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Abstract

Time-to-event prediction tasks are common in
conversation modelling, for applications such
as predicting the length of a conversation or
when a user will stop contributing to a plat-
form. Despite the fact that it is natural to
frame such predictions as regression tasks, re-
cent work has modelled them as classification
tasks, determining whether the time-to-event
is greater than a pre-determined cut-off point.
While this allows for the application of classi-
fication models which are well studied in NLP,
it imposes a formulation that is contrived, as
well as less informative. In this paper, we ex-
plore how to handle time-to-event forecasting
in conversations as regression tasks. We focus
on a family of regression techniques known
as survival regression, which are commonly
used in the context of healthcare and reliabil-
ity engineering. We adapt these models to
time-to-event prediction in conversations, us-
ing linguistic markers as features. On three
datasets, we demonstrate that they outperform
commonly considered text regression methods
and comparable classification models.

1 Introduction

The task of predicting when an event will occur in a
conversation frequently arises in NLP research. For
instance, Backstrom et al. (2013) and Zhang et al.
(2018b) predict when a conversation thread will
terminate. Danescu-Niculescu-Mizil et al. (2013)
define the task of forecasting when users will cease
to interact on a social network based on their lan-
guage use. Although these questions naturally lend
themselves to regression, this presents some dif-
ficulties: datasets may be highly skewed towards
shorter durations (Zhang et al., 2018b) and samples
with a longer duration can contribute inordinately
to error terms during training. Furthermore, clas-
sical regression models do not explicitly consider
the effect of time as distinct from other features.

The abovementioned studies instead frame the
time-to-event prediction as a classification task, pre-
dicting whether the current state will continue for
a set number of additional timesteps. For instance,
Backstrom et al. (2013) predict whether the number
of responses in a thread will exceed 8, after seeing 5
utterances. This presents obvious limitations; such
a setup would assign the same error for mistakenly
classifying conversations of respectively 9 and 30
utterances as “short”. Additionally, its predictions
are less informative: predicting that a conversation
will be more than 8 utterances long is less telling
than predicting whether it will be 9 or 30.

In this paper, we propose that survival regres-
sion is a more appropriate modelling framework
for predicting when an event will occur in a con-
versation. Survival regression aims to predict the
probability of an event of interest at different points
in time, taking into account features of a subject
as seen up to the prediction time. We apply sur-
vival models to two tasks: predicting conversation
length, and predicting when conversations will get
derail into personal attack. We report results for the
conversation length prediction task on the datasets
from Danescu-Niculescu-Mizil et al. (2012) and
De Kock and Vlachos (2021), and evaluate the
personal attack prediction task on the dataset of
Zhang et al. (2018a). Our results illustrate that lin-
ear survival models outperform their linear regres-
sion counterparts, with an improvement in MAE of
1.22 utterances on the dataset of De Kock and Vla-
chos (2021). Further performance gains are made
using neural network-based survival models. An
analysis of the coefficients of our linear models
indicates that survival models infer similar rela-
tionships as previous work on conversation length
prediction, but that their predictions are more accu-
rate than conventional regression and classification
models due to their explicit accounting for the ef-
fect of time. On the personal attack prediction task,
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the best survival model provides a 13% increase in
ranking accuracy over linear regression models.

The remainder of this paper is structured as fol-
lows. In Section 2 we provide a description of
key survival analysis concepts. In Section 3, we
describe how we apply these concepts to conversa-
tions. Results are reported in Section 4.

2 Survival regression

Survival analysis is concerned with modelling time-
to-event prediction, which often represents transi-
tions between states throughout a subject’s lifetime.
In the general case, exactly one event of interest
occurs per lifetime, after which the subject is per-
manently in the alternate state, often referred to
as “death” in literature. In this section, we review
some key concepts of survival analysis that are rel-
evant to our work, however, we refer the interested
reader to the exposition by Rodriquez (2007).

