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Abstract

Language model pre-training based on large
corpora has achieved tremendous success in
terms of constructing enriched contextual rep-
resentations and has led to significant perfor-
mance gains on a diverse range of Natural
Language Understanding (NLU) tasks. De-
spite the success, most current pre-trained lan-
guage models, such as BERT, are trained based
on single-grained tokenization, usually with
fine-grained characters or sub-words, making
it hard for them to learn the precise meaning
of coarse-grained words and phrases. In this
paper, we propose a simple yet effective pre-
training method named LICHEE to efficiently
incorporate multi-grained information of input
text. Our method can be applied to various pre-
trained language models and improve their rep-
resentation capability. Extensive experiments
conducted on CLUE and SuperGLUE demon-
strate that our method achieves comprehensive
improvements on a wide variety of NLU tasks
in both Chinese and English with little extra
inference cost incurred, and that our best en-
semble model achieves the state-of-the-art per-
formance on CLUE benchmark competition.

1 Introduction

Pre-trained language models (PLMs) such as GPT
(Radford et al., 2018), BERT (Devlin et al., 2019)
and XLNet (Yang et al., 2019) have become enor-
mously popular and achieved great success on di-
verse natural language understanding tasks, such
as sentiment analysis, question answering, and lan-
guage inference. These models usually utilize a
transformer architecture (Vaswani et al., 2017) to
capture the dependencies between tokens in the in-
put text, to model the language information, and
to learn contextual representations. It is first pre-
trainined based on large-scale unlabeled corpora,

∗∗ Equal contribution.

and subsequently fine-tuned based on the labeled
data from downstream tasks.

In many NLU applications, tokenization often
affects the performance and needs to be chosen
carefully. The input tokens for pre-trained lan-
guage models are usually fine-grained, e.g., words
and sub-words for English and characters for Chi-
nese. Compared with coarse-grained tokens such as
phrases, the advantage of fine-grained tokens is that
they form a smaller vocabulary, yielding abundant
training samples per token, and thus alleviating the
data sparsity issue and out-of-vocabulary (OOV)
problem (Li et al., 2019). However, even trained
on large corpora, it is still hard for language mod-
els pre-trained with fine-grained tokens to learn
the correct attention boundaries of larger semantic
units in many languages (Zhang and Li, 2020).

To obtain a more accurate model, prior studies
attempt to incorporate coarse-grained information
into models trained with fine-grained tokenization
by masking sequences of consecutive tokens in the
pre-training stage (Joshi et al., 2020; Cui et al.,
2019). Zhang and Li (2020) propose AMBERT, a
Siamese network based on BERT to handle multi-
grained input text, and uses two encoders with
shared weights to separately encode fine-grained to-
kens and coarse-grained tokens into two sequences
of contextualized representations. Despite its ef-
fectiveness, the inference cost of AMBERT almost
doubles that of the original BERT due to the dual-
encoder structure, which is often unacceptable in
industrial scenarios.

In this paper, we propose a novel method named
LICHEE designed to efficiently leverage the input
information at multiple levels of granularity in the
pre-training stage in order to enhance the repre-
sentation ability of PLMs. Unlike AMBERT that
encodes the fine-grained and coarse-grained tokens
with two encoders, which significantly increases
the inference cost, in LICHEE the fusion of multi-
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grained information of input text happens at the
embedding level, which requires no change on the
original model structure of the PLM, and thus in-
duces little extra inference cost when applied in on-
line NLP applications. Specifically, LICHEE first
pre-processes the input text into fine-grained and
coarse-grained tokens, which are passed through
two embedding layers, respectively, to derive their
corresponding vector representations. Both vector
representations are then merged via pooling to form
the multi-grained embedding vector, which serves
as the input to the PLM encoder. Finally, the en-
hanced contextual representations generated by the
PLM encoder, with both fine-grained and coarse-
grained information incorporated, are obtained and
used for downstream tasks.

