
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10793–10809
November 7–11, 2021. c©2021 Association for Computational Linguistics

10793

Finding needles in a haystack:
Sampling Structurally-diverse Training Sets from Synthetic Data for

Compositional Generalization

Inbar Oren1 Jonathan Herzig1 Jonathan Berant1,2
1School of Computer Science, Tel-Aviv University

2Allen Institute for Artificial Intelligence
inbaroren@mail.tau.ac.il, {jonathan.herzig,joberant}@cs.tau.ac.il

Abstract

Modern semantic parsers suffer from two prin-
cipal limitations. First, training requires ex-
pensive collection of utterance-program pairs.
Second, semantic parsers fail to generalize at
test time to new compositions/structures that
have not been observed during training. Re-
cent research has shown that automatic gener-
ation of synthetic utterance-program pairs can
alleviate the first problem, but its potential for
the second has thus far been under-explored.
In this work, we investigate automatic gener-
ation of synthetic utterance-program pairs for
improving compositional generalization in se-
mantic parsing. Given a small training set of
annotated examples and an “infinite” pool of
synthetic examples, we select a subset of syn-
thetic examples that are structurally-diverse
and use them to improve compositional gener-
alization. We evaluate our approach on a new
split of the schema2QA dataset, and show that
it leads to dramatic improvements in composi-
tional generalization as well as moderate im-
provements in the traditional i.i.d setup. More-
over, structurally-diverse sampling achieves
these improvements with as few as 5K exam-
ples, compared to 1M examples when sam-
pling uniformly at random – a 200x improve-
ment in data efficiency.

1 Introduction

Semantic parsers map natural language utterances
to executable programs (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2005). A worrying weak-
ness of semantic parsers that has been recently ex-
posed, is their inability to generalize at test time
to new compositions (Finegan-Dollak et al., 2018;
Lake and Baroni, 2018; Keysers et al., 2020; Kim
and Linzen, 2020; Gu et al., 2021). For example,
a virtual assistant trained on the examples “Show
me Thai restaurants that allow pets” and “How
many hotels are there in Tokyo”, might not gener-
alize to “How many hotels in Tokyo allow pets?”.
This type of out-of-domain generalization to new

Figure 1: Given a small set of annotated data and a
large pool of synthetic examples, we propose to sam-
ple a diverse training set of synthetic examples which
includes a myriad of structures. Training a semantic
parser on the synthetic data and fine-tuning on anno-
tated data dramatically improves the parser’s composi-
tional generalization.

compositions constructed from components seen
during training is commonly termed compositional
generalization.

Two high-level approaches have been consid-
ered for tackling compositional generalization: (a)
designing models with a stronger compositional
inductive bias (Liu et al., 2020; Russin et al., 2020;
Zheng and Lapata, 2020; Herzig and Berant, 2021),
and (b) adding training data that will encourage a
compositional solution (Akyürek et al., 2021; Guo
et al., 2020c; Wang et al., 2021; Guo et al., 2020a).
In the latter approach, typically a model is trained
from labeled data (Jia and Liang, 2016; Yu et al.,
2020; Zhong et al., 2020), and is used to later gener-
ate new examples. An alternative approach is to use
a manually-built synchronous grammar that auto-
matically generates programs paired with synthetic
utterances (Wang et al., 2015; Cheng et al., 2018;
Weir et al., 2020). Using a grammar allows gener-
ating large amounts of synthetic data that cover a

10794

wide range of program structures. This has been
shown to be useful in the i.i.d setup, and combined
with paraphrase models, has led to high-accuracy
parsers that are trained from synthetic data only
(Xu et al., 2020b).

In this work, we investigate the potential of us-
ing synthetic data, generated from a synchronous
grammar, to improve compositional generalization.
Tsarkov et al. (2020) have shown that large quan-
tities of such data improve compositional gener-
alization. However, they evaluated on synthetic
utterances only, and did not examine generalization
to natural language. Moreover, error rates were
high in some compositional splits even when the
training set was as large as 1M examples. In this
work, we ask whether we can strategically sample
a small and structurally-diverse training set and
improve compositional generalization without in-
curring a high cost to training and consequently,
to the environment (Schwartz et al., 2020). We
hypothesize that a training set that encompasses a
diverse set of structures can steer the model towards
a compositional solution.

We examine a realistic setup, where we have a
small labeled training set (∼1,000 examples) and a
large pool of synthetic utterances paired with pro-
grams (Fig. 1), which are queries over a database
(DB) in our setup. We propose two methods for
strategically sampling a diverse synthetic training
set. In the first, termed uniform abstract template
(UAT) sampling, we abstract queries by replacing
DB constants with abstract tokens (e.g., replacing
petsAllowed with property), and then skew
the distribution towards uniform sampling over the
derived templates. This increases structure diver-
sity in the training set, which intuitively should lead
to better compositional generalization. In the sec-
ond method, termed compound maximum entropy
(CMaxEnt) sampling, we consider the tree struc-
ture of every DB query, and following Tsarkov et al.
(2020) define compounds, which are sub-trees in
the query. We then heuristically solve an optimiza-
tion problem, where our goal is to select a training
set that has maximal entropy over compounds. This
results in a training set with a diverse set of sub-
structures, which should enhance compositional
generalization.

We evaluate our approach on a new split of the
Schema2QA dataset (Xu et al., 2020a), in which it
has been shown that synthetic data can lead to high
accuracy parsers in the i.i.d setup (Xu et al., 2020b).

We train an encoder-decoder model on synthetic
data and subsequently fine-tune it on the small an-
notated data. We show that random sampling of
synthetic data improves performance, where gradu-
ally increasing the size of the synthetic training set
also improves compositional generalization. With
1M randomly-sampled examples, accuracy in the
compositional split improves from 20.1→37.7 and
in the i.i.d split from 81.2→85.0. When sampling
structurally-diverse data, compositional general-
ization improves from 20.1 to >40 with as few
as 5K examples, outperforming training with 1M
synthetic examples. In addition, the i.i.d general-
ization is comparable to random sampling. UAT
and CMAXENT both lead to large improvements
in compositional generalization, but UAT is more
effective than CMAXENT.