2.1 Definitions
Let T be a non-negative random variable repre-
senting the waiting time until the occurrence of an
event. Given the cumulative distribution function
F (t) of the event time T , the survival function is
defined as the probability of surviving beyond a
certain point in time t:

S(t) = P (T > t)

= 1− F (t). (1)

Per illustration, we consider the task of predict-
ing conversation length using the dataset of dis-
agreements of De Kock and Vlachos (2021). The
event of interest is the end of a conversation, with
time measured in utterances. We can estimate the
survival function using Kaplan-Meier estimation
(Jager et al., 2008) as follows:

S(t) =
∏
ti<t

Ri − di
Ri

, (2)

where di is the number of candidates who expe-
rience the event at time ti, and Ri represents the
so-called risk set, or candidates at risk of experienc-
ing the event just prior to ti. In Figure 1, the base
function is the estimated survival probabilities over
time for the full population. Only conversations
of more than 5 utterances are considered; hence
the survival probability is 1 for all curves up until
t = 5. If we create subsets of the population by
conditioning on the response time, the subset with

Figure 1: Survival functions for the conversation length
prediction task, for the full population (orange) and sub-
sets conditioning on the response time. Dashed lines
indicate the expected event time per population.

a longer response time has a steeper decline, indi-
cating that conversations where participants take
longer to respond are more likely to end earlier.
In survival regression, the aim is to learn survival
regression functions based on such features, while
the current time is modelled separately from them,
unlike in standard regression models.

To estimate the expected event time given a sur-
vival function, one can find the expected value of
the survival function as follows:

T̂ = E[S] =

∫ ∞
0

S(t)dt. (3)

These values are indicated with dashed lines in Fig-
ure 1, denoting the average conversation length on
the full population and the two subsets based on the
response time. The instantaneous risk of the event
occurring at a point in time, i.e. the probability of
the event time T being in a small interval around t,
is defined by the hazard function:

h(t) = lim
dt→0

P (t ≤ T < t+ dt|T ≥ t)
dt

. (4)

The cumulative hazard is given by H(t) =∫ t
0 h(t)dt and is related to the survival function

according to S(t) = e−H(t).
Parameteric survival regression models (de-

scribed in more detail in Section 2.3 and 2.4) are
often optimised to predict either the survival or the
hazard function, given that it is always possible to
convert between them. Such models can include
feature representations (such as the response time
in Figure 1) to obtain individualised predictions.
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2.2 Censoring

A common consideration in survival studies is the
presence of censoring, where a participant leaves a
study before the end of the observation period, or
they do not experience the event of interest within
this period. Under censoring, each subject i has an
associated potential censoring time Ci and a poten-
tial lifetime Ti. We observe Yi = min{Ti, Ci}, i.e.
the minimum of the censoring and lifetimes, and
an indicator variable δi for whether the observation
ended with death or censoring.

Consider the task of predicting personal attacks
(described in more detail in Section 3). Conversa-
tions that end without a personal attack occurring
can be considered analogous to patients dropping
out of a study before the end of the observation
period. The duration of the observation can then be
taken as the censoring time.

Different survival models account for censoring
in different ways. For instance, for a survival curve
estimated with the Kaplan-Meier method (Equation
2), censored individuals are removed from the set
of candidates at risk (Ri) at the censoring time,
without having experienced the event of interest.

2.3 Cox Proportional Hazards

The Cox Proportional Hazards (Cox-PH) model
(Cox, 1972) is the most widely used model for
survival analysis (Rodriquez, 2007; Kvamme et al.,
2019). It has the following hazard function:

h(t|x; θ) = h0(t) · exp(g(x; θ)). (5)

h0(t) represents the baseline hazard for the popu-
lation at each timestep, such as the base survival
function in Figure 1. The g(x; θ) term is often
referred to as the risk function and specifies how
the feature vector x of a sample is taken into ac-
count using parameters θ. In our experiments, we
consider two variations of this approach:

Linear Cox The traditional Cox-PH model (Cox,
1972) uses a linear weighting of a feature vector to
calculate the risk function as follows:

g(x; θ) = θTx. (6)

This model is still widely used in survival analysis
research, e.g. Suchting et al. (2019); Zhang et al.
(2018c).

DeepSurv DeepSurv (Katzman et al., 2018) uses
a neural network to compute the risk function

g(x; θ), where θ represents the weights of the net-
work. The advantage of this is that the neural net-
work can learn nonlinear features from the training
data, which often improves predictive accuracy.

