
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 120–133
August 1–6, 2021. ©2021 Association for Computational Linguistics

120

Fully Non-autoregressive Neural Machine Translation:
Tricks of the Trade

Jiatao Gu∗
Facebook AI Research

jgu@fb.com

Xiang Kong∗
Language Technologies Institute

Carnegie Mellon University
xiangk@cs.cmu.edu

Abstract

Fully non-autoregressive neural machine trans-
lation (NAT) simultaneously predicts tokens
with single forward of neural networks, which
significantly reduces the inference latency at
the expense of quality drop compared to the
Transformer baseline. In this work, we target
on closing the performance gap while main-
taining the latency advantage. We first inspect
the fundamental issues of fully NAT models,
and adopt dependency reduction in the learn-
ing space of output tokens as the primary guid-
ance. Then, we revisit methods in four dif-
ferent aspects that have been proven effective
for improving NAT models, and carefully com-
bine these techniques with necessary modifi-
cations. Our extensive experiments on three
translation benchmarks show that the proposed
system achieves the state-of-the-art results for
fully NAT models, and obtains comparable
performance with the autoregressive and itera-
tive NAT systems. For instance, one of the pro-
posed models achieves 27.49 BLEU points
on WMT14 En-De with 16.5× speed-up com-
pared to similar sized autoregressive baseline
under the same inference condition. The im-
plementation of our model is available here1.

1 Introduction

State-of-the-art neural machine translation (NMT)
systems are based on autoregressive models (Bah-
danau et al., 2015; Vaswani et al., 2017) where each
generation step depends on the previously gener-
ated tokens. This sequential nature inevitably leads
to inherent latency at inference time. On the other
hand, non-autoregressive neural machine transla-
tion models (NAT, Gu et al., 2018a) attempt to
generate output sequences in parallel to speed-up

∗ Equal contribution.
1https://github.com/pytorch/fairseq/

tree/master/examples/nonautoregressive_
translation

Figure 1: The translation quality v.s. inference speed-
up on WMT’14 En→De test set. The upper right corner
achieves the best trade-off.

the decoding process. The incorrect independence
assumption nevertheless prevents NAT models to
properly learn the dependency between target to-
kens in real data distribution, resulting in poorer
performance compared to autoregressive (AT) mod-
els. One popular solution to improve the NAT trans-
lation accuracy is to sacrifice the speed-up by incor-
porating an iterative refinement process, through
which the model explicitly learns the conditional
distribution over partially observed reference to-
kens (Ghazvininejad et al., 2019; Gu et al., 2019).
However, recent studies (Kasai et al., 2020b) indi-
cated that iterative NAT models seem to lose the
speed advantage compared to AT models with care-
ful tuning of the layer allocation. For instance, an
AT model with deep encoder and shallow decoder
obtains similar latency as iterative NAT models
without hurting the translation accuracy.

Therefore, how to build a competitive fully NAT
model without iterative refinements calls for more
exploration. Several works (Ghazvininejad et al.,
2020a; Saharia et al., 2020; Qian et al., 2020) have
recently been proposed to improve the training of
NAT, though the performance gap compared to the
iterative ones remains. In this work, we first ar-

https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation
https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation
https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation

121

gue that the key to successfully training a fully
NAT model is to perform dependency reduction
in the learning space of output tokens (§ 2) from
all aspects. With this guidance, we revisit various
methods which are able to reduce the dependen-
cies among target tokens as much as possible in-
cluding four different perspectives, i.e., training
corpus (§ 3.1), model architecture (§ 3.2), training
objective (§ 3.3) and learning strategy (§ 3.4). The
performance gap can not be near closed unless we
combine these techniques’ advantages.

We validate the proposed fully NAT model on
standard translation benchmarks including 5 trans-
lation directions where our system achieves new
state-of-the-art results for fully NAT models on all
directions. We also demonstrate the quality-speed
trade-off comparing with AT and recent iterative
NAT models in Figure 1. Moreover, compared
to the Transformer baseline, our model achieves
16.5× inference speed-up under the same soft-
ware/hardware conditions while maintaining com-
parable translation quality.

2 Motivation

Given an input sequence x = x1 . . . xT ′ , an autore-
gressive model (Bahdanau et al., 2015; Vaswani
et al., 2017) predicts the target y = y1 . . . yT se-
quentially based on the conditional distribution
p(yt|y<t, x1:T ′ ; θ), which tends to suffer from high
latency in generation especially for long sequences.
In contrast, non-autoregressive machine transla-
tion (NAT, Gu et al., 2018a), proposed for speeding-
up the inference by generating all the tokens in par-
allel, has recently been on trend due to its nature of
parallelizable on devices such as GPUs and TPUs.
A typical NAT system assumes a conditional inde-
pendence in the output token space, that is

log pθ(y|x) =
T∑
t=1

log pθ(yt|x1:T ′) (1)

where θ is the parameters of the model. Typically,
NAT models are modeled with Transformer with-
out causal attention map in the decoder side. As
noted in Gu et al. (2018a), the independence as-
sumption, however, generally does not hold in real
data distribution for sequence generation tasks such
as machine translation (Ren et al., 2020), where
the failure of capturing such dependency between
target tokens leads to a serious performance degra-
dation in NAT. This is a fairly understandable but
fundamental issue of NAT modeling which can

Figure 2: Toy example shows that NAT fails to learn
when dependency exists in output space.

be easily shown with a toy example in Figure 2.
Given a simple corpus with only two examples:
AB and BA, each of which has 50% chances to ap-
pear. It is designed to represent the dependency
that symbol A and B should co-occur. Although
such simple distribution can be instantly captured
by any autoregressive model, learning the vanilla
NAT model with maximum likelihood estimation
(MLE, Eq. (1)) assigns probability mess to incor-
rect outputs (AA, BB) even these samples never
appear during training. In practice, the dependency
in real translation corpus is much more compli-
cated. As shown in Figure 1, despite the inference
speed-up, the vanilla NAT leads to a quality drop
over 10 BLEU points.