Overall, our work demonstrates that sam-
pling diverse structures from synthetic data
can lead to dramatic gains in compositional
generalization at negligible cost, while pre-
serving or improving performance in the i.i.d
setup. Our code and data can be downloaded
from http://github.com/inbaroren/
scfg-sampling-for-comp-gen.

2 Problem Setup

We assume access to a small dataset of natural
language utterances paired with queries, Dtrain =
{(xi, zi)}NNL

i=1 , and a large pool of synthetic utter-
ances paired with queries DSyn

train = {(x′i, zi)}
NSyn
i=1 ,

where NNL � NSyn. In this work, DSyn
train is gen-

erated with a synchronous context-free grammar,
which provides wide coverage of query structures
and tight control over the generated queries, but
other methods of generating synthetic examples
are possible (Andreas, 2020; Guo et al., 2020a;
Wang et al., 2021). Table 1 provides examples of
natural language utterances, synthetic utterances,
and queries in the ThingTalk language, a lan-
guage designed for virtual assistants used in this
work (through the Schema2QA dataset (Xu et al.,
2020a,b)).

Our goal is to train a model using Dtrain and
DSyn

train and generalize to a test set Dtest sampled
from the same distribution as Dtrain. More im-
portantly, our model should generalize to a com-
positional test set, DComp

test , which contains struc-
tures/compositions that are not observed in Dtrain

or DSyn
train. We now describe this test set.

http://github.com/inbaroren/scfg-sampling-for-comp-gen
http://github.com/inbaroren/scfg-sampling-for-comp-gen

10795

x: show me a book with at least 2 awards .
x′: which books have more than 2 awards
z: (@Book) filter count (award:Array(String)) >= 2

x: search for any books with a rating of 5 that also have 100 pages or more
x′: what book gets number of pages at least 100 and gets the 5 mark ?
z: (@Book) filter ratingValue:Number == 5 and numberOfPages:Number >= 100

x: show me hotels with a fitness center
x′: is there any hotels having fitness center in its amenity features
z: (@Hotel) filter amenityFeature:Array(LocationFeatureSpecification) contains

”fitness center”

x: can you find a hotel that accepts dogs ?
x′: what hotels having pets allowed ?
z: (@Hotel) filter petsAllowed: Boolean == true
zabs: (@table) filter property: type op entity

Table 1: Examples from Schema2QA of utterance-query pairs (x,z) with their synthetic utterances (x′), in the
books and hotels domains. In the bottom example, the abstract template (zabs) is included. Queries are in abbrevi-
ated syntax for clarity.

Compositional split We define a compositional
split following the abstract template split proposed
by Finegan-Dollak et al. (2018), which is com-
monly used for assessing compositional generaliza-
tion (Lee et al., 2019; Andreas, 2020; Oren et al.,
2020). In this approach, queries are abstracted
into templates that correspond to different struc-
tures. Templates are then partitioned into disjoint
sets (train/development/test), which ensures that
test time structures are never observed at training
time. While prior work focused on abstracting en-
tities only, by replacing any DB entity with the
token entity, in this work we abstract queries
into more coarse templates, e.g, table constants
are replaced by the token table. Table 2 lists
all abstracted query parts and their corresponding
abstract token, and Table 1 (bottom) shows an ex-
ample query z and its abstract template zabs. Split-
ting with coarse templates increases the distance
between train and test structures, which in turn in-
creases the need for compositionality.1 Table 3
shows four examples, where the first two examples
and the last two share an abstract template. In an
i.i.d split the first two (and last two) examples can
appear in different sets, but in a compositional split
they must be either in the training set or test set,
requiring compositional generalization.

Research questions Our experimental setup,
where DComp

test contains structures that are not ob-
served in Dtrain or DSyn

train, allows us investigate sev-
eral questions. First, does training on the large

1Preliminary experiments on synthetic data pointed that
abstracting entities only might not lead to a compositional
split that is challenging enough.

Category Token Example

Entity entity true, “Tokyo“
Table @table @org.schema.Book.Book
Table property property petsAllowed,numberOfPages
Entity or property type type Array(String), Number
Operator op >=, and, not
Function func count, sum
Modifier func_mod asc, desc

Table 2: List of all parts of the query we abstract and
their corresponding abstract token.

synthetic dataset DSyn
train improve generalization to

DComp
test compared to training on Dtrain only? Sec-

ond, if DSyn
train improves compositional generaliza-

tion, can we make it more sample-efficient? Specif-
ically, can we sample a smaller set D̂Syn

train, such that
|D̂Syn

train| � |D
Syn
train| and still improve compositional

generalization. Last, can we do the above while
preserving or improving generalization to the i.i.d
test set, Dtest? Answering these questions will be
the focus of §3 and §4.

3 Sampling a Structurally-diverse
Training Set

We first succinctly describe our model and train-
ing procedure (§3.1) and then turn to methods for
sampling structurally-diverse training sets.

3.1 Model and Training
In this work, we start from a pre-trained encoder-
decoder model (Lewis et al., 2020), as such models
have been shown to provide a good initialization
for fine-tuning semantic parsers (Furrer et al., 2020;
Herzig et al., 2021). We then train our model in
two steps (Yu et al., 2020; Wang et al., 2021). First,
on synthetic utterance-query pairs (x′, z) ∈ D̂Syn

train,

10796

Example iid comp.
split split

x′: please search the hotels with pets allowed
train train

z: (@Hotel) filter patsAllowed:Boolean == true
zabs: (@table) filter property:type op entity

x′: please search books with ebook format
test train

z: (@Book) filter format:Enum == ebook
zabs: (@table) filter property:type op entity

x′: how many people are there
train test

z: aggregate count of (@Person)
zabs: func (@table)

x′: how many hotels are there
test test

z: aggregate count of (@Hotel)
zabs: func (@table)

Table 3: A compositional split prohibits the same
abstract template to appear in both the training and
test set, and hence tests compositional generalization.
Above, examples 1-2 and 3-4 share the same template,
so in an i.i.d split they can be assigned to different sets,
while in a compositional split they must be either in the
training or test set.

and then on natural langauge utterance-query pairs
(x, z) ∈ Dtrain. Training in two steps mitigates the
gap in language variation between D̂Syn

train and Dtrain.
We train with the standard maximum-likelihood
objective, maximizing the probability of the gold
sequence, z.