During training, the parameters θ are optimised
with maximum likelihood estimation for both mod-
els. Given individuals i with event time Ti in
dataset D, let Ri denote the risk set at Ti and δi
the censoring indicator. Then, the likelihood of the
data is given by:

Lcox(θ,D) =
∏
i∈D

(
h0(t)ėxp(g(xi; θ))∑
j∈Ri

h0(t)ėxp(g(xj; θ))
)δi

=
∏
i∈D

(
exp(g(xi; θ))∑
j∈Ri

exp(g(xj ; θ))
)δi . (7)

Intuitively, we aim to maximise the risk of i ex-
periencing an event, over all other candidates at
risk at time Ti. In the context of predicting con-
versation lengths, this means that at time Ti, any
conversation that has not yet ended could end, but
we want to maximise the probability of the candi-
date that had indeed ended then over the rest. This
is referred to as a partial likelihood, in reference to
the fact that the effect of the features can be esti-
mated without the need to model the change of the
hazard over time. The indicator term δ expresses
that only non-censored samples contribute terms
that impact the likelihood (since the contribution
of censored samples would be 1); however, the cen-
sored samples would be included in the risk set Ri
up until their respective censoring times.

2.4 Survival regression as classification
A different approach to survival regression is to use
classification to predict the timestep when an event
will occur. DeepHit (Lee et al., 2018) is a neu-
ral network model that predicts a distribution over
timesteps in this fashion. This provides more mod-
elling flexibility compared to the Cox-PH models,
where features are incorporated through the risk
function and combined with a baseline hazard.

The model can incorporate multiple competing
risks with distinct events of interest, and models
censoring as a special type of risk. The output
of the network is a vector representing the joint
probability that the subject will experience each
non-censoring event for every timestep t in the ob-
servation period. Censoring is assumed to take
place at random and is therefore not included in the
prediction. In the case of a single risk, it therefore
predicts a vector: ŷi = [ŷt=0, ..., ŷt=tmax ], where
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each output element ŷt represents the estimated
probability P̂ (t|x, θ) that a subject with feature
vector x will experience the event at time t un-
der the model parameters θ. Instead of a survival
function, DeepHit defines a risk-specific cumula-
tive incidence function (CIF) which expresses the
probability that the event occurs before a time t∗,
conditioned on features x∗:

F (t∗|x∗) = P̂ (T ≤ t∗|x∗, θ)

=
t∗∑
t=0

P̂ (t|x∗, θ) =
t∗∑
t=0

ŷ∗t (8)

The loss function for training DeepHit has two
components: an event time likelihood and a ranking
loss. The ranking loss ensures that earlier events
are predicted to happen before later events based
on their CIF, but does not penalise models for mis-
predicting the times in absolute terms. The event
time likelihood maximises the probability of the
event occurring at the right time (y(i)

T (i)), or, in the
case of censoring, it maximises the probability of
the event not happening before the censoring time
(1− F (T (i)|x(i), θ).

2.5 Previous applications in NLP
A small number of NLP studies have em-
ployed techniques from survival analysis for time-
dependent tasks. Navaki Arefi et al. (2019) use
survival regression to investigate factors that result
in posts being censored on a Chinese social media
platform, finding that negative sentiment is associ-
ated with shorter lifetimes. Stewart and Eisenstein
(2018) use a linear Cox model to infer factors that
are predictive of non-standard words falling out
of use in online discourse, finding that words that
appear in more linguistic contexts survive longer.
Other applications include modelling fixation times
in reading (Nilsson and Nivre, 2011) and evaluat-
ing dialogue systems (Deriu et al., 2020). However,
none of these studies considered time-to-event pre-
diction tasks based on conversations.

3 Survival regression in conversations

We evaluate survival models on two tasks, predict-
ing conversation length and predicting when per-
sonal attacks will occur, where each conversation
is a subject and the time is measured in utterances.1

1The task of predicting when users would cease to use
a platform would also have been an interesting case for this
study; however, the datasets of Danescu-Niculescu-Mizil et al.
(2013) are no longer available.

Dataset # Convs. Median time
to event

Task

Talk 16 896 6 1
Dispute 8 554 9 1
Attack 3 466 7 2

Table 1: Characteristics of datasets used in this paper.
All three datasets originate from Wikipedia Talk pages.