We have applied LICHEE to enhance multi-
ple different pre-trained language models, includ-
ing BERT (Devlin et al., 2019), ALBERT (Lan
et al., 2019), and GPT (Brown et al., 2020), and
conducted extensive evaluation of the resulted
language models on Chinese natural language
understanding (NLU) tasks evaluated by CLUE
(Liang Xu, 2020) benchmarks. Results show
that with LICHEE, the resulted pre-trained lan-
guage models significantly outperform their single-
grained counterparts on almost all tasks, by taking
advantage of multi-grained information to effec-
tively and efficiently produce more accurate repre-
sentations.

In addition, we also participated in the CLUE
benchmark competition with our best ensemble
model built upon a collection of LICHEE-enhanced
BERT-large models, and achieved the state-of-the-
art performance of an average score of 80.42 (as
of January 8, 2021) over 9 different Chinese NLU
tasks, as well as the best scores on two individual
tasks: IFLYTEK and CSL.

Moreover, we have also conducted English natu-
ral language understanding experiments based on
SuperGLUE (Wang et al., 2019a) benchmarks. Sig-
nificant improvements are observed when LICHEE
is employed in the pre-training stage, which demon-
strates that the proposed pre-training method is
generally effective in different language settings.

2 Related Work

In this section, we give a brief overview of some
popular pre-trained language models and studies
on the training techniques related to tokenization.

Pre-trained language models are pre-trained on

large unsupervised corpora and aim to produce
meaningful representations for each input token
not only considering the meaning of itself, but also
with its surrounding contexts anticipated. ELMo
(Peters et al., 2018) is one of the first pre-trained
language models based on bidirectional LSTMs
which produces the contextual representation of
each token by concatenating its left-to-right and
right-to-left representations. GPTs (Radford et al.,
2018, 2019; Brown et al., 2020) leverage the pow-
erful Transformer (Vaswani et al., 2017) to build
an auto-regressive language model predicting the
next token given its history context. BERT (Devlin
et al., 2019) is a bidirectional auto-encoding lan-
guage model also based on transformer. It consists
of two pre-training objectives: masked language
model (MLM) and next sentence prediction (NSP).
Yang et al. (2019) point out the discrepancy of the
pre-training and fine-tuning stage of BERT due to
the masking symbol, and propose a permutation
language model called XLNet (Yang et al., 2019).

The great popularity of BERT draws many re-
searchers to make improvements on the architec-
ture. RoBERTa (Liu et al., 2019) improves several
training details of BERT including dynamic mask-
ing and the removal of the NSP pre-training task.
ALBERT (Lan et al., 2019) reduces the model pa-
rameters with cross-layer weight sharing and ac-
celerates the training process. ELECTRA (Clark
et al., 2019) proposes a new token detection task
and adopts a generator-discriminator framework to
pre-train the language model.

Although most pre-trained language models are
built on fine-grained tokenization, coarse-grained
information proves to be helpful to the model per-
formance. Cui et al. (2019) propose a masking
scheme called “whole word masking” (WWM) for
Chinese BERT, where the consecutive characters
belonging to the same word are masked together.
In ERNIE (Sun et al., 2019), knowledge graphs
are added to enhance the model, and entity level
masking is used during the pre-training, which is
beneficial for language understanding tasks. Span-
BERT (Joshi et al., 2020) proposes to mask ran-
dom spans instead of random tokens, and adopts
a new span boundary objective task to replace the
next sentence prediction task in the pre-training.
Instead of focusing on the masking scheme, AM-
BERT (Zhang and Li, 2020) proposes to adopt two
encoders with shared parameters to learn the rep-
resentations of fine-grained and coarse-grained to-
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kens in parallel. However, even that the weight
sharing setting reduces the number of model pa-
rameters, the dual-encoder structure of AMBERT
induces twice the inference cost, which remains a
huge issue when deployed in online applications.