To ease the modeling difficulty, recent state-of-
the-art NAT systems (Lee et al., 2018; Stern et al.,
2019; Ghazvininejad et al., 2019; Gu et al., 2019;
Kasai et al., 2020a; Shu et al., 2020; Saharia et al.,
2020) trade accuracy with latency by incorporating
iterative refinement in non-autoregressive predic-
tion. For instance, Gu et al. (2019) learns to trans-
late by editing (deletion, insertion) on previously
generated sequence iteratively. Although iterative
NAT models have already achieved comparable or
even better performance than the autoregressive
counterpart, Kasai et al. (2020b) showed AT mod-
els with a deep encoder and a shallow decoder can
readily outperform strong iterative models with
similar latency, indicating that the latency advan-
tage of iterative NAT has been overestimated.

By contrast, while maintaining a clear speed ad-
vantage, fully NAT system – model makes parallel
predictions with single neural network forward –
still lags behind in translation quality and has not
been fully explored in literature (Libovický and
Helcl, 2018; Li et al., 2018; Sun et al., 2019; Ma
et al., 2019; Ghazvininejad et al., 2020a). This
motivates us in this work to investigate various ap-
proaches to push the limits of learning a fully NAT
model towards autoregressive models regardless of
the architecture choices (Kasai et al., 2020b).

122

Figure 3: The overall framework of our fully NAT model.

3 Methods

In this section, we discuss several essential ingredi-
ents to train a fully NAT model. As discussed in § 2,
we argue that the guiding principle of designing
any NAT models is to perform dependency reduc-
tion as much as possible in the output space so that
it can be captured by the NAT model. For example,
iterative-based models (Ghazvininejad et al., 2019)
explicitly reduce the dependencies between output
tokens by learning the conditional distribution over
the observed reference tokens. The overall frame-
work of training our fully NAT system is presented
in Figure 3. We also summarize the pros/cons for
each proposed method in Table 1 for reference.

3.1 Data: Knowledge Distillation

The most effective dependency reduction technique
is knowledge distillation (KD) (Hinton et al., 2015;
Kim and Rush, 2016) which is firstly proposed to
improve NAT in Gu et al. (2018a) and has been
widely employed for all subsequent NAT models.
The original target samples are replaced with sen-
tences generated from a pre-trained autoregressive
model. As analyzed in Zhou et al. (2020), KD is
able to simplify the training data where the gen-
erated targets have less noise and are aligned to
the inputs more deterministically. Also, it showed
that the capacity of the teacher model should be
constrained to match the desired NAT model to
avoid further degradation, especially for weak NAT
students without iterative refinement.

3.2 Model: Latent Variables

Different from iterative NAT, dependency reduc-
tion can be done with (nearly) zero additional cost
at inference by adding latent variables to the model.
In such case, output tokens y1:T are modeled con-
ditionally independent over the latent variables z

which are predicted from the prior distribution:

log pθ(y|x) = log

∫
z
pθ(z|x)pθ(y|z,x)dz (2)

z can be either extracted by a fixed external library
(e.g. fertility in Gu et al. (2018a)), or jointly opti-
mized with the NAT model using variational auto-
encoders (VAEs) (Kaiser et al., 2018; Shu et al.,
2020) or normalizing flow (Ma et al., 2019).

In this work, we followed the formulation pro-
posed in Shu et al. (2020) where continuous latent
variables z ∈ RT ′×D are modeled as spherical
Gaussian at the encoder output of each position.
Like typical VAEs (Kingma and Welling, 2013),
the model is trained by maximizing the evidence
lower-bound (ELBO) with a posterior network qφ:

E
z∼qφ

[log pθ(y|z,x)]︸ ︷︷ ︸
likelihood

−DKL(qφ(z|x,y)‖pθ(z|x))

(3)
where DKL is the Kullback–Leibler divergence be-
tween the prior and posterior. In this work, we
use a Transformer to encode qφ(z|x,y). Only the
embedding layers are shared between θ and φ

3.3 Loss Function: Latent Alignments
Standard NMT models are trained with the cross
entropy (CE) loss which compares the model’s out-
put with target tokens at each corresponded posi-
tion. However, as NAT ignores the dependency in
the output space, it is almost impossible for such
models to model token offset accurately. For in-
stance, while with little effect to the meaning, sim-
ply changing “Vielen Dank !” to “, Vielen Dank”
causes a huge penalty for fully NAT models.

To ease such limitation, recent works proposed
to consider the latent alignments between the tar-
get positions, and optimize (Ghazvininejad et al.,

123

Methods Distillation Latent Variables Latent Alignments Glancing Targets

What it can do? simplifying the training
data

model any types of de-
pendency in theory

handling token shifts in
the output space

ease the difficulty of
learning hard examples

What it cannot? uncertainty exists in the
teacher model

constrained by the mod-
eling power of the used
latent variables

unable to model non-
monotonic dependency,
e.g. reordering

training / testing phase
mismatch

Potential issues sub-optimal due to the
teacher’s capacity

difficult to train; poste-
rior collapse

decoder inputs must be
longer than targets

difficult to find the op-
timal masking ratio

Table 1: Comparison between the proposed techniques for improving fully NAT models.

2020a), or marginalize all alignments (Libovický
and Helcl, 2018; Saharia et al., 2020). As a spe-
cial form of latent variables in loss computation,
latent alignments can be easily computed through
dynamic programming. The dependency is reduced
because the NAT model is able to freely choose the
best prediction regardless of the target offsets. In
this work, we put our primary focus on Connection-
ist Temporal Classification (CTC) (Graves et al.,
2006) as the latent alignments, considering its su-
perior performance and the flexibility of variable
length prediction. Formally, CTC is capable of effi-
ciently finding all valid aligned sequences a which
the target y can be recovered from, and marginalize
log-likelihood:

log pθ(y|x) = log
∑
a∈Γ(y)

pθ(a|x) (4)

where Γ−1(a) is the collapse function that recov-
ers the target sequence by collapsing consecutive
repeated tokens, and then removing all blank to-
kens. Also, it is straightforward to apply the same
CTC loss into the VAE models (§ 3.2) by replacing
the likelihood term in Eq (3) with the CTC loss.
Because of the strong assumptions of monotonic
alignment, it is impossible to reduce all dependen-
cies between target tokens in real distribution.

