
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10285–10299
November 7–11, 2021. c©2021 Association for Computational Linguistics

10285

Discretized Integrated Gradients for Explaining Language Models

Soumya Sanyal
University of Southern California

soumyasa@usc.edu

Xiang Ren
University of Southern California

xiangren@usc.edu

Abstract

As a prominent attribution-based explanation
algorithm, Integrated Gradients (IG) is widely
adopted due to its desirable explanation ax-
ioms and the ease of gradient computation. It
measures feature importance by averaging the
model’s output gradient interpolated along a
straight-line path in the input data space. How-
ever, such straight-line interpolated points are
not representative of text data due to the inher-
ent discreteness of the word embedding space.
This questions the faithfulness of the gradi-
ents computed at the interpolated points and
consequently, the quality of the generated ex-
planations. Here we propose Discretized In-
tegrated Gradients (DIG), which allows effec-
tive attribution along non-linear interpolation
paths. We develop two interpolation strategies
for the discrete word embedding space that
generates interpolation points that lie close to
actual words in the embedding space, yield-
ing more faithful gradient computation. We
demonstrate the effectiveness of DIG over IG
through experimental and human evaluations
on multiple sentiment classification datasets.
We provide the source code of DIG to encour-
age reproducible research 1.

1 Introduction

In the past few years, natural language processing
has seen tremendous progress, largely due to strong
performances yielded by pre-trained language mod-
els (Devlin et al., 2019; Radford et al., 2019; Brown
et al., 2020). But even with this impressive perfor-
mance, it can still be difficult to understand the
underlying reasoning for the preferred predictions
leading to distrust among end-users (Lipton, 2018).
Hence, improving model interpretability has be-
come a central focus in the community with an
increasing effort in developing methods that can ex-
plain model behaviors (Ribeiro et al., 2016; Binder
et al., 2016; Li et al., 2016; Sundararajan et al.,

1https://github.com/INK-USC/DIG

decent

nice

club
okay

smart
homedull

<pad>

Input: the movie was good !

good

Figure 1: An illustration of paths used in IG and
DIG. IG uses a straight line interpolation with points as
depicted by green squares. In contrast, DIG uses a non-
linear path (shown in blue) with interpolation points
(red stars) lying close to words in the embedding space.

2017; Shrikumar et al., 2017; Lundberg and Lee,
2017; Murdoch et al., 2018).

Explanations in NLP are typically represented at
a word-level or phrase-level by quantifying the con-
tributions of the words or phrases to the model’s
prediction by a scalar score. These explanation
methods are commonly referred as attribution-
based methods (Murdoch et al., 2018; Ancona et al.,
2018). Integrated Gradients (IG) (Sundararajan
et al., 2017) is a prominent attribution-based ex-
planation method used due to the many desirable
explanation axioms and ease of gradient compu-
tation. It computes the partial derivatives of the
model output with respect to each input feature as
the features are interpolated along a straight-line
path from the given input to a baseline value. For
example, say we want to compute the attribution
for the word “good” in the sentence “the movie was
good!” using IG. The straight-line interpolation
path used by IG is depicted in green in Figure 1.
Here, the baseline word is defined as the “<pad>”
embedding and the green squares are the interme-
diate interpolation points in the embedding space.

While this method can be used for attributing
inputs in both continuous (e.g., image, audio, etc.)
and discrete (e.g., text, molecules, etc.) domains
(Sundararajan et al., 2017), their usage in the dis-

https://github.com/INK-USC/DIG

10286

crete domain has some limitations. Since the inter-
polation is done along a straight-line path joining
the input word embedding and the baseline em-
bedding (“<pad>” in Figure 1), the interpolated
points are not necessarily representative of the dis-
crete word embedding distribution. Specifically,
let a dummy word embedding space be defined by
the words represented by black dots in Figure 1.
Then we can see that some of the green squares
can be very far-off from any original word in the
embedding space. Since the underlying language
model is trained to effectively work with the spe-
cific word embedding space as input, using these
out-of-distribution green interpolated samples as
intermediate inputs to calculate gradients can lead
to sub-optimal attributions.

To mitigate these limitations, we propose a Dis-
cretized integrated gradients (DIG) formulation by
relaxing the constraints of searching for interpola-
tion points along a straight-line path. Relaxing this
linear-path constraint leads to a new constraint on
the interpolation paths in DIG that points along the
path should be monotonically situated between the
input word embedding and the baseline embedding.
Hence, in DIG, our main objective is to monoton-
ically interpolate between the input word embed-
ding and baseline such that the intermediate points
are close to real data samples. This would ensure
that the interpolated points are more representative
of the word embedding distribution, enabling more
faithful model gradient computations. To this end,
we propose two interpolation strategies that search
for an optimal anchor word embedding in the real
data space and then modify it such that it lies mono-
tonically between the input word and baseline (see
Fig. 1 for an illustration).

We apply DIG using our proposed interpola-
tion algorithms to generate attributions for three
pre-trained language models - BERT (Devlin
et al., 2019), DistilBERT (Sanh et al., 2020), and
RoBERTa (Liu et al., 2019), each fine-tuned sep-
arately on three sentiment classification datasets
- SST2 (Socher et al., 2013), IMDB (Maas et al.,
2011), and Rotten Tomatoes (Pang and Lee, 2005).
We find that our proposed interpolation strategies
achieve a superior performance compared to inte-
grated gradients and other gradient-based baselines
on eight out of the nine settings across different
metrics. Further, we also observe that on average,
end-users find explanations provided by DIG to
be more plausible justifications of model behavior

than the explanations from other baselines.