Different from AMBERT, our work merges the
fine-grained and coarse-grained tokenization at
embedding level, and achieves significant perfor-
mance gains with little additional computation
costs.

3 Methodology

In this section, we present LICHEE, the general
multi-grained framework for language model pre-
training, and its detailed implementation, including
the pre-training methods for both auto-regressive
and auto-encoding tasks and fine-tuning details.

3.1 Model Architecture

Figure 1 gives an overview of LICHEE where the
input information from multiple granularities is
leveraged to enhance the representation ability for
many pre-trained language models.

The framework takes in text sequences as input
which are tokenized into token sequences. In this
paper, we keep two vocabularies and use two tok-
enizers to perform fine-grained and coarse-grained
tokenizations, where items in vocabularies are se-
lected based on their token frequencies in pre-
training corpora. Also, the definitions of “fine
grain” and “coarse grain” vary across languages.
For example, in English, words and phrases are
often used as the fine-grained and coarse-grained
tokens respectively. And in Chinese, characters
and words are used instead. Officially, for a given
input text sequence T , we use tfi to denote the
i-th fine-grained token and tcj-k to denote a coarse-
grained token that is composed of fine-grained to-
kens {tfj , ..., t

f
k} between j and k. For example,

in figure 1, the coarse-grained token “New York
Times” is composed of the first, sencond, and third
fine-grained tokens, and is denoted as tc1-3.

After tokenization, two separate embedding lay-
ers are used to map the tokenized tokens to their
vector representations. Specifically, each fine-
grained token tfi is passed into a fine-grained em-
bedding layer to produce the fine-grained embed-
ding vector ~efi ∈ Rd of the token, where d denotes
the dimension of the fine-grained embedding. Sim-
ilarly, the coarse-grained embedding ~ecj-k ∈ Rd
is derived with the same dimension d by feeding

token tcj-k to the coarse-grained embedding layer,
shown as:

~efi = embeddingfine(t
f
i ),

~ecj-k = embeddingcoarse(t
c
j-k).

(1)

For each token tfi , we construct its multi-grained
embedding vector ~ei ∈ Rd by performing a max-
pooling operation on the derived fine-grained em-
bedding ~efi and the coarse-grained embedding ~ecj-k
of its corresponding coarse-grained token tcj-k:

~ei = max-pool(~efi , ~e
c
j-k), (2)

where j ≤ i ≤ k. Note that d is equal to the orig-
inal embedding dimension of the single-grained
PLM, to prove that the performance gain is con-
tributed to the introduction of multi-grained infor-
mation other than modified model structure.

Finally, the combined embedding vectors ~e are
fed into the PLM encoder to construct the final
contextualized representations ~h enhanced with
multi-grained information:

~h = encode(~e). (3)

3.2 Pre-training

We have applied LICHEE on both auto-regressive
and auto-encoding PLMs, such as GPT and BERT.

For auto-regressive PLMs, the pre-training task
is Next Token Prediction which aims to predict the
next token ti based on its previous context t<i, by
optimizing the following objective function

min
θ
−
∑
i

log pθ(ti|t<i), (4)

where the conditional probability pθ is modeled
with a network with parameter θ.

In our framework, we adjust the objective func-
tion to include both fine-grained context tf<i and
coarse-grained context tc<i, shown as:

min
θ
−
∑
i

log pθ(ti|tf<i, t
c
<i). (5)

Note that when making predictions on any token
within a coarse-grained span ti ∈ tcj-k, the token
embedding ~ei will cause information leakage as it
involves the coarse-grained token embedding ~ecj-k
which contains information beyond the history con-
text. For example, in the case illustrated in figure
1, the prediction on token “York” should not rely
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Figure 1: The overall structure of our proposed pre-training framework LICHEE. Fine-grained and coarse-grained
tokens are first derived from the input text by tokenization, and separately passed into two individual embedding
layers. The multi-grained embedding vectors are acquired by taking a max-pooling on the fine-grained and coarse-
grained embedding vectors, and are fed into the PLM encoder to extract the final contextualized representations.