Task 1: Predicting conversation length Hav-
ing seen t utterances, predict the remaining con-
versation length in utterances. We use the dataset
of Wikipedia Talk page discussions by Danescu-
Niculescu-Mizil et al. (2012) (hereafter referred
to as Talk) and the dataset of disagreements on
Wikipedia Talk pages by De Kock and Vlachos
(2021) (referred to as Dispute) for this task. The
Talk dataset was also used to perform the thresh-
olded classification version of this task in Back-
strom et al. (2013), mentioned in Section 1.

Task 2: Predicting personal attacks Having
seen t utterances, predict the number of utterances
until a personal attack occurs. Conversations where
no personal attack occurs are censored during train-
ing, and the conversation length is used as the
observation time. Just less than half of the con-
versations contain personal attacks (1 569 out of
3 466). This is a novel task; previous work has only
addressed predicting whether conversations will de-
rail into personal attack, without attempting to pre-
dict when in a conversation this may occur (Zhang
et al., 2018a; Chang and Danescu-Niculescu-Mizil,
2019). The motivation cited in both of the above-
mentioned studies is to prioritise conversations at
risk of derailing for preemptive moderation. Sur-
vival models can give a more informative answer
that takes into account the time until the attack,
and therefore which conversations pose the most
immediate risk. We use the dataset of Zhang et al.
(2018a) for our experiments on this task.

Characteristics of the datasets we use are shown
in Table 1. We use only conversations where the
event of interest occurs after the fifth utterance, and
we remove conversations longer than the 95th per-
centile as these are often flame wars which may
have confounding impacts. Data is split into train-
ing, development and test sets with ratios 75:10:15.

3.1 Metrics

Two metrics are calculated to evaluate model per-
formance: mean absolute error and concordance
index. The mean absolute error (MAE) for a dataset
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of n test samples is defined as

MAE =

∑n
i=1 |yi − ŷi|

n
. (9)

This metric provides an easily interpretable score,
and it is commonly used in evaluating regression
models, e.g. Bitvai and Cohn (2015). However,
MAE is not robust to outliers; large errors on a
few values can outweigh many correct predictions.2

MAE is also ill-defined in the presence of censoring
as there is no event time to compare against, and it
cannot be used to compare model performance be-
tween different datasets. For these reasons, we also
include the concordance index (Harrell Jr et al.,
1996), which is concerned with ordering rather
than absolute values. A pair of observations i, j
is considered concordant if the prediction and the
ground truth have the same inequality relation, i.e.
(yi > yj , ŷi > ŷj) or (yi < yj , ŷi < ŷj). The con-
cordance index (CI) is the fraction of concordant
pairs. A random model, or a model that predicts
the same value for every sample, would yield a
score of 0.5. A perfect score is 1. In the presence
of censoring, censored samples are only compared
with uncensored samples of a smaller event time,
since it is known in that case that the uncensored
sample should be assigned a later event time.

A disadvantage of the CI score is that it does
not reflect how accurate the predictions are in ab-
solute terms, meaning that good CI scores can be
achieved with predictions in the wrong range. The
two scores thus provide complementing views on
model performance.

3.2 Features

The features we consider are based on previous
work on conversation length prediction and predict-
ing personal attacks. These are:

• Politeness (POL): The politeness strategies
from Zhang et al. (2018a) as implemented in
Convokit (Chang et al., 2020), which capture
greetings, apologies, and saying “please”, etc.

• Arrival sequences (ARR): The order in which
speakers partake in the first 5 utterances, de-
fined by Backstrom et al. (2013).

• Hypergraph (HYP): Conversation structure
features based on the reply tree, proposed by

2This issue is even more pronounced in the root mean-
squared-error, which is another popular metric for regression
(Hyndman and Koehler, 2006).

Zhang et al. (2018b) and implemented in Con-
vokit (Chang et al., 2020). These features
capture dynamics between participants, such
as engagement and reciprocity.

• Sentiment (SENT): Positive and negative sen-
timent word counts, as per the lexicon of Liu
et al. (2005), also implemented in Convokit.

• Time features (TIME): Log mean time be-
tween utterances and time between last two ut-
terances, inspired by Backstrom et al. (2013).

• Utterance lengths (LEN): Log mean utterance
length features, measured in tokens.

• Number of participants (PART): Also used
in Backstrom et al. (2013) and Zhang et al.
(2018b).