Uniform sampling Our baseline sampling
method is to construct D̂Syn

train by sampling from
DSyn

train uniformly. This simulates sampling from the
synchronous grammar directly, and can inform us
whether synthetic data improves generalization to
DComp

test , even if D̂Syn
train is very large.

3.2 Uniform Abstract Template Sampling

We conjecture that a model is more likely to con-
verge to a “compositional solution” if it observes
at training time a multitude of different structures,
and learns that sub-structures can occur in multiple
contexts. For example, if two properties always
co-occur in the training set (e.g., ratingValue
and numberOfPages in the second example of
Table 1), then the model might erroneously learn
to always decode them together.

To achieve this goal, we define a sampling pro-
cess, UAT, that results in a more uniform distribu-
tion over abstract templates. In this process, we
first sample an abstract template, and then sam-
ple an example conditioned on that template. We
skew the distribution over templates to be close to
uniform, which leads to templates that have few
examples to be over-represented in the training set
D̂Syn

train. Thus, minimizing the loss over the train-
ing set will take into account a large number of
templates, which should improve compositional

Figure 2: UAT sampling. When α = 1, UAT is a uni-
form sample over DSyn

train. As α → 0, the probability
over abstract templates (zabs) becomes uniform. Conse-
quently, the sample includes more abstract templates.

generalization. Typically, even if the number of ex-
amples in DSyn

train is large (∼6M in our experiments),
the number of abstract templates is much smaller
(251 in our experiments, see §4). Fig. 2 illustrates
this sampling process.

Formally, we construct D̂Syn
train by sampling from

DSyn
train without replacement using the following pro-

cedure. Let T be the set of templates in DSyn
train,

T (zi) be the abstract template for a query zi, and
c(T (zi)) be the number of times T (zi) occurs in
DSyn

train. We estimate a probability distribution over
templates, p(T (zi)) =

c(T (zi))

|DSyn
train|

, and a distribution

over examples conditioned on a particular template
uT (zi)((x

′
i, zi)) =

1
c(T (zi))

. Now we sample a syn-
thetic utterance-query pair from the following dis-
tribution:

qα((x
′
i, zi)) =

p(T (zi))
α∑

T∈T p(T)
α
· uT (zi)((x

′
i, zi)),

(1)
where α ∈ [0, 1]. When α = 1, this corresponds to
the aforementioned uniform sampling over exam-
ples (factorized over templates), but when α = 0,
this corresponds to uniform sampling over the tem-
plates for which there still remain examples to be
sampled. Values between 0 and 1 allow a smooth
transition between uniform sampling over exam-
ples and over templates. In §4, we will examine the
effect of various values of α on compositional gen-
eralization for varying sizes of the sampled training
set, D̂Syn

train.

3.3 Compound Maximum Entropy
UAT sampling does not consider the similarity be-
tween different abstract templates, treating each
template independently. However, different tem-

10797

Figure 3: A ThingTalk parse tree (with abstract enti-
ties). Each node is an atom, and any subgraph of height
at most 2 that has at least one terminal is a compound.
Two compounds are marked in green.

plates potentially share some sub-structure that can
be used for obtaining more diversity at the sub-
structure level. We now consider CMAXENT, a
method for sampling a synthetic training set with
diverse sub-structures.

Recently, Keysers et al. (2020) and Shaw et al.
(2020) used the notion of sub-structures, to con-
struct a compositional test set. Given a program
tree, they define atoms to be nodes in the tree and
compounds to be sub-structures in the tree. Then,
given a pool of examples, they partition it into
two sets (train and test), such that the distribution
over atoms is similar, but the distribution over com-
pounds is different. Here, we adopt their definition
of atoms and compounds, but for a different objec-
tive. We aim to sample a set D̂Syn

train, such that the
entropy over atoms and compounds is maximized.
This will expose the model to a diverse set of atoms
and compounds in multiple contexts, which should
lead to compositional generalization.

Atom and compound distributions Queries in
formal languages can be parsed into trees. We
adopt the definition of Keysers et al. (2020), and
define atoms as any node in the tree, and com-
pounds as any tree of height ≤ 2, that includes
at least one tree terminal. We reduce the space
of compounds by abstracting entity tokens (e.g.,
”tokyo”→entity). Fig. 3 shows an example
tree with two compounds.

For a sampled set D̂Syn
train, we use p(a) to de-

note the frequency distribution of atoms in D̂Syn
train,

and p(c) to denote the weighted frequency distri-
bution of compounds in D̂Syn

train. The compounds
are weighted following Keysers et al. (2020), to
avoid double-counting of compounds that mostly
co-occur with their super-compounds.

Figure 4: One iteration in the CMAXENT sampling.
On the left is a set of compounds and their probability
p(c) in the current training set. on the right is a list of
candidate queries and the gain in compound entropy if
they are selected. Colored lines show what compounds
appear in what queries. Here, the second query is se-
lected, and added to the sample with one of its accom-
panying utterances.

Constructing D̂Syn
train: Let H(C) =

−
∑

c p(c) log p(c) be the entropy over com-
pounds (and similarly for the atom entropy, H(A)).
Our goal is to find a synthetic training set, D̂Syn

train
that maximizes H(C) +H(A).

Finding the subset that maximizes the above ob-
jective is computationally hard, hence we use a
greedy heuristic, termed CMAXENT, to approx-
imate it. Despite its simplicity, we show in §4
that this approach improves entropy compared to
a random sample. Specifically, we start with an
empty training set, and in each iteration go over all
examples in DSyn

train (with abstract entities), choose
the example that maximizes our objective, and add
one of the corresponding non-abstract examples
to D̂Syn

train. We determine the number of iterations
according to the desired target size of D̂Syn

train. Fig. 4
illustrates a single iteration in this procedure.

Hybrid approach Our last approach combines
our two sampling procedures, UAT and CMAX-
ENT. Specifically, in each iteration we sample
an abstract template uniformly, and then use the
greedy procedure for maximizing entropy over
queries that correspond to the sampled abstract
template. This results in a process that still im-
proves the maximum entropy objective value but is
skewed towards a uniform distribution over abstract
templates.

10798

4 Experiments

We empirically evaluate the contribution of syn-
thetic data to compositional generalization and the
extent to which structurally-diverse sampling can
improve data efficiency.