3.4 Learning: Glancing Targets
Ghazvininejad et al. (2019) showed that it im-
proved test time performance by glancing the ref-
erence tokens when training NAT models. That is,
instead of log pθ(y|x), we optimize log pθ(y|m�
y,x),m ∼ γ(l,y), l ∼ U|y|, where m is the
mask, and γ is the sampling function given the
number of masked tokens l. As mentioned earlier,
we suspect such explicit modeling of the distri-
bution conditional to unmasked tokens assists the
dependency reduction in the output space.

Naively applying random masks for every train-
ing example may cause severe mismatch between
training and testing. To migrate this, Qian et al.

(2020) proposed GLAT – a curriculum learning
strategy, in which the ratio of glanced target tokens
is proportional to the translation error of the fully
NAT model. More precisely, instead of sampling
uniformly, we sample l by:

l ∼ g(fratio · D(ŷ,y)) (5)

where ŷ = arg maxy log pθ(y|x), D is the dis-
crepancy between the model prediction and the
target sequence, e.g. Levenshtein distance (Leven-
shtein, 1966), and fratio is a hyperparameter to ad-
just the mask ratio. The original formulation (Qian
et al., 2020) utilized a deterministic mapping (g),
while we use a Poisson distribution to sample a
wider range of lengths including “no glancing”.

The original GLAT (Qian et al., 2020) assumes
to work with golden length so that it can glance
at the target by placing the target word embedding
to the corresponded inputs, which is incompatible
with CTC as we always require the inputs longer
than the targets. To enable GLAT training, we
glance at target tokens from the viterbi aligned to-
kens a∗ = arg maxa∈Γ(y) log pθ(a|x) which has
the same length as the decoder inputs. Intuitively,
a poorly trained model will glance at many tar-
get tokens. When the model becomes better and
generates higher quality sequences, the number of
masked words will be larger, which helps the model
gradually learn generating the whole sentence.

4 Experiments

We perform extensive experiments on three chal-
lenging translation datasets by combining all men-
tioned techniques to check (1) whether the pro-
posed aspects for dependency reduction are com-
plementary; (2) how much we can minimize the
gap between a fully non-autoregressive model with
the autoregressive counterpart.

4.1 Experimental Setup
Dataset and Preprocessing We validate our pro-
posed models on three standard translation bench-

124

marks with variant sizes, i.e., WMT14 English
(EN)↔ German (DE) (4.0M pairs), WMT16 En-
glish (EN) ↔ Romanian (RO) (610k pairs) and
WMT20 Japanese (JA)→ English (EN) (13M pairs
after filtering). For EN↔DE and EN↔RO, we
apply the same prepossessing steps and learn sub-
words as mentioned in prior work (EN↔DE: Zhou
et al., 2020, EN↔RO: Lee et al., 2018). For
JA→EN, the original data (16M pairs) is first fil-
tered with Bicleaner (Sánchez-Cartagena et al.) 2

and we apply SentencePiece (Kudo and Richard-
son, 2018) to generate 32,000 subwords.

Knowledge Distillation Following previous ef-
forts, we also train the NAT models on distilled
data generated from pre-trained transformer models
(base for WMT14 EN↔DE and WMT16 EN↔RO
and big for WMT20 JA→EN) using beam search
with a beam size 5 and length penalty 1.0.

Decoding At inference time, the most straight-
forward way is to generate the sequence with the
highest probability at each position. The outputs
from the CTC-based NAT models require an ad-
ditional collapse process Γ−1 which can be done
instantly. A relatively more accurate method is
to decode multiple sequences, and rescore them
to obtain the best candidate in parallel, i.e. noisy
parallel decoding (NPD, Gu et al., 2018a). Fur-
thermore, CTC-based models are also capable of
decoding sequences using beam-search (Libovický
and Helcl, 2018), and optionally combined with
n-gram language models (Heafield, 2011; Kasner
et al., 2020). More precisely, we search in a beam
to approximately find the optimal y∗ that maxi-
mizes:

log pθ(y|x) + α · log pLM(y) + β log |y| (6)

where α and β are hyperparameters for language
model scores and word insertion bonus. In prin-
ciple, it is no longer non-autoregressive as beam-
search is a sequential process by nature. However,
it does not contain any neural network computa-
tions and can be implemented efficiently in C++ 3.

Baselines We adopt Transformer (AT) and exist-
ing NAT approaches (see Table 2) for comparison.
For AT, except for the standard base and big archi-
tectures (Vaswani et al., 2017), we also compare
with a deep encoder, shallow decoder Transformer

2https://github.com/bitextor/bicleaner
3https://github.com/parlance/ctcdecode

suggested in Kasai et al. (2020b) that follows the
model dimensions of base with 12 encoder layers
and 1 decoder layer (i.e. base (12-1) for short).

Evaluation BLEU (Papineni et al., 2002) is used
to evaluate the translation performance for all mod-
els. Following prior works, we compute tokenized
BLEUs for EN↔DE and EN↔RO, while using
SacreBLEU (Post, 2018) for JA→EN. In this work,
we use three measures to fully investigate the trans-
lation latency of all the models:

• LGPU
1 : translation latency by running the model

with one sentence/batch on single GPU, aligning
applications like instantaneous translation.

• LCPU
1 : the same asLGPU

1 while running the model
without GPU speed-up. Compared to LGPU

1 , it
is less friendly to NAT models that make use of
parallelism, however, closer to real scenarios.

• LGPU
max: the same as LGPU

1 on GPU while running
the model in a batch with as many sentences
as possible. In this case, the hardware memory
bandwidth are taken into account.