on token “New” and its embedding ~e1 as it dis-
closes the entire information of the coarse-grained
token of “New York Times” by the coarse-grained
embedding ~ec1-3. Therefore, we can only exploit
the context before the start position of the coarse-
grained token to make predictions, illustrated as:

min
θ
−

∑
j≤i≤k

log pθ(ti|tf<j , t
c
<j), (6)

where j and k are the start and end positions of the
coarse-grained token.

For auto-encoding PLMs, we only include
Masked Language Modeling (MLM) task in the
pre-training process, as Next Sentence Prediction
(NSP) task is shown to have no benefits indicated
in many recent studies (Lan et al., 2019; Liu et al.,
2019; Zhang and Li, 2020). In MLM, 15% of the
tokens are randomly selected and substituted with
a set of tokens, in which 80% are replaced with
[MASK] token, 10% are replaced with random to-
kens, and 10% stay unchanged.

The objective is to recover the masked tokens

Tm ⊂ T from the altered text input sequence T̃ :

min
θ
−

∑
tm∈Tm

log pθ(t
m|T̃ ). (7)

In our framework, we propose to exploit the
multi-grained information of the input in the MLM
task, shown as:

min
θ
−

∑
tm∈Tm

log pθ(t
m|T̃ f , T̃ c), (8)

where T̃ f and T̃ c stand for the fine-grained and
coarse-grained altered input text.

Similar to the strategy deployed in auto-
regressive PLMs, we apply a masking strategy that
when a fine-grained token tfi is to be masked, its
corresponding coarse-grained token tcj-k and all the

fine-grained tokens tfj , ..., t
f
k belonging to it are

also masked, in order to avoid information leakage
from the multi-grained embeddings.

3.3 Fine-tuning
In fine-tuning of downstream tasks, we append the
special tokens ([CLS], [SEP]) to both fine-grained
and coarse-grained vocabularies. In sentence-level
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classification tasks, [CLS] is attached to the start
of input sequences in auto-encoding PLMs like
BERT, and to the end of the input in auto-regressive
PLMs like GPT. Its multi-grained contextualized
representation~h[CLS] is used to represent the whole
input sequence and is passed into a projecting layer
for the final prediction.

Similarly, for tasks that include token-level span
detection, such as Question Answering, the contex-
tual representation ~hi for each token ti is extracted
and utilized in the task.

4 Experiments

We have carried out extensive experiments on vari-
ous natural language understanding tasks on both
Chinese and English datasets. In the following sec-
tion, we will first introduce the pre-training datasets
used in our evaluation and provide the implementa-
tion details of our framework. And we demonstrate
the effectiveness of LICHEE by conducting com-
prehensive experiments on various Chinese NLU
datasets with multiple different PLMs, and com-
pare our method with other baseline methods. Next,
we perform a thorough ablation study to evaluate
different approaches of integrating input text in-
formation from multiple granularities. Finally, we
adopt LICHEE to an English BERT to verify its
efficacy on English NLU tasks.

4.1 Pre-Training Datasets

For Chinese language, there is no commonly used
corpus for pre-training language models. We utilize
a large corpus consisting of 450G text from a wide
range of popular Chinese applications including
Kandian, Zhihu, Wechat, and Weibo, in various
fields of news, wiki, and blogs.

Similar to most Chinese PLMs, characters are
used as fine-grained tokens due to the language na-
ture of Chinese. For coarse-grained tokens, We use
QQSeg which is a segmentation tool with an open
API to perform segmentation on text, and the seg-
mented words are treated as coarse-grained tokens.
For the construction of vocabularies, we follow
Google’s Chinese BERT and include 21, 128 to-
kens in the fine-grained vocabulary. And in the
coarse-grained vocabulary, we calculate the to-
ken frequencies and trimmed out tokens with fre-
quency lower than 8, resulting in 210, 946 tokens.
Note that in order to alleviate the out-of-vocabulary
(OOV) problem, all tokens in the fine-tuned vocabu-
lary are also included in coarse-grained vocabulary.