4.1 Experimental Setting

Data Our work assumes access to a small an-
notated training set and a large pool of synthetic
data, generated from a wide-coverage synchronous
grammar. We build on work from Xu et al. (2020a),
who created the Schema2QA dataset, which con-
tains natural language utterance-query pairs in
the ThingTalk language for 6 domains of the
Schmea.org onthology: restaurants, people, ho-
tels, books, movies, and music. Moreover, Xu
et al. (2020b) presented AutoQA as part of the Ge-
nie toolkit2 for generating synthetic examples for
Schema.org from a synchronous grammar (Cam-
pagna et al., 2019). To obtain enough data we use
the manually-labeled data from all 6 domains as
our annotated data, and term it NL-SCHEMAORG

(see §4.3). We generate 7M synthetic examples
using AutoQA, and term it SYN-SCHEMAORG.

We construct an i.i.d split and a compositional
split to NL-SCHEMAORG, resulting in one com-
mon training set Dtrain, containing only 1,619 ex-
amples, a compositional development and test sets,
and an i.i.d development and test sets (see Ta-
ble 4 for statistics). The training set, compositional
development set, and compositional test set are
all disjoint w.r.t their abstract template (see §2).
The i.i.d development and test sets are sampled
from the same distribution as Dtrain. We create
a compositional split of D̂Syn

train, resulting in train-
ing/development/test sets that are disjoint in terms
of their abstract template according to the templates
in the compositional split of NL-SCHEMAORG.
We describe the exact procedure for splitting the
data in Appendix A.

Evaluation metric We evaluate models using ex-
act match accuracy, that is, whether the predicted
query is identical to the gold query. We denote
accuracy on the compositional and i.i.d splits as
EMcomp and EMiid respectively. We report the av-
erage and standard deviation over 15 models, which
are obtained by training on 3 different random sam-
ples D̂Syn

train, each with 5 different random seeds.

2https://github.com/stanford-oval/genie-toolkit

Dataset Split # examples # new abstract templates
(train / dev / test) (train / dev / test)

ANNOTATED
iid 1619 / 180 / 199 33 / 1 / 1

Comp. 1619 / 188 / 304 33 / 19 / 20

SYNTHETIC
iid 5.8M / - / - 251 / - / -

Comp. 5.8M / 6K / 6K 251 / 11 / 10

Table 4: Dataset statistics for the i.i.d split and com-
positional (comp.) split. # new abstract templates in-
dicates the number of abstract templates unseen during
training time for the development and test sets, and the
total number of abstract templates for the training set.

In all experiments, we use EMiid on the develop-
ment set to determine early-stopping and for tuning
batch size, learning rate and number of warmup
steps (see hyper-parameter values in Appendix C).

Evaluated models Our baseline parser is fine-
tuned on the training set of NL-SCHEMAORG

(without pre-training), and is termed BASELINE.
We denote the rest of our experiments by the sam-
pling method used to obtain D̂Syn

train, where UNI-
FORM denotes uniform sampling, UAT denotes
abstract template sampling (§3.2), CMAXENT

denotes compound maximum entropy sampling
(§3.3). We denote the hybrid approach, combining
the latter methods, as CMAXENT+UAT.

Importantly, we evaluate the effectiveness of our
methods across different sizes of D̂Syn

train. Overall,
we are interested in the interactions between com-
positional generalization, i.i.d generalization, sam-
pling method, and the size of the synthetic training
set. We are especially interested in the effectiveness
of our suggested sampling methods using smaller
samples, hence limit the sample size to 120K. We
denote the size of D̂Syn

train by concatenating it to the
model name, e.g., UAT+5K corresponds to sam-
pling with 5K synthetic examples.

As another baseline, we use GECA (Andreas,
2020) as an alternative source for synthetic data.
We use the publicly available code,3 which takes
the training set of NL-SCHEMAORG and augments
it with 1,342 new examples. We use these examples
as D̂Syn

train in our setup.

4.2 Results
Table 5 shows test results for both i.i.d and com-
positional generalization across all methods and
synthetic training set sizes

Uniform sampling Large amounts of synthetic
data improve EMiid on natural language data com-

3https://github.com/jacobandreas/geca

https://schema.org

10799

Split Method Sample Size
- 2K 5K 10K 60K 120K 500K 1M

comp.

BASELINE 20.1 ± 2.6
GECA 19.7 ± 1.0
UNIFORM 14.8 ± 2.7 22.2 ± 2.4 27.6 ± 3 28.6 ± 4.1 31.8 ± 3.7 35.8 ± 1.3 37.7 ± 2.9
UAT 27.8 ±3.1 41.4 ± 3.3 39.0±2.4 43.1 ± 6.5 43.0 ± 4.7
CMAXENT 17.0 ± 2.8 27.0 ± 3.9 31.8 ± 1.8 34.9 ± 2.7 40.2 ± 1.6
CMAXENT+UAT 21.1 ± 4.8 26.8 ± 5.1 34.9 ± 4.9 39.1 ± 5.2 40.4 ± 3.1

i.i.d

BASELINE 81.2 ± 3.2 -
GECA 79.0 ± 2.1
UNIFORM 71.5 ± 3.7 78.9 ± 4.4 83.0 ± 2.7 84.4 ± 2.5 85.0 ± 1.9 85.9 ± 1.2 85.0 ± 1.3
UAT 80.7 ±2.7 83.4 ± 3.1 83.5 ± 2.0 85.7 ± 1.9 84.4 ± 1.6
CMAXENT 79.6 ± 3.2 81.1 ± 4.1 83.8 ± 1.2 84.2 ± 1.3 84.6 ± 2.2
CMAXENT+UAT 74.9 ± 6.8 78.7 ± 4.4 80.9 ± 4.5 85.1 ± 1.1 85.9 ± 1.8

Table 5: Test compositional and i.i.d EM for all sampling methods (mean and standard deviation). Our structurally-
diverse sampling methods allow us to use 200x less training data while improving EMcomp significantly, and
retaining comparable EMiid.