We measure the wall-clock time for translating the
whole test set, and report the averaged time over
sentences as the latency measure. For more imple-
mentation details, please refer to Appendix A.

4.2 Results
WMT’14 EN↔DE & WMT’16 EN↔RO We
report the performance of our fully NAT model
comparing with AT and existing NAT approaches
(including both iterative and fully NAT models) in
Table 2. Iterative NAT models with enough num-
ber of iterations generally outperform fully NAT
baselines by a certain margin as they are able to re-
cover the generation errors by explicitly modeling
dependencies between (partially) generated tokens.
However, the speed advantage is relatively small
compared to AT base (12-1) which also achieves
2.5 times faster than the AT baseline.

Conversely, our fully NAT models are able to
readily achieve over 16 times speed-up on EN→DE
by restricting translation within a single iteration.
Surprisingly, merely training NAT with KD and
CTC loss already beats the state-of-the-art for sin-
gle iteration NAT models across all four directions.
Moreover, combining with either latent variables
(VAE) or glancing targets (GLAT) further closes
the performance gap or even outperforms the AT re-
sults on both language pairs. For example, our best

https://github.com/bitextor/bicleaner
https://github.com/parlance/ctcdecode

125

Models Iter. Speed WMT’14 WMT’16
EN-DE DE-EN EN-RO RO-EN

AT
Transformer base (teacher) N 1.0× 27.48 31.39 33.70 34.05
Transformer base (12-1) N 2.4× 26.21 30.80 33.17 33.21

+ KD N 2.5× 27.34 30.95 33.52 34.01

Iterative NAT

iNAT (Lee et al., 2018) 10 1.5× 21.61 25.48 29.32 30.19
Blockwise (Stern et al., 2018) ≈ N/5 3.0× 27.40 - - -
InsT (Stern et al., 2019) ≈ logN 4.8× 27.41 - -
CMLM (Ghazvininejad et al., 2019)∗ 10 1.7× 27.03 30.53 33.08 33.31
LevT (Gu et al., 2019) Adv. 4.0× 27.27 - - 33.26
KERMIT (Chan et al., 2019) ≈ logN - 27.80 30.70 - -
LaNMT (Shu et al., 2020) 4 5.7× 26.30 - - 29.10
SMART (Ghazvininejad et al., 2020b)∗ 10 1.7× 27.65 31.27 - -
DisCO (Kasai et al., 2020a)∗ Adv. 3.5× 27.34 31.31 33.22 33.25
Imputer (Saharia et al., 2020)∗ 8 3.9× 28.20 31.80 34.40 34.10

Fully NAT

Vanilla-NAT (Gu et al., 2018a) 1 15.6× 17.69 21.47 27.29 29.06
LT (Kaiser et al., 2018) 1 3.4× 19.80 - - -
CTC (Libovický and Helcl, 2018) 1 - 16.56 18.64 19.54 24.67
NAT-REG (Wang et al., 2019) 1 - 20.65 24.77 - -
Bag-of-ngrams (Shao et al., 2020) 1 10.0× 20.90 24.60 28.30 29.30
Hint-NAT (Li et al., 2018) 1 - 21.11 25.24 - -
DCRF (Sun et al., 2019) 1 10.4× 23.44 27.22 - -
Flowseq (Ma et al., 2019) 1 1.1 × 23.72 28.39 29.73 30.72
ReorderNAT (Ran et al., 2019) 1 16.1× 22.79 27.28 29.30 29.50
AXE (Ghazvininejad et al., 2020a)∗ 1 15.3× 23.53 27.90 30.75 31.54
ENGINE (Tu et al., 2020) 1 15.3× 22.15 - - 33.16
EM+ODD (Sun and Yang, 2020) 1 16.4× 24.54 27.93 - -
GLAT (Qian et al., 2020) 1 15.3× 25.21 29.84 31.19 32.04
Imputer (Saharia et al., 2020)∗ 1 18.6× 25.80 28.40 32.30 31.70

Ours (Fully NAT) 1 17.6× 11.40 16.47 24.52 24.79
+ KD 1 17.6× 19.50 24.95 29.91 30.25
+ KD + CTC 1 16.8× 26.51 30.46 33.41 34.07
+ KD + CTC + VAE 1 16.5× 27.49 31.10 33.79 33.87
+ KD + CTC + GLAT 1 16.8× 27.20 31.39 33.71 34.16

Table 2: Comparison between our models and existing methods. The speed-up is measured on WMT’14 En→De
test set. All results reported standalone are without re-scoring. Iter. denotes the number of iterations at inference
time, Adv. means adaptive, ∗ denotes models trained with distillation from a big Transformer.

model achieves 27.49 BLEU on WMT14 EN-DE
– almost identical to the AT performance (27.48)
while 16.5 times faster in the inference time.

Table 2 also indicates the difficulties of learning
NAT on each dataset. For instance, EN↔RO is
relatively easier as “KD + CTC” is enough to close
the performance gap. By contrast, applying VAE
or GLAT helps to capture non-monotonic depen-
dencies and improve by 0.5 ∼ 1 BLEU points on
EN↔ED. For both datasets, we ONLY need a sin-
gle greedy generation to achieve similar translation
quality as AT beam-search results.

WMT’20 JA→EN In Table 3, we also present
results for training the fully NAT model on a more
challenging benchmark – WMT’20 JA→EN which
is much larger (13M pairs) and noisier. In addi-
tion, JA is linguistically distinct from EN which
makes it harder to learn mappings between them.
Consequently, both AT (12-1) and our fully NAT
models become less confident and tend to gener-

ate shorter translations (BP < 0.9), which in turn
underperform the AT teacher even trained with KD.

Beam search & NPD Previous works (Gu et al.,
2018a; Libovický and Helcl, 2018) find that NAT
performance can be effectively improved by allow-
ing advanced decoding methods, such as beam-
search and re-ranking (NPD). To fully examine our
proposed fully NAT model and demonstrate its ex-
tensibility with advanced decoding approaches, we
further conduct experiments on WMT’20 JA→EN.