2 Method

In this section, we first describe our proposed Dis-
cretized integrated gradients (DIG) and the desir-
able explanation axioms satisfied by it. Then we
describe an interpolation algorithm that leverages
our DIG in discrete textual domains. Please re-
fer to Appendix A for a brief introduction of the
attribution-based explanation setup and the inte-
grated gradients method.

2.1 Discretized integrated gradients
Below, we define our DIG formulation that allows
interpolations along non-linear paths:

DIG i(x) =

∫ xi

xki =x
′
i

∂F
(
xk
)

∂xi
dxki . (1)

Here, xki refers to the ith dimension of the kth

interpolated point between input x and baseline x′

and F is a neural network. The only constraint on
xki ’s is that each interpolation should be monotonic
between xi and x′i, i.e., ∀j, k ∈ {1, ...,m}; j < k,

x′i ≤ x
j
i ≤ x

k
i ≤ xi if x′i ≤ xi,

x′i ≥ x
j
i ≥ x

k
i ≥ xi otherwise.

(2)

Here m is the total number of steps for interpola-
tion. This constraint is essential because it allows
approximating the integral in Eq. 1 using Riemann
summation2 which requires monotonic paths. We
note that the interpolation points used by IG nat-
urally satisfy this constraint since they lie along a
straight line joining x and x′. The key distinction
of our formulation from IG is that DIG is agnostic
of any fixed step size parameter α and thus allows
non-linear interpolation paths in the embedding
space. The integral approximation of DIG is de-
fined as follows:

DIGapprox
i (x) = Σm

k=1

∂F
(
xk
)

∂xi
×
(
xk+1
i − xki

)
,

(3)
where m is the total number of steps considered for
the approximation.

2.2 Axioms satisfied by DIG
As described in prior works (Sundararajan et al.,
2017; Shrikumar et al., 2017), a good explanation

2https://en.wikipedia.org/wiki/
Riemann_sum

https://en.wikipedia.org/wiki/Riemann_sum
https://en.wikipedia.org/wiki/Riemann_sum

10287

w
w2

w6w1

w5

w3

w4

w’
c

(a) DIG-GREEDY

w
w2 [7]

w6 [8]w1 [5]

w5 [12]

w3 [10]

w4 [20]

w’
c

(b) DIG-MAXCOUNT

Figure 2: Overview of paths used in DIG and IG. The gray region is the neighborhood of w. Green line depicts
the straight-line path used by IG. Left: In DIG-GREEDY, we first monotonize each word in the neighborhood (red
arrow) and the word closest to its corresponding monotonic point is selected as the anchor (w5 since the red arrow
of w5 has the smallest magnitude). Right: In DIG-MAXCOUNT we select the word with the highest number of
monotonic dimensions (count shown in [.]) as the anchor word (w4), followed by changing the non-monotonic
dimensions of w4 (red arrow to c). Repeating this iteratively gives the non-linear blue path for DIG with the red
stars as interpolation points. Please refer to Section 2.1 for more details. Figure best viewed in color.

algorithm should satisfy certain desirable axioms
which justify the use of the algorithm for gen-
erating model explanations. Similar to IG, DIG
also satisfies many such desirable axioms. First,
DIG satisfies Implementation Invariance which
states that attributions should be identical for two
functionally equivalent models. Two models are
functionally equivalent if they have the same out-
put for the same input, irrespective of any differ-
ences in the model’s internal implementation de-
sign. Further, DIG satisfies Completeness which
states that the sum of the attributions for an input
should add up to the difference between the out-
put of the model at the input and the baseline, i.e.,∑

i DIG i(x) = F (x)−F (x′). This ensures that if
F (x′) ≈ 0 then the output is completely attributed
to the inputs. Thirdly, DIG satisfies Sensitivity
which states that attributions of inputs should be
zero if the model does not depend (mathematically)
on the input. Please refer to Appendix B for further
comparisons of DIG with IG.

2.3 Interpolation algorithm

Here, we describe our proposed interpolation algo-
rithm that searches for intermediate interpolation
points between the input word embedding and the
baseline embedding. Once we have the desired
interpolation points, we can use Equation 3 to com-
pute the word attributions similar to the IG algo-
rithm. Please refer to Section A.2 for more details
about application of IG to text.

Design Consideration. First, we discuss the key
design considerations we need to consider of our
interpolation algorithm. Clearly, our interpolation
points need to satisfy the monotonicity constraints
defined in Equation 2 so that we can use the
Riemann sum approximation of DIG. Hence,
we need to ensure that every intermediate point
lies in a monotonic path. Also, the interpolation
points should lie close to the original words in
the embedding space to ensure that the model
gradients faithfully define the model behavior.

Now, we define the notion of closeness for our
specific use-case of explaining textual models. To
calculate how far the interpolated words are from
some true word embedding in the vocabulary, we
can compute the distance of the interpolated point
from the nearest word in the vocabulary. We define
this as the word-approximation error (WAE). More
specifically, if wk denotes the kth interpolation
point for a word w, then its word-approximation
error along the interpolated path is defined as:

WAEw =
1

m

m∑
k=1

min
x∈V

dist(wk − x), (4)

where V is the embedding matrix of all the words
in the vocabulary. WAE of a sentence is the aver-
age WAE of all words in the sentence. Intuitively,
minimizing WAE will ensure that the interpolated
points are close to some real word embedding in
the vocabulary which in turn ensures that output
gradients of F are not computed for some out-of-
distribution unseen embedding points.