Figure 5: Distribution over abstract templates by sam-
ple size. The y-axis is in log-scale. The x-axis enu-
merates abstract templates sorted by frequency, i.e each
point is a template. We observe that when the sample
size is smaller, the distribution over abstract templates
is more uniform.

pared to BASELINE, which agrees with the findings
of Tsarkov et al. (2020). Specifically, with 10K ex-
amples EMiid improves 81.2→83.0, and with 1M
examples this improvement reaches 85.0 EMiid.
As for compositional generalization, we observe
improvements starting from 5K examples, with
dramatic gains when training on 1M syntehtic ex-
amples – 20.1→37.7 EMcomp. To our knowledge,
this is the first result showing that randomly sam-
pling synthetic data from a wide-coverage grammar
improves compositional generalization on natural
language data.

When the size of D̂Syn
train is small, we observe a

drop in EMiid, and also in EMcomp when training
with 2K examples. This shows that when D̂Syn

train
is small, its distribution can potentially adversely
affect training.

Abstract template sampling UAT sampling
dramatically improves compositional generaliza-
tion even with very little synthetic data. With 2K
examples EMcomp improves from 20.1→27.8, and
with 5K examples EMcomp is already at 41.4. This
is a dramatic improvement compared to uniform
sampling – 3.7 EMcomp points higher with 200x
less data.

When further increasing the size of the synthetic
data, improvement roughly plateaus, reaching 43.0
EMcomp for 120K examples. A possible expla-
nation for this effect is that as the size of D̂Syn

train
grows, the distribution over templates becomes
more skewed, as shown in Fig. 5. Changing the
composition of DSyn

train to contain more abstract tem-
plates by modifying the generation procedure in
the AutoQA toolkit, and examining whether this
leads to even greater gains in compositional gener-
alization is an important question for future work.

To test if a smooth transition from α = 1 to
α = 0 indeed leads to a smooth transition in compo-
sitional generalization, we train models with multi-
ple values of α. Fig. 6 confirms that tuning α from
1 to 0 yields a gradual improvement in EMcomp.

Last, EMiid is comparable to UNIFORM, and
even higher for smaller samples.

Compound maximum entropy CMAXENT im-
proves compositional generalization with greater
data efficiency compared to UNIFORM, as it im-
proves EMcomp at all sample sizes. With 120K
examples, CMAXENT reaches 40.2 EMcomp, and
surpasses UNIFORM+1M, at 37.7.

Still, UAT outperforms CMAXENT in all cases.
There are several possible explanations for this phe-
nomenon. First, it might be the case that the dis-
tribution over abstract templates is the important

10800

Figure 6: Accuracy on the compositional development
set by size and α value. α = 1 is equivalent to a uni-
form sampling over examples, and as α decreases the
distribution over abstract templates becomes closer to
uniform. We report the average over 5 random seeds,
and bars denote 95% confidence intervals. x-axis is in
log-scale.

factor in determining compositional generalization.
In Appendix D we show that indeed the distribu-
tion over abstract templates of CMAXENT is more
skewed compared to UAT. Second, our heuris-
tic for optimizing entropy might be sub-optimal.
While we do observe an entropy increase from
6.1→7.1 in compound entropy, and from 3.9→4.4
in atom entropy, it is possible that a better optimiza-
tion procedure or a better definition of the notion
of compound will yield further gains in composi-
tional generalization. We leave this investigation
for future work.

Hybrid sampling Combining CMAXENT and
UAT leads to improvements in EMcomp over
CMAXENT for all sample sizes (except 5K), but
the overall performance does not surpass UAT.

GECA Results are slightly lower than BASELINE,
79.0 EMiid and 19.7 EMcomp. Sampling 1,342 ex-
amples from GECA is better than UNIFORM+2K,
but worse than UAT+2K. Thus, an advantage in the
synchronous grammar is that we can easily sample
a large number of synthetic examples that cover a
wider range of structures.

NL-SCHEMAORG comprises data from 6 differ-
ent domains. In Table 10 in Appendix F, we show
development EM per domain. While the number of
examples in each domain is small (a few dozen ex-
amples per domain), we still observe similar trends
across all domains.

To summarize, our results suggest that abstract

template diversity is an important factor in com-
positional generalization, and generating synthetic
data with many abstract templates can dramatically
improve compositional generalization.

4.3 Analysis

We perform a manual analysis of models’ predic-
tions on NL-SCHEMAORG compositional devel-
opment set. We inspect 40 predictions of 8 mod-
els, and identify three major error types. The first
type is structural errors, which include syntax er-
rors, misplacing parenthesis, and incorrect typing
of properties. The second group is linking errors,
including, e.g., hallucination of entities, return of
unsorted results, and missing an aggregation step.
Third, we identify errors that are benign, where the
predicted queries are valid and equivalent to the
target query. An example is using a wrong operator
that does not change the query. We also measure
robustness to DB entity replacement in a query by
grouping together any subset of development exam-
ples that only differ in a DB entity, and counting for
how many groups all the examples are predicted
correctly.

Table 6 shows the results of the analysis. Our
findings suggest two main benefits of larger D̂Syn

train:
(a) more frequently, the errors are benign, and (b)
generalization is more robust to DB entity replace-
ment. In addition, we find that using UAT reduces
structural errors, but increases linking errors, e.g,
missing necessary sort or filter steps. Last,
linking errors are the most common error type
across all models.

Inspecting the predictions of UNIFORM+1M and
UAT+5K on the development set, we find that the
abstract templates of correct predictions constitute
roughly 40% of the templates in the set, and are al-
most identical between the two models. We notice
that ”hard” templates are not necessarily longer or
more nested.

5 Related Work

Data augmentation Previous work studied dif-
ferent data augmentation techniques to improve
i.i.d generalization in semantic parsing including
synchronous grammars (Jia and Liang, 2016; Yu
et al., 2020; Xu et al., 2020b), target side grammars
with neural generation models (Tran and Tan, 2020;
Wang et al., 2021), and pre-training with auxiliary
tasks (Yin et al., 2020; Deng et al., 2021). In the
context of compositional generalization, data aug-

10801

Method
(a) (b)

Benign Linking Structural Consistent
Errors Errors Errors Queries

UNIFORM

+5k 7 63 30 15
+60k 8 84 8 27
+120k 10 76 14 31
+1M 11 63 26 37

CMAXENT

+5k 8 62 31 24
+60k 9 52 39 31

UAT
+5k 8 92 0 33
+60k 0 91 9 32

Table 6: Error analysis. (a) a categorization of 40
predictions on the compositional development set, se-
lected at random. Errors are partitioned by similar pat-
terns to: Benign errors: the prediction is different but
semantically equivalent to the target query, Linking er-
ror: a mismatch between information in input utter-
ance and predicted query, and Structural error: wrong
use of parenthesis and invalid queries. (b) the percent-
age of queries that are predicted correctly for any DB
entity that occurs in the development set.

mentation was achieved by re-combining training
examples in new ways (Andreas, 2020; Akyürek
et al., 2021), or by back-translation (Guo et al.,
2020c). Conversely, we generate data from an in-
dependent wide-coverage grammar and investigate
data-efficient sampling through structured diver-
sity.

