
didate answers from a given paragraph than using
off-the-shelf tools or selecting named entities and
noun phrases. Yang et al. (2017) introduced a train-
ing method for the MRC model by combining syn-
thetic data and human-annotated data. Similar to
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our method, Golub et al. (2017) proposed to gener-
ate questions conditioned on generated answers by
separating the answer generation and the question
generation. Unlike this paper, they do not pre-train
their question generator on the answer-containing
sentences. Dong et al. (2019) also show that utiliz-
ing synthetic data boosts the performance of MRC
models. Inspired by these previous studies, we pro-
pose a newly designed pre-training technique that
improves capability of question generation models.

6 Conclusions

We propose a novel pre-training method called AS-
Gen to learn generating contextually rich questions
better conditioned on the answers. Our approach
improves question generation ability of existing
methods, achieves new state-of-the-art results on
MS MARCO and NewsQA, and the synthetic data
increases downstream MRC accuracy across a wide
range of datasets without any modification to the
existing MRC models.
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another data split (Split3) from Zhao et al. (2018).
Split3 is obtained by dividing the original devel-
opment set in SQuAD-v1.1 into two equal halves
randomly and choosing one of them as the devel-
opment set and the other as test set while retain-
ing the train set in SQuAD-v1.1. As shown in
Table 11, applying ASGen to the reproduced ques-
tion generation model from Zhao et al. (2018) im-
proves BLEU-4, METEOR, and ROUGE-L score
on Split3 by 1.3, 0.9, and 1.3, respectively.
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Table 11: Additional experiments on the effectiveness
of ASGen on the test set of SQuAD Split3. Small-Wiki
is used to pre-train the models. Models with ‘*’ indi-
cate those results we reproduced.

Model + pre-training method BL-4 MTR RG-L
Zhao et al. (2018) 16.8 20.6 44.9
Zhao et al. (2018)* 16.3 20.3 44.5
Zhao et al. (2018)* + ASGen 17.6 21.2 45.8

B Training Electra MRC Model using
only Small Generated Synthetic Data

To further study the effect of training data size, we
apply our synthetic data to the ELECTRA (Clark
et al., 2020) MRC model. In Table 12, we report the
mean EM/F1 score on SQuAD 2.0 development
set of four runs by using official Electra source
code3 and the pre-trained checkpoint. Pre-training
ELECTRA on the generated synthetic data using
ASGen improves 0.8 EM and 1.1 F1 score on the
downstream MRC dataset, SQuAD-v2.0.

Table 12: Ablation study of applying our method to
ELECTRA (Clark et al., 2020) on SQuAD-v2.0 dev set
after pre-training on the generated synthetic data using
ASGen with Small-Wiki.

MRC model Synthetic Data Dev set
EM F1

- 87.4 90.2
ELECTRA ‘Small-Wiki’ 87.9 90.8
(Large) ‘Full-Wiki’ 88.2 91.3

C Additional Downstream MRC Task
Performance

Additionally to show the effectiveness of the gen-
erated synthetic data, we also train MRC models
on generated data, before fine-tuning on two down-
stream datasets, Natural Questions and NewsQA.
As shown in Table 13, the synthetic data gener-
ated by ‘BertGen (Large) + ASGen’ consistently
improves the F1 score of baseline BERT models.

D Transfer Learning to Other MRC
Dataset (QUASAR-T)

To show that our generated data is useful for
other MRC datasets, we fine-tune and test the
MRC model on QUASAR-T (Dhingra et al., 2017),
which is another large-scale MRC dataset, af-
ter training on the synthetic data generated from

3https://github.com/google-research/electra

Table 13: Effectiveness of synthetic data for MRC
model on dev set of Natural Questions and NewsQA.