• Turn-taking features (TURNS): The fraction
of turns and tokens contributed by the top user,
inspired by Niculae et al. (2015).

For the POL, SENT, TIME and LEN features,
we include both the mean value throughout the
conversation and the gradient of a straight-line fit to
capture how the feature changes throughout it. All
features are calculated up to the point of prediction,
and not for the full conversation.

4 Results

4.1 Experimental setup

We use partly conditional training (Zheng and Hea-
gerty, 2005) to account for using features that
change over time, such as politeness, in contrast
with static features like the arrival sequence. Under
partly conditional training, a feature measured at
time t predicts the risk of the occurrence of an event
at a future time T . In our case, each individual is a
conversation and features are measured after every
utterance. Each measurement t of a conversation
i is recorded as an individual entry in the dataset,
with event time Ti,t = Ti − t.

This construction is illustrated in Table 2 for
the Talk dataset. There are 307 conversations that
contain 12 utterances, but 0 samples of length 12
in the training data, since all conversations of this
length have 0 utterances remaining and regression
is therefore unnecessary. However, we include the
first 11 utterances of the length-12 conversations
in the training set at t = 11, since the remaining
length here could be either 0 or 1. As such, there
are (642+307=) 769 samples of length 11. We use
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t # Convs. of
length t

# Samples of
length t

5 6 596 16 896
6 4 010 10 300
7 2 358 6 290
8 1 539 3 932
9 984 2 393
10 640 1 409
11 462 769
12 307 0
Total 16 896 41 989

Table 2: Training set configuration for the Talk dataset.
For every conversation, we add a snapshot of its feature
values at every timestep to the training data.

a minimum value of t = 5 to ensure there is suffi-
cient information from which to make a prediction.
Details for the other datasets are in Appendix A.

Our baseline model is a univariate Kaplan-Meier
estimator (Jager et al., 2008), which predicts the
same event time for all samples without taking
features into account. For this model and the lin-
ear Cox-PH model, we use the implementations in
lifelines3. We use grid search on the valida-
tion set for each model to determine hyperparame-
ter values, experimenting with regularisation values
in [0, 0.01, 0.1, 0.5], L1 ratios in [0, 0.1, 0.5, 1] and
learning rates in [0.01, 0.1, 0.5, 1]. We also com-
pare to a linear regression model, implemented
in scikit-learn4 and using the same features.
For the linear regression model, we truncate pre-
dictions at 0 since negative times are invalid. Fi-
nally, to compare to previous work on threshold
classification, we implement a logistic regression
classifier, using the median of each training set
as the cut-off point. For these models, the upper
and lower quartiles are used to compute the MAE.
For instance, for the Dispute dataset, the threshold
value is 9. To calculate MAE, we use an event time
of 5 if the model predicts the shorter class and 12
for the longer class.

For the neural models (DeepSurv and Deep-
Hit), we use the implementations in PyCox5 by
Kvamme et al. (2019). For both we use two hid-
den layers with [128, 64] nodes, dropout (p =
0.3), batch normalisation, and the Adam optimiser
(Kingma and Ba, 2014) with learning rate 0.01.

3lifelines.readthedocs.io
4scikit-learn.org
5github.com/havakv/pycox/tree/master/

pycox

4.2 Task 1: Predicting conversation length
Results for the conversation length prediction task
are shown in Table 3 for the Dispute and Talk
datasets (left and middle columns respectively).
MAE scores should not be compared between
datasets since the datasets have different length
distributions, with the Dispute dataset having con-
versations of up to 37 utterances, compared to a
maximum of 12 in the Talk dataset.

For both datasets, all survival models outperform
the linear regression and threshold classification
models on the MAE metric. The survival baseline
uses only population-level knowledge of the event
time distribution, and predicts the same event time
for all samples, whereas the other baselines take
into account information from the features and can
therefore tailor predictions per sample. While this
results in the survival baseline having the worst CI
(0.5), it is still better than linear reg and threshold
in terms of MAE, illustrating the importance of
separating the effect of time from the other features;
time alone can be highly predictive.

The DeepHit model performs the best on the
MAE metric on both datasets, with a statistically
significant difference from the Linear Cox model at
the P=0.01 level using the sign test. The latter per-
forms better than DeepHit on the CI metric for the
Dispute dataset, however, this difference is not sta-
tistically significant (P=0.869, using a randomised
permutation test).