Outside of semantic parsing, it has been shown
in a grounded learning setup (Hill et al., 2020)
that increasing lexical diversity can improve out-
of-distribution generalization.

Compositional Generalization In contrast to
our work that focuses on sampling synthetic data,
many other approaches have been suggested to
improve compositional generalization in seman-
tic parsing. These include new or modified model
architectures (Li et al., 2019; Gordon et al., 2020;
Guo et al., 2020b; Oren et al., 2020; Zheng and La-
pata, 2020; Herzig and Berant, 2021; Shaw et al.,
2020), pre-trained language models (Furrer et al.,
2020), intermediate representations (Herzig et al.,
2021), and meta learning (Lake, 2019; Conklin
et al., 2021).

Data Selection Our work is related to algorith-
mic approaches for reducing biases in datasets such
as adversarial filtering (Le Bras et al., 2020; Sak-
aguchi et al., 2020) and representation debiasing
(Li and Vasconcelos, 2019; Li et al., 2018). Our

approach utilizes the structural nature of executable
queries, and focuses on biases related to structural
diversity.

6 Conclusion

In this work, we for the first time explore whether
generating large amounts of synthetic data from
a synchronous grammar improves compositional
generalization, and propose sampling methods that
allow for more efficient training by generating
structurally-diverse training sets. We find that syn-
thetic data dramatically improves generalization,
and moderately improves i.i.d generalization, and
that by uniformly sampling abstract templates, we
can improve data efficiency by a factor of 200x.

In the past year, a myriad of approaches have
been proposed for encouraging compositional gen-
eralization through modeling innovations, clever
training procedures, and data augmentation tech-
niques. Our works adds to the body of work that
shows that data augmentation is an effective strat-
egy even with small amounts of augmented data,
when examples are carefully constructed. More-
over, data augmentation techniques can be easily
combined with new models and training proce-
dures, potentially leading to further gains in com-
positional generalization.

In addition, we believe our findings can be gener-
alized to other NLP tasks to improve data efficiency
w.r.t both i.i.d and compositional generalization.
This requires defining a structure over the training
examples that can be used similar to the structures
used in this work.

Acknowledgements

We thank Elad Segal, Ben Bogin, Matan Hasson
and Ori Yoran for their useful suggestions. This re-
search was supported in part by The Yandex Initia-
tive for Machine Learning, and The European Re-
search Council (ERC) under the European Union
Horizons 2020 research and innovation programme
(grant ERC DELPHI 802800). The second author
was supported by a Google PhD fellowship.

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob An-

dreas. 2021. Learning to recombine and resam-
ple data for compositional generalization. In Inter-
national Conference on Learning Representations
(ICLR).

10802

Jacob Andreas. 2020. Good-enough compositional
data augmentation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7556–7566, Online. Association
for Computational Linguistics.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S Lam. 2019. Genie:
A generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 394–
410.

Jianpeng Cheng, Siva Reddy, and Mirella Lapata. 2018.
Building a neural semantic parser from a domain on-
tology. arXiv preprint arXiv:1812.10037.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3322–3335, Online. Association for Computa-
tional Linguistics.

Xiang Deng, Ahmed H. Awadallah, Chris Meek, Alex
Polozov, Huan Sun, and Matthew Richardson. 2021.
Structure-grounded pretraining for text-to-sql. In
NAACL 2021.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Jonathan Gordon, David Lopez-Paz, Marco Baroni,
and Diane Bouchacourt. 2020. Permutation equiv-
ariant models for compositional generalization in
language. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Yu Gu, Sue Kase, Michelle T. Vanni, Brian M. Sadler,
Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond
i.i.d.: Three levels of generalization for question an-
swering on knowledge bases. In World Wide Web
(WWW).

Demi Guo, Yoon Kim, and Alexander Rush. 2020a.
Sequence-level mixed sample data augmentation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5547–5552, Online. Association for Computa-
tional Linguistics.

Yinuo Guo, Zeqi Lin, Jian-Guang Lou, and Dongmei
Zhang. 2020b. Hierarchical poset decoding for com-
positional generalization in language. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Yinuo Guo, Hualei Zhu, Zeqi Lin, Bei Chen, Jian-
Guang Lou, and Dongmei Zhang. 2020c. Revisit-
ing iterative back-translation from the perspective
of compositional generalization. arXiv preprint
arXiv:2012.04276.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Association for Computational Linguis-
tics (ACL).

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. arXiv
preprint arXiv:2104.07478.

Felix Hill, Andrew K. Lampinen, Rosalia Schneider,
Stephen Clark, Matthew Botvinick, James L. Mc-
Clelland, and Adam Santoro. 2020. Environmen-
tal drivers of systematicity and generalization in a
situated agent. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on seman-
tic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 9791–9801. Curran Associates,
Inc.

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://doi.org/10.18653/v1/2020.emnlp-main.447
https://proceedings.neurips.cc/paper/2020/hash/4d7e0d72898ae7ea3593eb5ebf20c744-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4d7e0d72898ae7ea3593eb5ebf20c744-Abstract.html
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf

10803

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 2879–2888. PMLR.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhaga-
vatula, Rowan Zellers, Matthew Peters, Ashish Sab-
harwal, and Yejin Choi. 2020. Adversarial filters of
dataset biases. In International Conference on Ma-
chine Learning, pages 1078–1088. PMLR.

Dongjun Lee, Jaesik Yoon, Jongyun Song, Sanggil Lee,
and Sungroh Yoon. 2019. One-shot learning for text-
to-sql generation. arXiv preprint arXiv:1905.11499.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yi Li and Nuno Vasconcelos. 2019. Repair: Removing
representation bias by dataset resampling. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9572–9581.