10288

We observe that to minimize WAE without the
monotonic constraints defined in Section 2.1, one
can define some heuristic to search for interpola-
tion points that belong to the set V (i.e., select
words from the vocabulary as interpolation points),
leading to a zero WAE. Motivated by this, for a
given input word embedding, we first search for an
anchor word from the vocabulary that can be con-
sidered as the next interpolation point. Since the
anchor point need not be monotonic w.r.t. the given
input, we then optimally perturb the dimensions of
the anchor word so that they satisfy the monotonic-
ity constraints in Equation 2. This perturbed point
becomes our first interpolation. For subsequent in-
terpolation points, we repeat the above steps using
the previous anchor and perturbed points. Formally,
we break our interpolation algorithm into two parts:

(i) ANCHORSEARCH: In this step, given the ini-
tial word embedding w, we search for an an-
chor word embedding a ∈ V .

(ii) MONOTONIZE: This step takes the anchor
embedding a and modifies its dimensions to
create a new embedding c such that all dimen-
sions of c are monotonic between the input w
and the baseline w′.

Overall, given an initial input word embedding w
and a baseline embedding w′, our interpolation
algorithm interpolates points from w to w′ (which
is in decreasing order of k in Eq. 3). It proceeds
by calling ANCHORSEARCH on w to get an
anchor word a. Then, it applies MONOTONIZE

on a to get the monotonic embedding c. This
is our first interpolated point (in reverse order),
i.e., c = wm−1. Now, the a becomes the new w
for the next iteration and the process continues
till m steps. Next, we describe in detail our
specific formulations of the MONOTONIZE and
ANCHORSEARCH algorithms.

MONOTONIZE: In this step, given an anchor word
embedding a, we modify the non-monotonic di-
mensions of a such that they become monotonic
w.r.t. w and w′. The monotonic dimensions of a
vector a is given by:

Ma = {j | w′j ≤ aj ≤ wj , j ∈ {1, ..., D}}
∪ {j | w′j ≥ aj ≥ wj , j ∈ {1, ..., D}},

where D is the word embedding dimension. The
number of monotonic dimensions is given by

the size of the set defined as |Ma|. Thus, the
non-monotonic dimensions Ma is the set comple-
ment of the monotonic dimensions, i.e., Ma =
{1, ..., D} −Ma, where the subtraction is the set-
diff operation. Let the final monotonic vector be c.
We define the MONOTONIZE operations as follows:

c[Ma]← a[Ma],

c[Ma]← w[Ma]−
1

m
× (w[Ma]− w′[Ma]),

where m is the total number of interpolation points
we want to select in the path. It can be easily seen
that c is monotonic w.r.t. w and w′ according to
the definition in Equation 2.

ANCHORSEARCH: First, we preprocess the word
embedding in V to find the top-K nearest neighbor
for each word. We consider this neighborhood for
candidate anchor selection. Let us denote the K-
neighbors for a word w by KNNV (w). We define
two heuristics to search for the next anchor word:
GREEDY and MAXCOUNT.

In the GREEDY heuristic, we first compute the
monotonic embedding corresponding to each word
in the neighborhood KNNV (w) using the MONO-
TONIZE step. Then, we select the anchor word a
that is closest to its corresponding monotonic em-
bedding obtained from the above step. This can
be thought of as minimizing the WAE metric for
a single interpolated word. The key intuition here
is to locally optimize for smallest perturbations at
each iterative selection step. This heuristic is de-
picted in Figure 2a and the algorithm is presented
in Algorithm 1 in Appendix.

In the MAXCOUNT heuristic, we select the an-
chor a as the word in KNNV (w) with the highest
number of monotonic dimensions. Precisely, the
anchor is given by:

a = arg max
a′∈KNNV (w)

|Ma′ |.

The intuition of this heuristic is that the vector with
highest number of monotonic dimensions would
require the minimum number of dimensions being
perturbed in the MONOTONIZE step and hence,
would be close to a word in the vocabulary. This
heuristic is depicted in Figure 2b and the algorithm
is presented in Algorithm 2 in Appendix.

3 Experimental Setup

In this section, we describe the datasets and models
used for evaluating our proposed algorithm.

10289

Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ WAE ↓ LO ↓ Comp ↑ Suff ↓ WAE ↓ LO ↓ Comp ↑ Suff ↓ WAE ↓

Grad*Inp -0.402 0.112 0.375 - -0.318 0.085 0.398 - -0.502 0.168 0.366 -
DeepLIFT -0.196 0.053 0.489 - -0.300 0.078 0.432 - -0.175 0.063 0.470 -
GradShap -0.778 0.216 0.308 - -0.523 0.168 0.347 - -0.686 0.225 0.333 -
IG -0.950 0.248 0.275 0.344 -0.738 0.222 0.250 0.669 -0.670 0.237 0.396 0.302

DIG-GREEDY -1.222 0.310 0.237 0.229 -0.756 0.218 0.215 0.460 -0.879 0.292 0.374 0.249
DIG-MAXCOUNT -1.259 0.307 0.241 0.227 -0.826 0.227 0.238 0.439 -0.777 0.272 0.377 0.173

Table 1: Comparison of variants of DIG with baselines on three LMs fine-tuned on SST2 dataset. ‘-’ denotes that
the WAE metric is not computable for that setting. We observe that DIG outperforms the baselines on all three
LMs. Please refer to Section 4.1 for more details.

Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ WAE ↓ LO ↓ Comp ↑ Suff ↓ WAE ↓ LO ↓ Comp ↑ Suff ↓ WAE ↓

Grad*Inp -0.197 0.081 0.212 - -0.195 0.043 0.279 - -0.731 0.102 0.231 -
DeepLIFT -0.021 -0.009 0.534 - -0.157 0.028 0.340 - -0.335 0.023 0.486 -
GradShap -0.473 0.185 0.154 - -0.416 0.129 0.196 - -0.853 0.190 0.255 -
IG -0.446 0.182 0.224 0.379 -0.733 0.226 0.084 0.708 -0.641 0.107 0.295 0.333

DIG-GREEDY -0.878 0.319 0.133 0.256 -0.683 0.198 0.100 0.484 -1.152 0.221 0.240 0.287
DIG-MAXCOUNT -0.795 0.296 0.152 0.255 -0.470 0.121 0.213 0.470 -0.995 0.195 0.245 0.190

Table 2: Comparison of variants of DIG with baselines on three LMs fine-tuned on IMDB dataset. We observe
that DIG outperforms the baselines on DistilBERT and BERT models. Please refer to Section 4.1 for more details.

Datasets. The SST2 (Socher et al., 2013) dataset
has 6920/872/1821 example sentences in the
train/dev/test sets. The task is binary classifica-
tion into positive/negative sentiment. The IMDB
(Maas et al., 2011) dataset has 25000/25000 exam-
ple reviews in the train/test sets with similar binary
labels for positive and negative sentiment. Sim-
ilarly, the Rotten Tomatoes (RT) (Pang and Lee,
2005) dataset has 5331 positive and 5331 negative
review sentences. We use the processed dataset
made available by HuggingFace Dataset library 3

(Wolf et al., 2020b).

Language Models. We use pre-trained BERT
(Devlin et al., 2019), DistilBERT (Sanh et al.,
2020), and RoBERTa (Liu et al., 2019) text classi-
fication models individually fine-tuned for SST2,
IMDB, and RT datasets. 4 The fine-tuned check-
points used are provided by the HuggingFace li-
brary (Wolf et al., 2020a).

Evaluation Metrics. Following prior literature,
we use the following three automated metrics:

• Log-odds (LO) score (Shrikumar et al., 2017)
is defined as the average difference of the

3https://github.com/huggingface/
datasets

4Note that the vocabulary matrix V that is used in DIG is
the word_embeddings layer of the language models in Hug-
gingFace (Wolf et al., 2020a).

negative logarithmic probabilities on the pre-
dicted class before and after masking the top
k% words with zero padding. Lower scores
are better.

• Comprehensiveness (Comp) score (DeY-
oung et al., 2020) is the average difference
of the change in predicted class probability
before and after removing the top k% words.
Similar to Log-odds, this measures the in-
fluence of the top-attributed words on the
model’s prediction. Higher scores are better.

• Sufficiency (Suff) score (DeYoung et al.,
2020) is defined as the average difference of
the change in predicted class probability be-
fore and after keeping only the top k% words.
This measures the adequacy of the top k%
attributions for model’s prediction.

Please refer to Appendix C for more details
about the evaluation metrics. We use k = 20% in
our experiments. In Appendix D we further analyze
the effect of changing top-k% on the metrics. Addi-
tionally, we use our proposed word-approximation
error (WAE) metric to compare DIG with IG.

https://github.com/huggingface/datasets
https://github.com/huggingface/datasets

10290

Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ WAE ↓ LO ↓ Comp ↑ Suff ↓ WAE ↓ LO ↓ Comp ↑ Suff ↓ WAE ↓

Grad*Inp -0.152 0.068 0.315 - -0.158 0.054 0.406 - -0.801 0.204 0.398 -
DeepLIFT -0.077 0.017 0.372 - -0.150 0.050 0.413 - -0.388 0.096 0.438 -
GradShap -0.298 0.156 0.270 - -0.290 0.128 0.338 - -0.809 0.235 0.388 -
IG -0.424 0.208 0.189 0.348 -0.368 0.149 0.317 0.677 -0.789 0.203 0.418 0.305

DIG-GREEDY -0.501 0.257 0.184 0.329 -0.393 0.148 0.294 0.465 -1.056 0.267 0.416 0.251
DIG-MAXCOUNT -0.467 0.231 0.190 0.230 -0.361 0.133 0.332 0.444 -0.874 0.237 0.430 0.178

Table 3: Comparison of variants of DIG with baselines on three LMs fine-tuned on Rotten Tomatoes dataset. We
observe that DIG outperforms the baselines on all three LMs. Please refer to Section 4.1 for more details.

4 Results

4.1 Performance Comparison
We compare DIG with four representative gradient-
based explanation methods - Gradient*Input
(Grad*Inp) (Shrikumar et al., 2016), DeepLIFT
(Shrikumar et al., 2017), GradShap (Lundberg and
Lee, 2017), and integrated gradients (Sundarara-
jan et al., 2017). For the IMDB and RT datasets,
we randomly sample a subset of 2,000 reviews
from the public test sets to compare the different
methods, due to computation costs. For the SST2
dataset, we use the complete set of 1,821 test sen-
tences. The results are shown in Tables 1, 2, and
3 for SST2, IMDB, and Rotten Tomatoes respec-
tively.

Comparison with baselines. First, we observe
that across the nine different settings we studied
(three language models per dataset), DIG consis-
tently outperforms the baselines on eight of the
settings. This is valid for all the metrics. We also
note that the WAE metric is lower for all variants
of DIG compared to IG. This validates that our
proposed interpolation strategies for DIG is able to
considerably reduce the word-approximation error
in the interpolated paths and consistently improv-
ing performance on all three explanation evaluation
metrics considered.