For CTC beam search, we use a fixed beam-
size 20 while grid-search α, β (Eq.(6)) based on
the performance on the validation set. The lan-
guage model 4 is trained directly on the distilled
target sentences to avoid introducing additional in-
formation. We explored both 3-gram and 4-gram
LMs in our initial experiments, and found 4-gram
worked slightly better with no effect on the infer-

4https://github.com/kpu/kenlm

https://github.com/kpu/kenlm

126

Configuration BLEU (∆) BP LGPU
1 (Speed-up) LCPU

1 (Speed-up)

AT
big (teacher) 21.07 0.920 345 ms 1.0 × 923 ms 1.0 ×
base 18.91 0.908 342 ms 1.0 × 653 ms 1.4 ×
base (12-1) 15.47 0.806 152 ms 2.3 × 226 ms 4.0 ×
base (12-1) + KD 18.76 0.887 145 ms 2.4 × 254 ms 3.6 ×

NAT

KD + CTC 16.93 (+0.00) 0.828 17.3 ms 19.9 × 84 ms 11.0 ×
KD + CTC + VAE 18.73 (+1.80) 0.862 16.4 ms 21.0 × 83 ms 11.1 ×

w. BeamSearch20 19.80 (+2.87) 0.958 28.5 ms 12.1 × 99 ms 9.3 ×
w. BeamSearch20 + 4-gram LM 21.41 (+4.48) 0.954 31.5 ms 11.0 × 106 ms 8.7 ×
w. NPD5 18.88 (+1.95) 0.866 34.9 ms 9.9 × 313 ms 2.9 ×
w. NPD5 + BeamSearch20 + 4-gram LM 21.84 (+4.91) 0.962 57.6 ms 6.0 × 284 ms 3.2 ×

Table 3: Performance comparison between fully NAT and AT models on WMT’20 JA→EN. Translation latency
on both the GPU and CPUs are reported over the test set. The brevity penalty (BP) is also shown for reference.

Figure 4: Quality v.s. Latency (the upper left corner achieves the best trade-off) for fully NAT models with other
translation models (AT base and base 12-1 (Kasai et al., 2020b), CMLM (Ghazvininejad et al., 2019) and LevT (Gu
et al., 2019)) on WMT’14 EN→DE. We evaluate latency in three setups (from left to right: LGPU

1 , LCPU
1 , LGPU

max)
and show them in Logarithmic scale for better visualization.

ence speed. For noisy parallel decoding (NPD), we
draw multiple z from the learned prior distribution
with temperature 0.1, and use the teacher model to
rerank the best z with the corresponded translation.

As shown in Table 3, with similar GPU latency
(LGPU

1), beam search is much more effective than
NPD with re-ranking, especially combined with a
4-gram LM where we achieve a BLEU score of
21.41, beating the teacher model with 11× speed-
up. More importantly, by contributing the insertion
bonus (3rd term in Eq (6)) with β in beam search,
we have the explicit control to improve BP and
output longer translations. Also, we gain another
half point by combining NPD and beam search. To
have a fair comparison, we also report latency on
CPUs where it is limited to leverage parallelism of
the device. The speed advantage drops rapidly for
NAT models, especially for NAT with NPD, how-
ever, we still maintain around 100 ms latency via
beam search – over 2× faster than the lightweight
AT (12-1) systems with higher translation quality.

Quality v.s. Latency We perform a full investi-
gation for the trade-off between translation quality
and latency under three measures defined in § 4.1.

The results are plotted in Figure 4. For fully NAT
models, no beam search or NPD is considered. The
latency is measured by LGPU

1 , LCPU
1 and LGPU

max so as
to understand this trade-off in various scenarios. In
all three setups, our fully NAT models obtain supe-
rior trade-off compared with AT and iterative NAT
models. Iterative NAT models (LevT and CMLM)
require multiple iterations to achieve reliable per-
formance with the sacrifice of latency, especially
under LCPU

1 and LGPU
max where iterative NAT per-

forms similarly or even worse than AT base (12-1),
leaving fully NAT models a more suitable position
in quality-latency trade-off.

Figure 4 also shows the speed advantage of fully
NAT models shrinks in the setup of LCPU

1 and LGPU
max

where parallelism is constrained. Moreover, NAT
models particularly those with CTC consume more
computation and memory compared to AT models
with a shallow decoder. For instance when calcu-
lating LGPU

max , we notice that the maximum allowed
batch is 120K tokens for AT base (12-1), while we
can only compute 15K tokens at a time for NAT
with CTC due to the up-sampling step, even though
the NAT models still win the wall-clock time. We

127

KD AXE CTC VAE RND GLAT BLEU

11.40
X 19.50

X 16.59
X X 21.66

X 18.18
X X 26.51

X X 23.58
X X X 22.19
X X X 27.49

X X X 22.74
X X X 24.67
X X X 26.16

X X 21.81
X X X 27.20

X X X X 27.21

Table 4: Ablation on WMT’14 EN→DE test set with
different combinations of techniques. The default setup
shows a plain NAT model (Gu et al., 2018a) directly
trained on raw targets with the cross entropy (CE) loss.

mark it as one limitation for future research.

4.3 Ablation Study

Impact of various techniques Our fully NAT
models benefit from dependency reduction tech-
niques in four aspects (data, model, loss func-
tion and learning), and we analyze their effects
on translation accuracy through various combina-
tions in Table 4. First of all, the combinations
without KD have clear performance drop compared
to those with KD, showing its vital importance in
NAT training. For the loss function, although both
AXE (Ghazvininejad et al., 2019) and CTC con-
sider the latent alignments, the CTC-based model
obtains much better accuracy due to its flexibility
of output length. In all cases, incorporating latent
variables also effectively improves the accuracy,
especially for CTC without KD (∼ 5 BLEU im-
provement). Because of the capability to reduce
the mismatch between training and inference time,
the model with GLAT is superior to those with ran-
domly (RND) sampled masks. To conclude, we
find that KD and CTC are necessary components
for a robust fully NAT model. Adding either VAE
or GLAT to them achieve similar improvements.