MRC Natural Questions (Short)
model P R F1

BERT (Joint) 60.09 46.00 52.10
+synthetic data 59.29 48.22 53.17

MRC Natural Questions (Long)
model P R F1

BERT (Joint) 61.45 68.61 64.83
+synthetic data 63.75 67.50 65.56

MRC NewsQA
model EM F1

BERT (Large) 51.96 62.54
+synthetic data 54.73 64.53

SQuAD-v1.1. In this experiment, we first fine-tune
‘BertGen + ASGen’ using SQuAD-v1.1, and using
synthetic data generated by this model, we train
the BERT (Large) MRC model. Afterwards, we
fine-tune BERT (Large) for the downstream MRC
task using QUASAR-T data. QUASAR-T has two
separate datasets, one with short snippets as con-
text, and the other with long paragraphs as context.
As shown in Table 14, training with our synthetic
data improves the F1 score on the test set by 2.2
and 1.7 for the two cases, respectively.

Table 14: EM/F1 scores of the BERT (Large) fine-
tuned on QUASAR-T dataset. The used synthetic
data is generated from ASGen trained on SQuAD-v1.1
(Full-Wiki).

Synthetic Data Short(Dev) Short(Test)
EM F1 EM F1

- 74.3 78.6 74.1 77.8
Full-Wiki 76.5 80.1 76.5 80.0

Synthetic Data Long(Dev) Long(Test)
EM F1 EM F1

- 72.1 75.6 72.1 74.8
Full-Wiki 74.2 77.4 73.8 76.5

E Details of Wikipedia Preprocessing

To build the answer-containing sentence generation
data and the synthetic MRC data for SQuAD (Ra-
jpurkar et al., 2016), we collect all paragraphs from
all articles of the entire English Wikipedia dump
and generate questions and answers on these para-
graphs. We apply extensive filtering and clean-up
to only retain the highest-quality paragraphs from
Wikipedia, as follows.

To filter out low-quality articles, we remove
those with less than 200 cumulative page-views
including all re-directions in a two-month period.
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In order to calculate the number of page-views, of-
ficial Wikipedia page-view dumps were used. Of
the 5.4M original Wikipedia articles, filtering by
page-views leaves 2.8M articles. We also remove
those articles with less than 500 characters, as they
are often low-quality stub articles, which further
removes additional 16% of the articles. We re-
move all “meta” namespace pages such as talk,
disambiguation, user pages, portals, etc. as they
often contain irrelevant text or casual conversa-
tions between editors. In order to extract clean
text from the wiki-markup format of the Wikipedia
articles, we remove extraneous entities from the
markup including table of contents, headers, foot-
ers, links/URLs, image captions, IPA double par-
entheticals, category tables, math equations, unit
conversions, HTML escape codes, section head-
ings, double brace templates such as info-boxes,
image galleries, HTML tags, HTML comments,
and all tables.

We then split the cleaned text into paragraphs
and remove all paragraphs with less than 150 char-
acters or more than 3,500 characters. Paragraphs
with the number of characters between 150 to 500
were sub-sampled such that these paragraphs make
up 16.5% of the final dataset, as originally done
for the SQuAD dataset. Since the majority of the
paragraphs in Wikipedia are rather short, out of the
60M paragraphs from the final 2.4M articles, our
final Wikipedia dataset contains 8.3M paragraphs.
Finally, we generate 43M answer-paragraph pairs
from the final Wikipedia dataset with the answer
generator of BertGen in this paper.

F Central Tendency and Variation for
Human Evaluation

Human evaluation involves 10 evaluators over met-
rics such as syntax (ST), validation of semantics
(SM), question to context relevance (CR) and ques-
tion to answer relevance (AR) on 50 randomly
chosen samples on SQuAD-v1.1 development set.
Each score is in the range 1 to 5. Central tendency
and variation can be found in Table 15.

G Central Tendency and Variation for
the Downstream Tasks

For the EM and F1 scores on downstream SQuAD-
v1.1 and v2.0 development set in our main paper,
we selected 5 model checkpoints from the same
pre-training on the synthetic data in different num-
bers of training steps. We then fine-tuned each of

Table 15: Central tendency and variation for human
evaluation scores. ± is 95% confidence interval.