Comparison between variants of DIG. Second,
we observe that on average, DIG-GREEDY per-
forms better than DIG-MAXCOUNT. Specifically,
we find that DIG-MAXCOUNT doesn’t outperform
DIG-GREEDY by significantly large margins on
any setting (while the opposite is true for one set-
ting - RoBERTa fine-tuned on IMDB dataset). This
could be because the DIG-GREEDY strategy en-
sures that the monotonic point c is always close
to the anchor a due to the locally greedy selection
at each step which is not explicitly guaranteed by
DIG-MAXCOUNT. But overall, we do not find any

2.37

2.35

2.10

1.99

1.55

1.62

Mean Rank

SST2

RT

1.00 1.50 2.00 2.50 3.00

GradShap IG DIG

Figure 3: Result of human evaluation on DistilBERT
model fine-tuned on SST2 dataset and BERT model
fine-tuned on Rotten Tomatoes dataset. A lower mean
rank means higher trustworthy explanation algorithm.
For more details, refer to Section 4.2

specific performance trend between the two pro-
posed variants and plan to study the influence of
the embedding distribution in future works.

Analysis. Finally, though we are able to achieve
good reductions in WAE, we note that the WAE
for our interpolation algorithms are not close to
zero yet. This leaves some scope to design better
interpolation algorithms in future. Moreover, we
find that the average Pearson correlation between
log-odds and WAE is 0.32 and the correlation is
0.45 if we consider the eight settings where we
outperform IG. We discuss the correlations of all
the settings in Appendix E. While this suggests
a weak correlation between the two metrics, it is
hard to comment if there is a causality between the
two. This is partially because we believe selection
of interpolation points should also take the seman-
tics of the perturbed sentences into consideration,
which we don’t strongly enforce in our strategies.
Hence, we think that constraining interpolations
in a semantically meaningful way is a promising
direction to explore.

10291

Method SST2 IMDB RT

IG -0.950 -0.446 -0.424

DIG-RANDOMANCHOR -1.217 ± 0.024 -0.834 ± 0.021 -0.474 ± 0.003
DIG-RANDOMNEIGHBOR -1.247 ± 0.013 -0.854 ± 0.015 -0.460 ± 0.010

DIG (best) -1.259 -0.878 -0.501

Table 4: Comparison of DIG with two abla-
tion variants - DIG-RANDOMANCHOR and DIG-
RANDOMNEIGHBOR on the DistilBERT model. We re-
port 5-seed average log-odds score for the randomized
methods. Please refer to Section 4.3 for more details.

4.2 Human Evaluation

To further understand the impact of our algorithm
on end users, we conduct human evaluations of ex-
planations from our method and the two top base-
lines - IG and GradShap. We perform the study on
the DistilBERT model fine-tuned on SST2 dataset
and the BERT model fine-tuned on Rotten Toma-
toes dataset. Further, we select the best variant
of DIG on each dataset for explanation compar-
isons. First, we pick 50 sample sentences from
each dataset with lengths between 5 and 25 words
for easier visualizations. Then, we convert the at-
tributions from each method into word highlights,
whose intensity is determined by the magnitude of
the attributions. Finally, we show the highlighted
sentence and the model’s predicted label to the an-
notators and ask them to rank the explanations on
a scale of 1-3, “1” being the most comprehensive
explanation that best justifies the prediction.

Figure 3 shows the mean rank of each explana-
tion algorithm across the two datasets. We find
that DIG has a significantly lower mean rank com-
pared to IG (p < .001 on both SST2 and Rotten
Tomatoes 5). Thus, we conclude that explanations
generated by DIG are also trustworthy according
to humans. Please refer to Appendix G for visual-
izations and discussion on explanations generated
by our methods.

4.3 Performance Analysis

In this section, we report the ablation of AN-
CHORSEARCH and the effect of path density on
DIG. Please refer to Appendix F for ablations on
neighborhood size and discussions on computa-
tional complexity.

Ablation Study on ANCHORSEARCH. We
ablate our methods with two random vari-
ants - DIG-RANDOMANCHOR and DIG-

5We compute the p−value using Wilcoxon signed-rank
test.

Interpolation Points

D
el

ta
 %

0

2

4

6

8

10

12

10 30 100 300

IG DIG+MaxCount

Figure 4: Effect of increasing number of interpolation
points m on IG and DIG.

RANDOMNEIGHBOR, in which the AN-
CHORSEARCH step uses a random anchor selection
heuristic. Specifically, in DIG-RANDOMANCHOR,
the anchor is selected randomly from the complete
vocabulary. Thus, this variant just ensures that the
selected anchor is close to some word in the vocab-
ulary which is not necessarily in the neighborhood.
In contrast, the DIG-RANDOMNEIGHBOR selects
the anchor randomly from the neighborhood with-
out using our proposed heuristics MAXCOUNT

or GREEDY. The log-odds metrics of IG, the
two ablations, and our best variant of DIG for
DistilBERT fine-tuned individually on all three
datasets are reported in Table 4. We report 5-seed
average for the randomized baselines. We observe
that DIG-RANDOMANCHOR improves upon IG
on all three datasets. This shows that generating
interpolation points close to the words in the vocab-
ulary improve the explanation quality. Further, we
observe that DIG-RANDOMNEIGHBOR improves
upon DIG-RANDOMANCHOR on log-odds
metric. One reason could be that the words in
a neighborhood are more semantically relevant
to the original word, leading to more coherent
perturbations for evaluating model gradients.
Finally, we observe that, on average, our proposed
method is better compared to selecting a random
anchor in the neighborhood. This shows that our
search strategies MAXCOUNT and GREEDY are
indeed helpful.

Effect of Increasing Path Density. In integrated
gradients, the completeness axiom (Section 2.2)
is used to estimate if the integral approximation
(Equation 6) error is low enough. This error is de-
noted as the Delta % error. If the error is high, users
can increase the number of interpolation points m.