Yingwei Li, Yi Li, and Nuno Vasconcelos. 2018. Re-
sound: Towards action recognition without represen-
tation bias. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 513–528.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hes-
tness. 2019. Compositional generalization for prim-
itive substitutions. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4293–4302, Hong Kong, China. As-
sociation for Computational Linguistics.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng,
and Dongmei Zhang. 2020. Compositional gener-
alization by learning analytical expressions. arXiv
preprint arXiv:2006.10627.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 2482–2495, Online. As-
sociation for Computational Linguistics.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua
Bengio. 2020. Compositional generalization by fac-
torizing alignment and translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 313–327, Online. Association for Com-
putational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 8732–8740.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2020. Green ai. Communications of the
ACM, 63.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2020. Compositional general-
ization and natural language variation: Can a seman-
tic parsing approach handle both? arXiv preprint
arXiv:2010.12725.

Ke Tran and Ming Tan. 2020. Generating synthetic
data for task-oriented semantic parsing with hierar-
chical representations. In Proceedings of the Fourth
Workshop on Structured Prediction for NLP, pages
17–21, Online. Association for Computational Lin-
guistics.

Dmitry Tsarkov, Tibor Tihon, Nathan Scales, Nikola
Momchev, Danila Sinopalnikov, and Nathanael
Schärli. 2020. *-cfq: Analyzing the scalability of
machine learning on a compositional task. arXiv
preprint arXiv:2012.08266.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. arXiv preprint arXiv:2104.05827.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342,
Beijing, China. Association for Computational Lin-
guistics.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, An-
drew Crotty, Amir Ilkhechi, Shekar Ramaswamy,
Rohin Bhushan, Nadja Geisler, Benjamin Hättasch,
Steffen Eger, Ugur Çetintemel, and Carsten Binnig.
2020. Dbpal: A fully pluggable NL2SQL train-
ing pipeline. In Proceedings of the 2020 Interna-
tional Conference on Management of Data, SIG-
MOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, pages 2347–2361.
ACM.

Silei Xu, Giovanni Campagna, Jian Li, and Monica S.
Lam. 2020a. Schema2qa: High-quality and low-
cost q&a agents for the structured web. In CIKM

’20: The 29th ACM International Conference on

http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.1145/3381831
https://doi.org/10.18653/v1/2020.spnlp-1.3
https://doi.org/10.18653/v1/2020.spnlp-1.3
https://doi.org/10.18653/v1/2020.spnlp-1.3
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3340531.3411974
https://doi.org/10.1145/3340531.3411974

10804

Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020, pages 1685–
1694. ACM.

Silei Xu, Sina Semnani, Giovanni Campagna, and
Monica Lam. 2020b. AutoQA: From databases to
QA semantic parsers with only synthetic training
data. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 422–434, Online. Association for
Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8413–
8426, Online. Association for Computational Lin-
guistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. arXiv preprint arXiv:2009.13845.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence, pages 1050–1055.

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In Un-
certainty in Artificial Intelligence (UAI), pages 658–
666.

Hao Zheng and Mirella Lapata. 2020. Compositional
generalization via semantic tagging. arXiv preprint
arXiv:2010.11818.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

10805

Dataset Domain # examples # abstract templates

ANNOTATED

books 356 21
hotels 438 24
movies 379 23
music 310 14
people 494 27

restaurants 513 44

SYNTHETIC

books 1,022,222 107
hotels 477,759 151
movies 1,101,019 112
music 1,277,895 108
people 1,339,201 63

restaurants 637,179 121

Table 7: Domain distribution in the synthetic and an-
notated datasets.

A Data Split Procedure

To construct an i.i.d split and a compositional split
we perform the following procedure. First, we con-
struct a compositional split to NL-SCHEMAORG,
resulting in 3 sets that are disjoint in terms of their
abstract template. We use 2 of them as the com-
positional development set and the compositional
test set. The third set is split i.i.d to trainining set,
i.i.d development set, and i.i.d test set. Next, we
select the training, compositional development and
compositional test sets from SYN-SCHEMAORG.
We assign to each set the examples that their ab-
stract template appear in the corresponding set
of NL-SCHEMAORG. Examples with a new ab-
stract template (a template that do not occur in NL-
SCHEMAORG), are also included in the training
set. We downsample the compositional develop-
ment and test sets of SYN-SCHEMAORG to 6K
examples.

B Domain Statistics

Table 7 shows the domain distribution in the syn-
thetic and annotated datasets.

C Training

We implement and train our models using Al-
lenNLP with PyTorch as backend, and initialize
them using BART base. We conduct experiments
on a machine with 8 NVIDIA GeForce GTX 2080
GPUs and 40 Intel(R) Xeon(R) Silver 4114 CPUs.
The OS is Ubuntu 18.04.3 LTS.

Hyper-parameters We use the Adam optimizer
(Loshchilov and Hutter, 2019) with learning
rate selected from {0.00001, 0.00002, 0.00003}.
Batch size is selected from {1, 8} for sample

Size UNIFORM UAT CMAXENT UAT
+CMAXENT

2k 70 256 136 192
5k 77 258 156 247
10k 95 261 214 254
60k 152 261 246 258
120k 169 261 252 258
0.5M 193
1M 223

Table 8: Number of abstract templates seen during pre-
training and fine-tuning by size and sampling method.

size ≤ 5000, and {24, 48, 64} for larger sam-
ples. We use a learning rate schedueler with
polynomial decay and select warm up steps from
{1000, 1500, 2000} for sample sizes ≤ 1000, and
{2500, 3000, 3500, 4000} for larger samples. We
use patience of 5 epochs in pre-training, and 10
epochs in fine-tuning. We use EM on the i.i.d devel-
opment set as a metric for early stopping and select-
ing the best hyper-parameters. Hyper-parameters
are fine-tuned for each sampling method and sam-
ple size separately on a single sample of SYN-
SCHEMAORG. The patience is selected from
{5, 8, 10} when training on samples different than
the one used for fine-tuning. Hyper-parameters for
the models fine-tuned on NL-SCHEMAORG are
fine-tuned once on a UNIFORM sample.