For English, a corpus with 6.2 million docu-
ments (18.9G compressed text) from Wikipedia is
leveraged to pre-train the model. We first perform
sub-word tokenization with BPE algorithm (Sen-
nrich et al., 2015) on the English text, where the
produced words and sub-words constitute the fine-
grained vocabulary of 28, 996 tokens. In the coarse-
grained vocabulary, we treat high-frequency words
as coarse-grained tokens, resulting in 136, 630 to-
kens in total, which also include all tokens in the
fine-grained vocabulary for the OOV concern.

4.2 Benchmarks
The evaluation of the pre-trained models is con-
ducted on various downstream NLU tasks. In
our experiments, all the Chinese PLMs are eval-
uated on Chinese Language Understanding Eval-
uation (CLUE) (Liang Xu, 2020) which is a com-
prehensive language understanding benchmark de-
veloped for Chinese containing 9 natural language
understanding tasks. Within the 9 tasks, there are
two single-sentence classification tasks that are
TNEWS and IFLYTEK, four sentence-pair classifi-
cation tasks that are AFQMC, OCNLI, CLUEWSC
and CSL, and three question answering tasks that
are CMRC2018, CHID, and C3. Note that OC-
NLI has replaced CMNLI since Oct 22, 2020. We
compare the model performance by reporting the
performance score of each task and the average
score of all tasks.

For English tasks, we use the SuperGLUE bench-
marks (Wang et al., 2019a) which is an extension
of GLUE (Wang et al., 2019b) consisting of a col-
lection of 8 NLU tasks of higher difficulty for com-
prehensively evaluating the performance of English
PLMs. SuperGLEU contains a word sense disam-
biguation task (WiC), two textual entailment tasks
(CB and RTE), two reasoning tasks (COPA and
WSC), and three question answering tasks (BoolQ,
MultiRC, and ReCoRD).

4.3 Experiment Setup
In order to demonstrate the general applicability
and effectiveness of our framework, we have imple-
mented three different pre-trained language models
with our method including BERT, ALBERT and
GPT, and compare the performances with their cor-
responding single-grained baseline methods.

For BERT and ALBERT, we follow the “base”
structure in (Devlin et al., 2019) with an encoder of
12 layers. And the GPT model in our experiment
is also made up of a 12-layer transformer decoder.
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Model Avg. TNEWS IFLYTEK AFQMC OCNLI CLUEWSC CSL CMRC2018 CHID C3
- acc. acc. acc. acc. acc. acc. EM. acc. acc.

BERT 71.12 66.62 60.64 71.74 73.45 72.92 84.01 73.08 75.52 62.08
BERT-LICHEE 73.92 67.94 60.94 73.65 75.85 81.03 84.51 75.84 77.65 67.84

ALBERT 67.27 64.45 57.54 71.35 69.19 68.80 83.00 68.06 68.97 54.04
ALBERT-LICHEE 69.30 66.31 58.29 70.95 71.05 70.39 83.31 72.87 71.93 58.65

GPT 67.41 67.52 60.84 69.83 70.91 63.76 83.12 62.53 73.31 54.84
GPT-LICHEE 68.73 68.40 61.06 70.00 72.01 66.01 83.23 64.57 74.02 59.27

Table 1: Comparison of the model performances on the CLUE tasks. BERT-LICHEE, ALBERT-LICHEE and
GPT-LICHEE stand for the multi-grained version of the model with our method incorporated. The average score
of the nine CLUE tasks are also given.