While DIG also satisfies the completeness axiom,

10292

Factor f Log-Odds ↓ WAE ↓ Delta % ↓

0 -1.259 0.227 4.926
1 -1.229 0.230 3.728
2 -1.184 0.232 2.752
3 -1.181 0.233 1.862

Table 5: Effect of up-sampling a path by a factor f on
Delta % for DIG using m = 30.

error reduction by increasing m is infeasible. This
is because increasing m in Equation 3 implicitly
changes the integral path rather than increasing the
density. Hence, to achieve an error reduction in
DIG, we up-sample the interpolation path P =
{w,w1, w2, . . . , wm−2, w

′} with an up-sampling
factor (f) of one as follows:

P1 = {w, w+w1
2 , w1,

w1+w2
2 , . . . , wm−2+w′

2 , w′},

i.e., we insert the mean of two consecutive points
to the path. This essentially doubles the density of
points in the path. Similarly, P2 can be obtained by
up-sampling P1, etc. DIG(m, f = 0) refers to the
standard DIG with no up-sampling.

Given that we have two hyperparameters m and
f that determine the overall path density, we an-
alyze the effect of each of these in Figure 4 and
Table 5 respectively. The results are shown for
DIG-MAXCOUNT applied on DistilBERT model
finetuned on SST2 dataset. In Figure 4, we observe
that as m increases, the Delta % of IG decreases
as expected. But the trend is opposite for DIG.
As discussed above, for DIG, the path length in-
creases with increasing m, and hence, we attribute
this trend to increasing difficulty in effectively ap-
proximating the integral for longer paths. Next, in
Table 5, we observe that as the up-sampling fac-
tor f increases, the Delta % consistently decreases.
We also find that our up-sampling strategy does not
increase the WAE by a significant amount with in-
creasing f , which is desirable. Thus, this confirms
that our up-sampling strategy is a good substitute
of increasing m for IG to effectively reduce the
integral approximation error Delta %. Following
Sundararajan et al. (2017), we choose a threshold
of 5% average Delta to select the hyperparameters.
For more discussions, please refer to Appendix F.1.

5 Related Works

There has been an increasing effort in develop-
ing interpretability algorithms that can help un-
derstand a neural network model’s behavior by ex-
plaining their predictions (Doshi-Velez and Kim,

2017; Gilpin et al., 2019). Attributions are a
post-hoc explanation class where input features
are quantified by scalar scores indicating the mag-
nitude of contribution of the features toward the
predicted label. Explanation algorithms that gen-
erate attributions can be broadly classified into
two categories - model-agnostic algorithms, like
LIME (Ribeiro et al., 2016), Input occlusion (Li
et al., 2016), Integrated gradients 6(Sundararajan
et al., 2017), SHAP (Lundberg and Lee, 2017),
etc. and model-dependent algorithms, like LRP
(Binder et al., 2016), DeepLIFT (Shrikumar et al.,
2017), CD (Murdoch et al., 2018), ACD (Singh
et al., 2019), SOC (Jin et al., 2020), etc. While the
model-agnostic algorithms can be used as black-
box explanation tools that can work for any neural
network architecture, for the latter, one needs to
understand the network’s architectural details to
implement the explanation algorithm. Typically,
model-dependent algorithms require specific layer
decomposition rules (Ancona et al., 2018; Murdoch
et al., 2018) which needs to be defined for all the
components in the model. Model-agnostic methods
usually work directly with the model outputs and
gradients which are universally available.

Due to the many desirable explanation axioms
and ease of gradient computation, there has been
several extensions of integrated gradients. For ex-
ample, Miglani et al. (2020) study the effect of satu-
ration in the saliency maps generated by integrated
gradients. Merrill et al. (2019) extend integrated
gradients to certain classes of discontinuous func-
tions in financial domains. Further, Jha et al. (2020)
use KNNs and auto-encoders to learn latent paths
for RNAs. Different from prior work, our focus
here is to improve integrated gradients specifically
for the discrete textual domain. While the idea of
learning latent paths for text data is quite interest-
ing, it brings a significant amount of challenge in
successfully modeling such a complex latent space
and hence, we leave this for future work.

6 Conclusion

In this paper, we proposed Discretized integrated
gradients (DIG) which is effective in explaining
models working with discrete text data. Further,
we proposed two interpolation strategies - DIG-
GREEDY and DIG-MAXCOUNT that generate non-

6Note that IG is strictly not a model-agnostic algorithm
since it is defined for neural networks, but we still classify it
as one since the scope of this work is limited to working on
neural networks.

10293

linear interpolation paths for word embedding
space. Finally, we established the effectiveness of
DIG over integrated gradients and other gradient-
based baselines through experiments on multiple
language models and datasets. We also conduct hu-
man evaluations and find that DIG enhances human
trust on model predictions.

Acknowledgments

This research is supported in part by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity
(IARPA), via Contract No. 2019-19051600007,
the DARPA MCS program under Contract No.
N660011924033, the Defense Advanced Research
Projects Agency with award W911NF-19-20271,
NSF IIS 2048211, NSF SMA 1829268, USC An-
nenberg Graduate Fellowship, and gift awards from
Google, Amazon, JP Morgan and Sony. We would
like to thank all the collaborators in USC INK re-
search lab for their constructive feedback on the
work.

References
Marco Ancona, Enea Ceolini, Cengiz Öztireli, and

Markus Gross. 2018. Towards better understand-
ing of gradient-based attribution methods for deep
neural networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net.