Coefficient analysis Since the linear Cox model
performed well on the Dispute dataset and is more
interpretable than its deep counterparts, we show
its 10 largest coefficients in absolute value in Table
4. Positive weights are associated with larger risk
function values, and therefore a shorter conversa-
tion. Time between utterances is the most predic-
tive feature, with a longer time between utterances
correlating positively with shorter conversations
(also observed in Figure 1). This corroborates the
findings of Backstrom et al. (2013) and Zhang et al.
(2018b). Having more participants is also corre-
lated with shorter conversations. This suggests that
the conversations in the Dispute dataset are less
prone to long expansionary-style threads (as de-
fined by Backstrom et al. (2013)), where many par-
ticipants each contribute one utterance. Given the
dataset consists of disagreements, it is not surpris-
ing that there would rather be focused discussions
between a small number of participants.

Features 4, 6, 7 and 8 are from the hypergraph

lifelines.readthedocs.io
scikit-learn.org
github.com/havakv/pycox/tree/master/pycox
github.com/havakv/pycox/tree/master/pycox
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Model
TASK 1 TASK 2

Dispute Talk Attack
MAE ↓ CI ↑ MAE ↓ CI ↑ MAE ↓ CI ↑

Linear regression 6.213 0.560 1.329 0.542 1.566 0.497
Threshold classification 6.652 0.545 1.505 0.462 1.521 0.489
Survival baseline 5.186 0.500 1.312 0.500 1.585 0.500
Linear Cox 4.995 0.581 1.282 0.573 1.481 0.605
DeepSurv 5.014 0.567 1.276 0.575 1.487 0.601
DeepHit 4.926 0.578 1.189 0.584 1.403 0.627

Table 3: MAE and CI for Task 1 (predicting conversation length) and Task 2 (predicting personal attacks), using the
Dispute, Talk and Attack datasets. For MAE, lower values are preferred; for CI, higher. The bold values indicate
the best model per metric, for each dataset. Statistical significance is discussed in the text.

Figure 2: Example of a conversation in the Dispute dataset and the predictions of different models at t = 5. For
this sample, the prediction from the linear Cox model matches the true value.

Feature Type Coef.
1. Time between last two utterances TIME 0.161
2. Mean time between utterances TIME 0.121
3. # participants PART 0.045
4. Mean # replies received per post HYP 0.042
5. # first person pronouns, mean POL 0.037
6. Mean of non-zero # repliers per user HYP -0.035
7. Fraction of users with more than 1 replier HYP -0.035
8. Triadic replies to commenters in mid-thread HYP 0.034
9. Length of last utterance LEN -0.031
10. Arrival sequence 00110 ARR -0.026

Table 4: Coefficients of the linear Cox model for Task
1, using the Dispute dataset. Positive weights are asso-
ciated with shorter time-to-event values.

feature set, which describes the structure of the
reply-tree. Feature 4 indicates that a thread which
forms a shallow tree, with posts receiving many
direct responses, is likely to terminate soon. Fea-
tures 6 and 7 indicate that interactions with multi-
ple users is likely to extend the conversation. The
length of the last utterance before the prediction
is made (feature 9) is negatively associated with a
short time-to-event, indicating that a long last utter-
ance means that the conversation is still ongoing.
Finally, the arrival sequence 00110 (feature 10) en-
codes the order in which two participants (indexes
0 and 1) contributed the first 5 utterances.

The only language-related feature in the 10 most
predictive features is feature 5, the number of first
person pronouns, which is positively correlated
with a shorter time-to-event. Seven of the ten fea-
tures on this list are from previous work on predict-
ing conversation length (TIME, ARR and HYP),
although this was for the thresholded classification
version of the task. This indicates that the survival
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models are inferring similar relationships as the
classification variant, while providing a more in-
formative prediction and better performance on the
MAE and CI metrics.

Results per timestep To gain an understanding
for how our models perform at different timesteps
in the conversation, we also evaluate the predictive
accuracy at every utterance index. The intuition
here is illustrated in Figure 2 for t = 5, with the
task being: having seen 5 utterances, predict the
conversation length. We can see that the actual
conversation length is 8, as there are 3 more ut-
terances after the prediction, which are not seen
by the model. The linear Cox model predicts the
right value in this case. We also show the survival
functions predicted by DeepHit, the baseline and
the linear Cox model. As explained in Section 2
(Equation 3), the predictions are the expected val-
ues of the survival function. We depict predictions
in relation to the prediction time; for instance, the
linear Cox model predicts a time-to-event of 3 ut-
terances at timestep 5, meaning that the event time
will be timestep 8.