Model ST SM CR AR

BertGen 4.04 3.93 4.20 3.25
±0.18 ±0.19 ±0.16 ±0.22

BertGen + NS 4.60 4.54 4.49 3.63
±0.12 ±0.13 ±0.14 ±0.22

BertGen + ASGen 4.71 4.69 4.74 4.14
±0.10 ±0.11 ±0.09 ±0.18

UniLM 4.25 4.31 4.54 4.06
±0.16 ±0.16 ±0.12 ±0.19

UniLM + ASGen 4.71 4.79 4.70 4.17
±0.11 ±0.09 ±0.11 ±0.18

these models on the final downstream data three
times each, chose the best performing model on the
development set, and reported its score. Central
tendency and variation can be found in Table 16.

Table 16: Central tendency and variation for the score
of our approach, BertGen(Large) + ASGen, on down-
stream SQuAD-v1.1 and v2.0 dataset. ± is standard
deviation.

MRC model Dev-v1.1 Dev-v2.0
EM F1 EM F1

BERT (Large) 86.2 92.7 84.4 87.3
±0.1 ±0.1 ±0.2 ±0.1

BERT (WWM)
87.4 93.4 85.5 88.3
±0.1 ±0.1 ±0.1 ±0.1

Electra (Large)
- - 88.4 91.2
- - ±0.3 ±0.1

H Details of Generating Unanswerable
Questions

The mechanism of generating questions may differ
in generating answerable and unanswerable ques-
tions. For example, the model could exploit a mis-
matched phrase to make a question plausible but
unanswerable. In order to reflect these characteris-
tics, we train answerable and unanswerable models
separately. We first take the BertGen model pre-
trained on the ASGen task and then fine-tune this
model on the no-answer question generation on
SQuAD-v2.0. We infer with this model on the
entire Wikipedia to make negative examples for
un-answerble synthetic data for pre-training MRC
models on SQuAD-v2.0.

I BLEU-4, METEOR, and ROGUE-L

BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005) and ROUGE (Lin, 2004) are
widely-used metrics for evaluating the quality of



1529

generated text, where the quality indicates the de-
gree of correspondence between generated text and
reference texts. BLEU uses modified precision
to compare a generated text against the reference
texts. BLEU-4 calculates a weighted score of uni-
gram, bigram, trigram, and 4-gram based matching.
METEOR uses harmonic mean between precision
and recall of unigrams, but with for recall given
more importance than precision. Unlike BLEU,
METEOR also tries to match synonyms and per-
forms stemming instead of just relying on exact
word matching. ROUGE-L is the longest common
sub-sequence based word matching. The longest
co-occurrence in sequences of n-grams between
generated text and reference texts are considered
for calculating the score. To calculate these eval-
uation scores, we follow the script from Du et al.
(2017), except for the corresponding scripts from
other question generation models when ASGen is
applied to them.

J Links to Downloadable Components

For Wikipedia data, we downloaded En-
glish Wikipedia dump in Feb 2019 from
(https://dumps.wikimedia.org/enwiki/
latest/enwiki-latest-pages-articles.

xml.bz2). Page views were obtained
from (https://dumps.wikimedia.org/
other/pageviews/2019/2019-01/) and
(https://dumps.wikimedia.org/other/
pageviews/2019/2019-02/). For applying
our method to other existing question generation
models, we reproduce Zhao et al. (2018) using
publicly available code (https://github.com/
seanie12/neural-question-generation),
Raffel et al. (2020) using publicly
available code (https://github.com/
patil-suraj/question_generation) and
use the official code of Dong et al. (2019)
(https://github.com/microsoft/unilm).

https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/other/pageviews/2019/2019-01/
https://dumps.wikimedia.org/other/pageviews/2019/2019-01/
https://dumps.wikimedia.org/other/pageviews/2019/2019-02/
https://dumps.wikimedia.org/other/pageviews/2019/2019-02/
https://github.com/seanie12/neural-question-generation
https://github.com/seanie12/neural-question-generation
https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation
https://github.com/microsoft/unilm