D Sample Diversity

We measure structural-diversity in terms of ab-
stract template distribution, atoms entropy and com-
pounds entropy. Table 8 compares the total number
of abstract templates seen during both pre-training
and fine-tuning between sampling methods and
sample sizes. Figure 7 compares the normalized
frequency of abstract templates between sampling
methods for two sample sizes. Figure 8 compares
the atoms and compounds entropy between sam-
pling methods and sample sizes. The above statis-
tics are on a single sample from each method and
size.

E Generalization of Synthetic vs.
Annotated Data

Figure. 9 shows for each sampling method and
sampling size, the EMcomp of the pre-trained
model on SYN-SCHEMAORG development set,
and the EMcomp of the fine-tuned model on NL-
SCHEMAORG development set. The relation be-
tween the performances is correlated for sample

10806

Figure 7: Distribution over abstract templates by sampling method, for (a) a sample of size 5K, and (b) a sample
of size 120K. The y-axis is in log-scale. The x-axis enumerates abstract templates sorted by probability, i.e each
point is a template.

Figure 8: Atoms and compounds entropy by sample
size and sampling method, for one sample.

sizes smaller than 10K. We report the average over
5 random seeds and a single sample.

Figure 9: EMcomp of the pre-trained model on SYN-
SCHEMAORG development set, and the EMcomp of the
fine-tuned model on NL-SCHEMAORG development
set. We report the average over 5 random seeds on a
single sample.

10807

F Development Results

Table 9 contains the NL-SCHEMAORG develop-
ment set EMcomp and EMiid for all sampling meth-
ods and sampling sizes. Table 10 shows the devel-
opment set results by domain.

10808

Split Method - Sample Size
2k 5k 10k 60k 120k 500k 1M

comp.

BASELINE 13.1
GECA 8.7
UNIFORM 6.6 17.0 22.5 30.7 32.7 36.7 36.5
UAT 28.3 36.1 34.2 35.2 37.0
CMAXENT 19.5 22.9 32.8 31.7 32.5
CMAXENT+UAT 19.6 36.2 31.8 31.7 32.3

i.i.d

BASELINE 81.7
GECA 82.1
UNIFORM 76.6 82.1 83.9 86.0 87.0 88.8 88.8
UAT 81.6 83.3 85.1 86.5 87.8
CMAXENT 80.7 81.2 85.0 87.3 87.8
CMAXENT+UAT 78.4 81.8 79.0 87.2 87.2

Table 9: Development EM for all sampling methods. We report average over 15 models, which are obtained by
training on 3 different samples, each with 5 different random seeds.

10809

Split Domain #Examples Method Sample Size
2k 5k 10k 60k 120k 500k 1M

comp.

Books 21

UNIFORM 16.2 21.9 21.9 32.4 39.7 40.9 34.1
UAT 31.4 47.6 35.2 48.6 40.5
CMAXENT 20.9 30.5 43.8 29.5 39.1
CMAXENT+UAT 44.8 29.5 39.1 42.9 35.2

Hotels 28

UNIFORM 2.9 15.7 24.3 26.4 35.7 50.0 50.6
UAT 27.9 46.4 39.3 47.1 41.1
CMAXENT 21.4 26.4 41.4 40.7 42.1
CMAXENT+UAT 30.7 19.3 30.0 42.1 44.3

Movies 33

UNIFORM 15.2 27.9 27.9 27.3 40.4 37.6 33.8
UAT 27.9 53.3 30.9 41.2 40.4
CMAXENT 22.4 32.7 34.5 31.5 36.4
CMAXENT+UAT 31.5 32.7 35.1 38.2 32.7

Music 31

UNIFORM 0.0 0.7 7.1 13.6 13.4 11.6 11.8
UAT 4.5 17.4 5.2 9.7 15.0
CMAXENT 6.5 11.0 9.0 10.3 11.0
CMAXENT+UAT 12.9 16.1 17.4 9.7 14.2

People 23

UNIFORM 6.1 9.6 6.1 9.6 15.2 10.4 9.4
UAT 13.9 15.7 15.7 12.2 13.0
CMAXENT 8.7 7.0 9.6 8.7 10.4
CMAXENT+UAT 8.7 8.7 7.8 8.7 13.0

Restaurants 52

UNIFORM 9.6 30.4 39.2 45.0 49.7 57.3 49.4
UAT 46.9 44.6 50.8 48.9 54.2
CMAXENT 31.1 43.1 48.9 55.4 55.0
CMAXENT+UAT 40.0 46.2 50.0 54.2 38.5

i.i.d

Books 25

UNIFORM 79.2 83.2 84.0 83.2 87.3 88.0 88.7
UAT 82.4 84.8 86.4 86.4 88.0
CMAXENT 83.2 85.6 84.8 86.4 87.2
CMAXENT+UAT 86.4 76.0 81.6 87.2 88.0

Hotels 33

UNIFORM 73.3 84.2 87.3 83.0 86.4 87.9 85.9
UAT 76.4 80.0 83.0 84.9 83.3
CMAXENT 75.8 82.4 84.2 89.7 90.3
CMAXENT+UAT 83.0 78.2 72.7 87.9 87.9

Movies 32

UNIFORM 77.5 85.0 83.1 83.1 86.5 90.6 86.5
UAT 83.8 86.2 91.2 85.0 88.0
CMAXENT 85.6 85.0 89.4 88.8 87.5
CMAXENT+UAT 83.1 74.4 88.1 89.4 90.0

Music 12

UNIFORM 71.7 78.3 85.0 81.7 80.6 85.0 91.7
UAT 73.3 85.0 88.3 81.7 87.5
CMAXENT 81.7 85.0 91.7 86.7 88.3
CMAXENT+UAT 85.0 78.3 90.0 88.3 86.7

People 45

UNIFORM 84.4 89.8 88.4 87.6 90.0 88.4 90.7
UAT 86.2 88.0 85.8 88.0 90.0
CMAXENT 84.9 90.7 85.8 90.7 89.8
CMAXENT+UAT 91.1 87.6 82.7 90.2 89.3

Restaurants 33

UNIFORM 80.0 87.9 79.4 85.5 87.9 92.1 88.9
UAT 76.4 83.6 84.9 81.2 88.4
CMAXENT 80.0 80.6 84.2 85.5 89.1
CMAXENT+UAT 86.1 81.8 81.8 85.5 82.4

Table 10: Development EM for all sampling methods, by domain. We report average over 15 models, which are
obtained by training on 3 different samples, each with 5 different random seeds.