Model Avg. TNEWS IFLYTEK AFQMC OCNLI CLUEWSC CSL CMRC2018 CHID C3
- acc. acc. acc. acc. acc. acc. EM. acc. acc.

Archer-24E-SINGLE 79.19 69.54 62.27 77.26 83.57 90.00 85.73 75.65 85.66 83.04
roberta selfrun 79.46 69.10 63.92 76.09 80.40 93.10 87.27 79.20 88.80 77.29
UER-ensemble 79.64 72.20 64.00 76.82 80.80 90.35 85.83 79.15 86.03 81.60
BERTs 79.66 69.94 63.92 76.77 82.09 88.97 86.77 80.50 89.51 78.44

LICHEE-ensemble 80.06 70.50 64.15 76.98 81.30 90.69 87.40 79.80 87.51 82.22

Table 2: Top-5 models on the CLUE benchmark leaderboard where our ensemble model achieves the state-of-the-
art performance on the averaged CLUE score. These results are grabbed from the official CLUE website1on Jan 8,
2021.

Then, we apply the following training setting to
the training process of all three models. For better
scalability in large batch, we adopt LAMB (You
et al., 2019) to replace Adam (Kingma and Ba,
2014) as the optimizer with a batch size of 768
and a learning rate of 2e − 4. We first train the
model for 1M steps using 128 as the maximum
sequence length, and increase the maximum length
to 512 for another 100k steps, for better capturing
the long distance dependencies. To enhance the
training efficiency, we adopt mix-precision training
technique (Micikevicius et al., 2017) during pre-
training, which are performed on 4 Nvidia V100
gpus.

We have also implemented a LICHEE-enhanced
ensemble model based on BERT-large to partici-
pate in the CLUE benchmark competition. During
training, we adapt the batch size to 1, 024 and the
maximum sequence lengths at the first and second
stage are set to 256 and 512. And 64 Nvidia V100
gpus are used to train the model.

For the evaluation of each task, we derive 6 re-
sults with different random seeds and report the
average performance in this paper.

4.4 Main Results
In table 1, we adopt our multi-grained pre-training
method on three pre-trained language models:

1https://www.cluebenchmarks.com/rank.html

BERT, ALBERT, and GPT, and compare them
with their single-grained baselines on CLUE bench-
mark. From the results, we can see that our
method achieves significant performance gains by
exploiting the multi-grained information of the
text input. The averaged CLUE scores of our
multi-grained BERT-LICHEE, ALBERT-LICHEE
and GPT-LICHEE are 73.92, 69.30 and 68.73 re-
spectively, producing significant absolute improve-
ments of 2.80, 2.03, and 1.32 compared to their
single-grained baseline models. Aside from the
improvement on the averaged CLUE score, it
is also worth to mention that our multi-grained
BERT-LICHEE and GPT-LICHEE outperforms
their single-grained baselines on all 9 NLU tasks
in CLUE, while the ALBERT-LICHEE model also
beat the single-grained ALBERT in 8 out of 9 tasks,
which provides strong evidence that the benefits
of our method are generally applicable to differ-
ent pre-trained language models and diverse NLU
tasks.

In order to further investigate the potential of
LICHEE, we apply it on an ensemble model based
on BERT-large and participate in the CLUE bench-
mark competition. As demonstrated in table 2,
our method outperforms all other candidates on
the average score of 9 CLUE tasks by a signifi-
cant margin, and also achieves the state-of-the-art
performance on two individual NLU tasks of IFLY-
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Model (BERT) Avg. TNEWS IFLYTEK AFQMC OCNLI CLUEWSC CSL CMRC2018 CHID C3
- acc. acc. acc. acc. acc. acc. EM. acc. acc.