Figure 3 shows the MAE and CI scores, aggre-
gated per timestep, for the Talk dataset. Lower
MAE scores are observed for later timesteps. How-
ever, this does not mean that these models are nec-
essarily better; the possible range of error is smaller
later in a conversation. An interesting deviation
here is the linear regression model, which performs
the best at the last timestep. Upon inspection, we
note that this is because the model predicts small
values (with median values in range 0.02-0.09) at
every timestep. This strategy is likely the result of
the dataset being biased towards shorter conversa-
tions. At smaller values of t, there is a portion of
long conversations which would contribute large
errors to drive up the MAE, but this is not present
at larger t, hence the discrepancy.

CI allows for more direct comparison of models
at different t, since it measures ranking accuracy.
On this metric, DeepHit performs better than the
linear regression model at all but the last timestep.
Both models perform slightly worse at the last two
timesteps. A reason for this may be that there
are fewer training samples available at larger t, as
illustrated in Table 2. Similar trends are observed
in the Dispute dataset.

4.3 Task 2: Predicting personal attacks

Results for the personal attack prediction task are
shown in the right column of Table 3. Compared
to Task 1, higher values are observed on the CI. A
reason for this may be that conversation length pre-
diction has to rely on more subtle cues that indicate
a conversation has run its course (e.g. users signing
off) which are not captured by our features.

We observe again that the DeepHit model per-
forms the best, and that the survival models out-
perform the three baselines. Due to censoring, the
MAE score here is calculated using only uncen-
sored samples; i.e. samples where a personal attack
does occur. The censored samples are accounted
for in the CI metric, as explained in Section 3.1.

A key question in this task is whether the sur-
vival models manage to prioritise samples where
a personal attack occurs over censored examples.
This means that when comparing a pair consist-
ing of a censored and an uncensored example, we
would like for the predicted time to event of the
censored example to be higher. We can calcu-
late how often this is true for the DeepHit model
by calculating the concordance index of the pre-
dicted event times and the inverse of the censoring
indicator. For instance, given a pair of samples
s = [censored, uncensored], the indicator func-
tion is [0,1] and the inverse therefore [1,0]. The
ordering of the inverse (s0 > s1) should be con-
cordant with the predictions. Using the DeepHit
model, we find that the model ranks samples where
an attack occurs over censored examples in 57.75%
of cases, compared to 51.92% with the linear re-
gression model, and 50% for a random baseline.
The best model of Zhang et al. (2018a) has a pre-
dictive accuracy of 64.9% for classifying which
conversations will derail into personal attacks, but
does not predict when this will occur.

5 Conclusions

In this paper, we proposed that survival analysis is
a useful but hitherto ignored framework for time-
to-event prediction tasks in conversations, which
are frequently framed as classification tasks. We
provided evidence to this by showing that survival
models outperform both linear regression and lo-
gistic regression models on two tasks and three
datasets. The survival regression models explored
can be useful in other tasks, for instance, predicting
escalation in customer service conversations.
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Figure 3: MAE and CI calculated per timestep, t, for the Talk dataset on Task 1. For MAE, lower values are
preferred; for CI, higher.
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9 371 855
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dataset.
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t # Convs. of
length t

# Samples of
length t

5 1 374 9 928
6 1 044 8 554
7 833 7 180
8 710 6 136
9 571 5 303
10 467 4 593
11 427 4 022
12 372 3 128
13 328 2 756
14 315 2 428
15 260 2 113
16 181 1 853
17 185 1 672
18 141 1 487
19 153 1 346
20 144 1 193
21 100 1 049
22 112 949
23 106 837
24 90 731
25 68 641
26 70 573
27 69 503
28 60 434
29 60 374
30 48 314
31 43 266
32 54 223
33 31 169
34 38 138
35 40 100
36 30 60
37 30 0
Total 8 554 74 608

Table 6: Training set configuration for the Dispute
dataset.