Alexander Binder, Grégoire Montavon, Sebastian
Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. 2016. Layer-wise relevance propagation for
neural networks with local renormalization layers.
In International Conference on Artificial Neural Net-
works. Springer.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458, On-
line. Association for Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Ba-
jwa, Michael Specter, and Lalana Kagal. 2019. Ex-
plaining explanations: An overview of interpretabil-
ity of machine learning.

Anupama Jha, Joseph K. Aicher, Matthew R. Gaz-
zara, Deependra Singh, and Yoseph Barash. 2020.
Enhanced integrated gradients: improving inter-
pretability of deep learning models using splicing
codes as a case study. Genome Biology, (1).

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue,
and Xiang Ren. 2020. Towards hierarchical im-
portance attribution: Explaining compositional se-
mantics for neural sequence models. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. ArXiv preprint, abs/1612.08220.

Zachary C. Lipton. 2018. The mythos of model inter-
pretability: In machine learning, the concept of in-
terpretability is both important and slippery. Queue,
(3).

Yinhan Liu, Myle Ott, Naman Goyal, and Jingfei Du
an. 2019. Roberta: A robustly optimized bert pre-
training approach. ArXiv preprint, abs/1907.11692.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 4765–4774.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1806.00069
http://arxiv.org/abs/1806.00069
http://arxiv.org/abs/1806.00069
https://openreview.net/forum?id=BkxRRkSKwr
https://openreview.net/forum?id=BkxRRkSKwr
https://openreview.net/forum?id=BkxRRkSKwr
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015

10294

John Merrill, Geoff Ward, Sean Kamkar, Jay Budzik,
and Douglas Merrill. 2019. Generalized integrated
gradients: A practical method for explaining diverse
ensembles.

Vivek Miglani, Narine Kokhlikyan, Bilal Alsallakh,
Miguel Martin, and Orion Reblitz-Richardson. 2020.
Investigating saturation effects in integrated gradi-
ents.

W. James Murdoch, Peter J. Liu, and Bin Yu. 2018.
Beyond word importance: Contextual decomposi-
tion to extract interactions from lstms. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 115–
124, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144. ACM.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 3145–3153. PMLR.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina,
and Anshul Kundaje. 2016. Not just a black
box: Learning important features through prop-
agating activation differences. ArXiv preprint,
abs/1605.01713.

Chandan Singh, W. James Murdoch, and Bin Yu. 2019.
Hierarchical interpretations for neural network pre-
dictions. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models

for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 3319–3328.
PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020a. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Thomas Wolf, Quentin Lhoest, Patrick von Platen,
Yacine Jernite, Mariama Drame, Julien Plu, Julien
Chaumond, Clement Delangue, Clara Ma, Abhishek
Thakur, Suraj Patil, Joe Davison, Teven Le Scao,
Victor Sanh, Canwen Xu, Nicolas Patry, Angie
McMillan-Major, Simon Brandeis, Sylvain Gugger,
François Lagunas, Lysandre Debut, Morgan Funtow-
icz, Anthony Moi, Sasha Rush, Philipp Schmidd,
Pierric Cistac, Victor Muštar, Jeff Boudier, and
Anna Tordjmann. 2020b. Datasets. GitHub. Note:
https://github.com/huggingface/datasets.

http://arxiv.org/abs/2010.12697
http://arxiv.org/abs/2010.12697
https://openreview.net/forum?id=rkRwGg-0Z
https://openreview.net/forum?id=rkRwGg-0Z
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
https://arxiv.org/abs/1605.01713
https://arxiv.org/abs/1605.01713
https://arxiv.org/abs/1605.01713
https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=SkEqro0ctQ
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

10295

A Preliminaries

A.1 Attribution-based Explanations

Attribution-based explanations generate a scalar
score for a given input feature that indicates the
contribution (or importance) of that feature towards
particular label (Ancona et al., 2018). Formally,
let x = [x1, . . . , xN] ∈ RN be an input to a
model which produces an output y = [y1, . . . , yC],
where C is the total number of labels. For a given
label (usually the label predicted by the model),
attribution-based explanation methods compute the
contribution Rc = [Rc1, . . . , R

c
N] ∈ RN of each

feature.

A.2 Integrated gradients

Integrated gradients (IG) (Sundararajan et al., 2017)
for an input x along the ith dimension is defined as
follows:

IG i(x) = (xi − x′i)×
∫ 1
α=0

∂F (x′+α×(x−x′))
∂xi

dα.

(5)
Here, F is the neural network, x′ is a baseline
embedding, and α is the step size. Simply put,
integrated gradients algorithm works by sampling
points at a uniform spacing along a straight-line
between the input and the baseline, and summing
the model’s gradient at the inputs for each interpo-
lated points. To compute this integral efficiently,
the authors propose a Riemann summation approx-
imation defined below:

IGapprox
i (x) = (xi − x′i)× Σm

k=1

∂F(x′+ k
m
×(x−x′)))

∂xi
× 1

m
,

(6)

where m is the total number of steps considered for
the approximation.

Next, we briefly describe how IG is used to ex-
plain a model’s prediction which takes a sentence
as input (for example, the model can be a text classi-
fication network). Let S = [w0..wn] be a sentence
of length n and wi be the ith word embedding of
the sentence. Also, let F be a text-classification
model, i.e., y = F (S). Then, IG calculates the at-
tribution for each dimension of a word embedding
wi. The interpolation points required for Equation
6 are generated by linearly interpolating the word
embedding between wi and a baseline word embed-
ding (usually chosen as the pad embedding). Then,
using Eq. 6, the attribution for the ith dimension
of w is calculated. The final word attribution is the
sum of the attributions for each dimension of the
word embedding.