SG 71.12 66.62 60.64 71.74 73.45 72.92 84.01 73.08 75.52 62.08
SG (WWM) 72.24 66.87 60.55 72.62 74.41 74.07 84.12 75.22 77.74 64.60
MG (CAT 384+384) 72.86 68.11 61.09 72.33 75.08 75.26 84.48 75.35 77.84 66.17
MG (CAT 256+512) 72.94 67.63 61.55 71.96 74.97 76.54 84.16 75.31 78.17 66.15
MG (CAT 512+256) 73.08 67.88 61.06 73.07 75.84 74.45 84.74 74.44 78.29 67.91
MG (MEAN) 73.22 67.85 60.99 73.44 75.97 76.31 84.52 75.54 77.84 66.53
LICHEE 73.92 67.94 60.94 73.65 75.85 81.03 84.51 75.84 77.65 67.84

Table 3: Ablation study of different pre-training strategies with BERT model on CLUE dataset. Two single-grained
(SG) baselines and five multi-grained (MG) methods (LICHEE and its variants) with different ways of integrating
the fine-grained and coarse-grained representations are evaluated.

TEK and CSL. This results further proves that our
multi-grained pre-training method is able to bring
significant improvements on the representation abil-
ity of language models and is generally effective to
a wide range of downstream NLU tasks.

The reason of LICHEE’s success is that we adopt
a multi-grained pre-training strategy to model the
contextual information of the input text to leverage
the advantages from both granularities, where fine-
grained token representations are easier to learn
considering the sufficient training samples, and
coarse-grained tokens are more complete as lex-
ical units and provide more accurate contextual
information. Furthermore, in our framework, the
combination of the multi-grained information is re-
alized on the embedding level so that we can keep
the model structure unaltered, showing that the ben-
efits are achieved entirely through the information
gains caused by multi-grained pre-training other
than model-level modifications.

4.5 Ablation Analysis

We have conducted ablation analysis on CLUE
benchmarks with BERT, to evaluate the impact
of our multi-grained design, as well as perform a
comprehensive study on the different methods of
integrating the multi-grained embedding. Table 3
lists the performance of model variants with differ-
ent training strategies, including two single-grained
methods and five multi-grained methods.

The original single-grained BERT whose mask-
ing scheme is solely based on fine-grained tokens
gives an average CLUE score of 71.12. The Whole
Word Masking (WWM) technique (Cui et al., 2019)
performs masking operations on continuous fine-
grained tokens that form a coarse-grained token and
improves the performance to 72.24. Note that al-
though WWM utilizes coarse-grained token bound-
ary information during the masking operations, it

does not explicitly train representations for coarse-
grained tokens. Therefore, we treat WWM also as
a single-grained pre-training method.

For multi-grained pre-training methods, we have
conducted experiments to explore five different
approaches of combining embedding representa-
tions of fine-grained and coarse-grained tokens, in-
cluding concatenating the embedding vectors with
different dimension settings, and integrating them
with mean-pooling and max-pooling. For the con-
catenation approaches, we keep the dimension of
the concatenated multi-grained embeddings to 768
to align with the baseline models, and apply three
settings to adjust the dimensions of fine-grained
and coarse-grained embedding correspondingly to
(384, 384), (256, 512) and (512, 256). Empiri-
cally, we discover that the three concatenation set-
tings achieve similar performances, while having
larger embedding vectors for fine-grained tokens
and smaller embedding vectors for coarse-grained
tokens produces a slightly better performance of
73.08 average CLUE score.

Exploiting mean-pooling to integrate the multi-
grained information gives more performance gains
compared with concatenation methods and reaches
73.22 average CLUE score, which may be at-
tributed to the greater number of embedding param-
eters, as pooling methods do not require a shrink
on the embedding dimension and allow both fine-
grained and coarse-grained embedding dimension
to stay 768. Finally, LICHEE with the max-pooling
incorporated outperforms all the fore-mentioned
approaches, attains an overall score of 73.92, and
achieves the best score on 3 out of 9 CLUE tasks,
due to its capability of extracting more representa-
tive features. Especially for the task of CLUEWSC,
LICHEE acquires an accuracy of 81.03 while the
second best method only reaches 76.54. We believe
this is because the small training set of CLUEWSC
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Model Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
- acc. acc. acc. EM. EM. acc. acc. acc.