Distillation corpus We report the performance
of models trained on real data and distilled data
generated from AT base and big models in Table 5.
For base models, both AT (12-1) and NAT achieve
better accuracy with distillation, while AT benefits
more by moving from base to big distilled data. On

Models Distillation BLEU Speed-upbase big

AT

base 27.43 1.0×
big 28.14 0.9×

base 26.12 2.4×
(12-1) X 27.34 2.5×

X 27.83 2.4×

NAT base
23.58 16.5×

X 27.49 16.5×
X 27.56 16.5×

big X 27.89 15.8×

Table 5: Performance comparison between AT and
NAT models on the test set of WMT’14 EN→DE. The
latency is measured one sentence per batch and com-
pared with the Transformer base. For NAT model, we
adopt CTC+VAE as the basic configuration.

Figure 5: Principle component explained variance ra-
tios of latent variables on WMT’14 EN→DE test set.

the contrary, the NAT model improves marginally
indicating that in terms of the modeling capacity,
our fully NAT model is still worse than AT model
even with 1 decoder layer. It is not possible to fur-
ther boost the NAT performance by simply switch-
ing the target to a better distillation corpus, which
aligns the finding in Zhou et al. (2020). Nonethe-
less, we can increase the NAT capacity by learning
in big size. As shown in Table 5, we can achieve
superior accuracy compared to AT (12-1) with little
effect on the translation latency (LGPU

1).

Effective Latent Dimensionality of Latent Vari-
ables To confirm the necessity of combining
VAEs with CTC, We apply principal component
analysis (PCA) (Wold et al., 1987) on the learned
latent variables. More precisely, we extract the la-
tent variables from the posterior of various models
(see Table 4) on WMT’14 EN→DE test set. These
main components’ explained variance ratios, the
percentage of variance that is attributed by each of
the component, are shown in Figure 5.

First, we find that the number of effective latent

128

dimensionality (capturing at least 95% of the total
variance) is much lower than the number of latent
dimensions (8 in our experiments), which indicates
simply increasing the number of latent dimensions
does not lead to better representations, and the abil-
ity to capture dependencies is limited. Therefore,
VAEs need to be combined with other techniques
e.g. KD, CTC to take effect. Also, compared to
the AXE, the effective dimensionality of latent vari-
ables in CTC loss-based models is higher.

We include more analysis with qualitative exam-
ples in Appendix B.

5 Discussion and Future work

In this section, we go through the proposed four
techniques again for fully NAT models. In spite
of the success to close the gap with autoregressive
models on certain benchmarks, we still see limi-
tations when using non-autoregressive systems as
mentioned in Table 1.

We and most of the prior research have repeat-
edly found that knowledge distillation (KD) is the
indispensable dependency reduction components,
especially for training fully NAT models. Neverthe-
less, we argue that due to the model agnostic prop-
erty, KD may lose key information that is useful
for the model to translate. Moreover, Anonymous
(2021) pointed out KD does cause negative effects
on lexical choice errors for low-frequency words in
NAT models. Therefore, an alternative method that
improves the training of NAT models over raw tar-
gets using such as GANs (Bińkowski et al., 2019)
or domain specific discriminators (Donahue et al.,
2020) might be the future direction.

Apart from KD, we also notice that the usage
of CTC loss is another key component to boost
the performance of fully NAT models across all
datasets. As discussed in § 4.2, however, the need
of up-sampling constrains the usage of our model
on very long sequences or mobile devices with
limited memory. In future work, it is possible to ex-
plore models to hierarchically up-sample the length
with a dynamic ratio to optimize the memory usage.

Lastly, both experiments with VAE and GLAT
prove that it is helpful but not enough to train
NAT models with loss based on monotonic align-
ments (e.g. CTC) only. To work on difficult pairs
such as JA-EN, it may be a better option to adopt
stronger models to capture richer dependency infor-
mation, such as normalizing flows (van den Oord
et al., 2018; Ma et al., 2019) or non-parametric

approaches (Gu et al., 2018b).

6 Related Work

Besides iterative NAT and fully NAT models, there
are other works trying to improve the decoding
speed of translation models from other aspects.
One research line is to hybrid AT and NAT models.
Wang et al. (2018) proposed a semi-autoregressive
model which adopted non-autoregressive decod-
ing locally but kept the autoregressive property in
global. On the contrary, Kong et al. (2020); Huang
et al. (2017) and Ran et al. (2020) introduced a
local autoregressive NAT models which retained
the non-autoregressive property in global.

Alternatively, there are also efforts improving
the decoding speed of AT models directly. Model
quantization and pruning have been widely stud-
ied as a way to improve the decoding speed (See
et al., 2016; Junczys-Dowmunt et al., 2018; Aji and
Heafield, 2020). Also, specialized light-weight AT
model (e.g. replacing self-attention with SSRU) to-
gether with improved teacher-student training (Kim
et al., 2019) are explored.

7 Conclusion

In this work, we aim to minimize the performance
gap between fully NAT and AT models. We in-
vestigate dependency reduction methods from four
perspectives and carefully unite them with neces-
sary revisions. Experiments on three translation
benchmarks demonstrate that the proposed fully
NAT models achieve the SoTA performance. For
future work, it is worth exploring simpler but more
effective diagrams for learning NAT models. For
instance, with the combination of CTC and more
powerful latent variable models, it is possible to
remove the necessity of knowledge distillation.

Acknowledgements

We would like to thank Jason Lee, Xuezhe Ma
and Chunting Zhou for thoughtful discussion. We
would also like to thank the anonymous reviewers
for their time and providing helpful suggestions.