BERT-WWM 63.64 77.13 79.76 62.83 24.88 65.20 70.88 64.50 63.94
BERT-LICHEE 65.53 77.98 88.21 63.00 25.41 67.50 71.91 65.45 64.81

Table 4: Comparison between our multi-grained BERT-LICHEE and the single-grained BERT-WWM on Super-
GLUE tasks.

Model FLOPs Speedup

BERT 43.5B 1.0x
AMBERT 87.0B 0.5x
LICHEE 43.5B 1.0x

Table 5: Comparison of FLOPs and speedup among the
single-grained BERT, AMBERT, and our method.

with only 532 examples makes it more dependent
on powerful pre-trained representations, so that the
advantage of the max-pooling method is amplified.

Overall, we can see from table 3 that all multi-
grained pre-training methods outperform the single-
grained baselines by a significant margin, which
again proves that our idea of incorporating multi-
grained information during the pre-training phase
is efficacious and can benefit model performance
considerably.

4.6 Inference Speed Analysis

We have also studied the inference speed of
LICHEE and compare it with the original single-
grained BERT and another multi-grained method
AMBERT.

Table 5 gives a brief comparison in terms of
FLOPs and speedup, tested on a binary classifica-
tion task with 512 sequence length. FLOPs indi-
cates the number of floating-point operations that
the model performs for a single process, where gen-
erally speaking, the higher the model’s FLOPs is,
the slower the inference speed will be.

We can see that the FLOPs of the AMBERT is
87.0 billion, twice the number of the single-grained
BERT. It means the inference time of AMBERT is
almost doubled, which can cost a lot more time and
resources, and often can be unacceptable for real-
world applications. Meanwhile, our multi-grained
method produces a model with 43.5 billion FLOPs
with a negligible increase compared with the single-
grained baseline, because the additional operations
only include an embedding lookup operation for
coarse-grained tokens and a max-pooling operation

to integrate the fine-grained and coarse-grained em-
bedding vectors. In summary, LICHEE can pro-
duce significant performance gains with negligible
extra inference time needed.

4.7 English Tasks
We have also conducted experiments on Super-
GLUE benchmarks to evaluate LICHEE on English
language tasks, and compared it with the single-
grained baseline: BERT-WWM (Cui et al., 2019).

As shown in table 4, the BERT model pre-trained
with our multi-grained method outperforms the
single-grained BERT-WWM on all 8 SuperGLUE
tasks, and attains an average score of 65.53 surpass-
ing the baseline by 1.89. This improvement over
BERT-WWM demonstrates that the effectiveness
of LICHEE is attributed greatly to the information
gain of its multi-grained representations, more than
just token boundary information. We also notice
that, similar to the CLUEWSC task, a huge in-
crease of 8.45 on accuracy is achieved for the CB
dataset of 250 training samples, because our pre-
training method leverages the information gains of
multi-grained tokens and produces more accurate
representations, which is especially effective on
tasks with small training data.

This result evidently illustrates that LICHEE is
not only effective on tasks of character based lan-
guage like Chinese that highly relies on correct
tokenizations, but can also produce significant im-
provements on languages that are naturally tok-
enized such as English.

5 Conclusion

In this paper, we have proposed a novel multi-
grained method for language model pre-training
named LICHEE, which can be applied to both auto-
regressive and auto-encoding PLMs. In our method,
the fine-grained embeddings and the coarse-grained
embeddings are separately learned and integrated
as the multi-grained embeddings, which is then
passed into the encoder of the language model. Ex-
periments show that LICHEE can significantly en-
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hance the model performance by a great margin on
downstream tasks of both Chinese and English, and
significantly improve the inference speed compared
to the prior multi-grained method.
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