References
Alham Fikri Aji and Kenneth Heafield. 2020. Com-

pressing neural machine translation models with 4-
bit precision. In Proceedings of the Fourth Work-
shop on Neural Generation and Translation, pages
35–42, Online. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2020.ngt-1.4
https://doi.org/10.18653/v1/2020.ngt-1.4
https://doi.org/10.18653/v1/2020.ngt-1.4

129

Anonymous. 2021. Understanding and improving lexi-
cal choice in non-autoregressive translation. In Sub-
mitted to International Conference on Learning Rep-
resentations. Under review.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman,
Aidan Clark, Erich Elsen, Norman Casagrande,
Luis C Cobo, and Karen Simonyan. 2019. High
fidelity speech synthesis with adversarial networks.
arXiv preprint arXiv:1909.11646.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. Kermit: Gener-
ative insertion-based modeling for sequences. arXiv
preprint arXiv:1906.01604.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan,
Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. 2016. Variational lossy autoen-
coder. arXiv preprint arXiv:1611.02731.

Jeff Donahue, Sander Dieleman, Mikołaj Bińkowski,
Erich Elsen, and Karen Simonyan. 2020. End-
to-end adversarial text-to-speech. arXiv preprint
arXiv:2006.03575.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020a. Aligned cross
entropy for non-autoregressive machine translation.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pages 3515–3523. PMLR.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6114–
6123.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020b. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 369–376. ACM.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018a. Non-
autoregressive neural machine translation. In 6th

International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, Canada, April 30-May
3, 2018, Conference Track Proceedings.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems, volume 32, pages
11181–11191. Curran Associates, Inc.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor OK Li. 2018b. Search engine guided neural ma-
chine translation.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
pages 187–197, Edinburgh, Scotland. Association
for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong
Zhou, and Li Deng. 2017. Towards neural phrase-
based machine translation. CoRR, abs/1706.05565.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in C++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129–135, Melbourne, Australia.
Association for Computational Linguistics.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish
Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam
Shazeer. 2018. Fast decoding in sequence models
using discrete latent variables. In International Con-
ference on Machine Learning, pages 2395–2404.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020a. Non-autoregressive machine
translation with disentangled context transformer.
In International Conference on Machine Learning,
pages 5144–5155. PMLR.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James
Cross, and Noah A Smith. 2020b. Deep encoder,
shallow decoder: Reevaluating the speed-quality
tradeoff in machine translation. arXiv preprint
arXiv:2006.10369.

Zdeněk Kasner, Jindřich Libovickỳ, and Jindřich Helcl.
2020. Improving fluency of non-autoregressive ma-
chine translation. arXiv preprint arXiv:2004.03227.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317–1327.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast

https://openreview.net/forum?id=ZTFeSBIX9C
https://openreview.net/forum?id=ZTFeSBIX9C
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/W11-2123
http://arxiv.org/abs/1706.05565
http://arxiv.org/abs/1706.05565
https://doi.org/10.18653/v1/W18-2716
https://doi.org/10.18653/v1/W18-2716
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632

130

neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. In Proceedings of the
2nd International Conference on Learning Represen-
tations (ICLR), 2014.

Xiang Kong, Zhisong Zhang, and Eduard Hovy. 2020.
Incorporating a local translation mechanism into
non-autoregressive translation. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1067–
1073, Online. Association for Computational Lin-
guistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Bel-
gium, October 31 - November 4, 2018, pages 1173–
1182.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Zhuohan Li, Di He, Fei Tian, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2018. Hint-based training for non-
autoregressive translation.

Jindřich Libovický and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3016–
3021, Brussels, Belgium. Association for Computa-
tional Linguistics.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. arXiv preprint arXiv:1909.02480.

Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen
Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George van den Driessche, Edward Lockhart, Luis
Cobo, Florian Stimberg, Norman Casagrande, Do-
minik Grewe, Seb Noury, Sander Dieleman, Erich
Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves,
Helen King, Tom Walters, Dan Belov, and Demis
Hassabis. 2018. Parallel WaveNet: Fast high-
fidelity speech synthesis. In Proceedings of the

35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learn-
ing Research, pages 3918–3926, Stockholmsmässan,
Stockholm Sweden. PMLR.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Interna-
tional Conference on Machine Learning.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang,
Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
2020. Glancing transformer for non-autoregressive
neural machine translation. arXiv preprint
arXiv:2008.07905.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2019.
Guiding non-autoregressive neural machine transla-
tion decoding with reordering information. arXiv
preprint arXiv:1911.02215.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2020.
Learning to recover from multi-modality errors for
non-autoregressive neural machine translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3059–
3069, Online. Association for Computational Lin-
guistics.

Yi Ren, Jinglin Liu, Xu Tan, Sheng Zhao, Zhou
Zhao, and Tie-Yan Liu. 2020. A study of
non-autoregressive model for sequence generation.
arXiv preprint arXiv:2004.10454.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1098–1108, Online. Association for Computational
Linguistics.

Vı́ctor M. Sánchez-Cartagena, Marta Bañón, Sergio
Ortiz-Rojas, and Gema Ramı́rez-Sánchez. Promp-
sit’s submission to wmt 2018 parallel corpus filter-
ing shared task. In Proceedings of the Third Con-
ference on Machine Translation, Volume 2: Shared

https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.info/papers/D18-1149/d18-1149
https://aclanthology.info/papers/D18-1149/d18-1149
https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/D18-1336
http://proceedings.mlr.press/v80/oord18a.html
http://proceedings.mlr.press/v80/oord18a.html
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.277
https://doi.org/10.18653/v1/2020.acl-main.277
https://doi.org/10.18653/v1/2020.emnlp-main.83
https://doi.org/10.18653/v1/2020.emnlp-main.83

131

Task Papers, Brussels, Belgium. Association for
Computational Linguistics.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291–301, Berlin,
Germany. Association for Computational Linguis-
tics.

Chenze Shao, Jinchao Zhang, Yang Feng, Fandong
Meng, and Jie Zhou. 2020. Minimizing the bag-of-
ngrams difference for non-autoregressive neural ma-
chine translation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
198–205.

Raphael Shu, Jason Lee, Hideki Nakayama, and
Kyunghyun Cho. 2020. Latent-variable non-
autoregressive neural machine translation with deter-
ministic inference using a delta posterior.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5976–5985, Long
Beach, California, USA. PMLR.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, pages 10107–10116.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He,
Zi Lin, and Zhihong Deng. 2019. Fast structured de-
coding for sequence models. In Advances in Neural
Information Processing Systems, pages 3016–3026.

Zhiqing Sun and Yiming Yang. 2020. An em ap-
proach to non-autoregressive conditional sequence
generation. In International Conference on Machine
Learning, pages 9249–9258. PMLR.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020. ENGINE: Energy-based infer-
ence networks for non-autoregressive machine trans-
lation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2819–2826, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS).

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018.
Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
479–488, Brussels, Belgium. Association for Com-
putational Linguistics.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 5377–5384.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang
Lin, Jun Xie, and Xu Sun. 2019. Imitation learn-
ing for non-autoregressive neural machine transla-
tion. arXiv preprint arXiv:1906.02041.

Svante Wold, Kim Esbensen, and Paul Geladi. 1987.
Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in
non-autoregressive machine translation. 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, Conference Track Proceedings.

https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
http://proceedings.mlr.press/v97/stern19a.html
http://proceedings.mlr.press/v97/stern19a.html
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/D18-1044

132

Appendix

A Implementation Details

Architecture We design our fully NAT model
with the hyperparameters of the base Transformer:
8-512-2048 (Vaswani et al., 2017). For EN→DE
experiments, we also implement the NAT model in
big size: 8-1024-4096 for comparison.

VAEs For experiments using variational autoen-
coders (VAE), we use the last layer encoder hidden
states to predict the mean and variance of the prior
distribution. The latent dimensionD is set to 8, and
the predicted z are linearly projected and added on
the encoder outputs. Following Shu et al. (2020),
we use a 3 layer encoder-decoder as the posterior
network, and apply freebits annealing (Chen et al.,
2016) to avoid posterior collapse.

CTC By default, we upsample the length of de-
coder inputs 3× as long as the source for CTC,
while using the golden length for other objectives
(CE and AXE). We also train an additional length
predictor when CTC is not used. For both cases, we
use SoftCopy (Wei et al., 2019) which interpolated
the encoder outputs as the decoder inputs based on
the relative distance of source and target positions.

GLAT The mask ratio, fratio, is 0.5 for GLAT
training. The original GLAT (Qian et al., 2020) as-
sumes to work with the golden length so that it can
glance at the target by placing the target word em-
bedding to a clear corresponded inputs. It is incom-
patible with CTC loss where we always need longer
inputs than the targets. To enable GLAT learning,
we glance at target tokens from the viterbi aligned
tokens (α = arg maxα∈β(y) p(α|x)) which has
the same length as the decoder inputs.

Training For both AT and NAT models, we set
the dropout rate as 0.3 for EN↔DE and EN↔RO,
and 0.1 for JA→EN. We apply weight decay 0.01
as well as label smoothing ε = 0.01. All models
are trained for 300K updates using Nvidia V100
GPUs with a batch size of approximately 128K to-
kens. We measure the validation BLEU scores for
every 1000 updates, and average the last 5 check-
points to obtain the final model.

Inference We measure the GPU latency by run-
ning the model on a single Nvidia V100 GPU, and
CPU latency on Intel(R) Xeon(R) CPU E5-2698
v4 @ 2.20GHz with 80 cores. All models are im-
plemented on fairseq (Ott et al., 2019).

λ BLEU LGPU
1 LGPU

max LCPU
1

1.5 26.16 17.9 ms 0.95 ms 66.6 ms
2.0 26.39 17.5 ms 1.03 ms 71.6 ms
2.5 26.54 17.6 ms 1.16 ms 76.9 ms
3.0 26.51 17.0 ms 1.32 ms 81.8 ms

Table 6: Performance comparison of different upsam-
ple ratios (λ) for CTC-based models on WMT’14
EN→DE test set. All models are trained on distilled
data.

B More ablation study

Upsampling Ratio (λ) for CTC Loss To meet
the length requirements in CTC loss, we upsample
the encoder output by a factor of 3 in our experi-
ments. We also explore other possible values and
report the performance in Table 6. The higher up-
sampling ratio provides a larger alignment space,
leading to better accuracy. Nevertheless, with a
large enough sampling ratio, a further increase will
not lead to the performance increase. Because of
the high degree of parallelism, LGPU

1 speed is simi-
lar among these ratios. However, the model with
a larger ratio has a clear latency drop on CPU or
GPU with large batches.

Representation reordering in the latent space
In our main experiments, VAEs has been proven
to effectively improve the performance of NAT
models. Here, we perform a qualitative study to
show how VAEs helps NAT models.

Ott et al. (2018) collected additional refer-
ence translations for each source sentence in the
WMT’14 En→De test set. We first choose three
source sentences and show the alignments between
them and two of their different translations in Fig-
ure 6. In each sample, it is clear to find that the
word order of the first pair is more similar to the
second one (e.g., in the second sample, the verb
’light’ in the source sentence is translated to the
end of the second reference sentence). However,
given the monotonic alignment assumption, CTC
is difficult to align sentence pairs with different
word orders. Then, for each sample, we extract la-
tent variables of both sentence pairs and align them
by first computing the Euclidean distance between
every position and then employing the linear sum
assignment algorithm (LAP).

Regarding the first pair as the baseline, we find
that the latent variable is able to adjust the word
order according to the input sentence pair. For
example, the alignment between latent variables of

133

Figure 6: Alignments between source sentences and their different translations.

the second sample is shown as: 0-0, 1-1, 2-2, 3-3, 4-
9, 5-5, 6-6,7-7, 8-8, 9-4, which shows that the latent
representation of the 9th position in the second pair
is aligned to the 5th position of the second pair.
In another word, the latent representation of the
word ’lights’ is reordered to the last position in the
second pair’s latent variable, which corresponds
to the word order difference in the second pair.
Therefore, given various reference information, the
latent variable makes the alignment between the
source and target representation more monotonic.
CTC can consequently benefit from it to learn a
better NAT model.