B Comparison with Integrated gradients
and Path methods

It is easy to see that the approximation of integrated
gradients is a special case of DIG. Note that the kth

linear interpolation of the ith dimension of input x
for IG can be represented as:

xki = x′i +
k

m
× (xi − x′i). (7)

Substituting Eq. 7 in Eq. 3 gives us Eq. 6.
Sundararajan et al. (2017) define path methods

as the general form of integrated gradients that
are applicable for all monotonic paths between the
input and the baseline. Our DIG approach is a re-
formulation of the path method where the paths are
not necessarily parameterized by α, making it more
applicable for discrete data domain. Hence, DIG
also satisfies all the theoretical properties applica-
ble for path methods - Implementation Invariance,
Sensitivity, Linearity, and Completeness. We refer
the readers to Proposition 2 in Sundararajan et al.
(2017) for more technical details.

C Evaluation Metrics

In this section, we redefine the evaluation metrics
and state the formulations for each of them. In
this work, we use the following three automated
metrics:

• Log-odds (LO) score (Shrikumar et al., 2017)
is defined as the average difference of the
negative logarithmic probabilities on the pre-
dicted class before and after masking the top
k% features with zero padding. Given the at-
tribution scores generated by an explanation
algorithm, we select the top k% words based
on their attributions replace them with zero
padding. More concretely, for a dataset with
N sentences, it is defined as:

log− odds(k) =
1

N

N∑
i=1

log
p
(
ŷ | x(k)

i

)
p (ŷ | xi)

,

where ŷ is the predicted class, xi is the ith

sentence, and x
(k)
i is the modified sentence

with top k% words replaced with zero padding.
Lower scores are better.

• Comprehensiveness (Comp) score (DeY-
oung et al., 2020) is the average difference
of the change in predicted class probability

10296

Dataset DistilBERT RoBERTa BERT

SST2 1.00 0.00 0.42
IMDB 0.98 -0.68 0.51
Rotten Tomatoes 0.21 0.22 0.23

Table 6: Pearson correlation between log-odds and
WAE metrics for different dataset+LM settings. Please
refer to Appendix E for more details.

before and after removing the top k% fea-
tures. Similar to Log-odds, this measures the
influence of the top-attributed words on the
model’s prediction. It is defined as:

Comp(k) =
1

N

N∑
i=1

p(ŷ | x(k)
i)− p(ŷ | xi).

Here x
(k)
i denotes the modified sentence with

top k% words deleted from the sentence.
Higher scores are better.

• Sufficiency (Suff) score (DeYoung et al.,
2020) is defined as the average difference of
the change in predicted class probability be-
fore and after keeping only the top k% fea-
tures. This measures the adequacy of the top
k% attributions for model’s prediction. It is
defined in a similar fashion as comprehensive-
ness, except the x(k)

i is defined as the sentence
containing only the top k% words. Lower
scores are better.

D Effect of top-k in evaluation metrics

In Figure 5, we visualize the effect of changing
top-k% on log-odds, comprehensiveness, and suffi-
ciency metrics for DistilBERT model fine-tuned on
the SST2 dataset. We compare the two variants of
our method: DIG-GREEDY and DIG-MAXCOUNT

with Integrated Gradients. We observe that our
method outperforms IG for all values of k. Specifi-
cally, we note that the gap between DIG and IG is
initially non-existent but then gradually increases
with increasing k in Figure 5 (a) and eventually
saturates. This shows that although IG might be
equally good as DIG at finding the top-5% impor-
tant words, the explanations from IG are signif-
icantly misaligned from true model behavior for
higher top-k values.

Top-k

Lo
g-
od
ds

-1.500

-1.000

-0.500

0.000

10 20 30 40 50

IG DIG-MaxCount DIG-Greedy

(a) Log-odds ↓

Top-k

C
om

p

0.000

0.100

0.200

0.300

0.400

0.500

10 20 30 40 50

IG DIG-MaxCount DIG-Greedy

(b) Comprehensiveness ↑

Top-k

Su
ff

0.000

0.100

0.200

0.300

0.400

10 20 30 40 50

IG DIG-MaxCount DIG-Greedy

(c) Sufficiency ↓

Figure 5: Effect of changing top-k% in log-odds, com-
prehensiveness, and sufficiency metric for the Distil-
BERT model fine-tuned on SST2 dataset.

10297

m
IG DIG

Log-Odds ↓ Delta % ↓ Log-Odds ↓ Delta % ↓

10 -0.984 8.064 -1.252 2.263
30 -0.950 3.394 -1.259 4.926
100 -0.933 1.235 -1.258 9.849
300 -0.940 0.703 -1.242 10.955

Table 7: Effect of increasing number of interpolation
points m on Delta % for IG and DIG. Please refer to
Appendix F.1 for more details.

Up-sampling factor f Log-Odds ↓ WAE ↓ Delta % ↓

DIG (m = 30, f = 0) -1.259 0.227 4.926
DIG (m = 30, f = 1) -1.229 0.230 3.728
DIG (m = 30, f = 2) -1.184 0.232 2.752
DIG (m = 30, f = 3) -1.181 0.233 1.862

Table 8: Effect of up-sampling a path by a factor f on
Delta % for DIG. For more details, refer to Appendix
F.1.

E Correlation between Log-odds and
WAE

We compute the Pearson correlation between log-
odds and WAE for each dataset + LM pair. For
this, we consider the metric values for IG, DIG-
GREEDY, and DIG-MAXCOUNT and report the
correlations for each setting in Table 6. We observe
that, there is a strong correlation on average for
DistilBERT. For BERT and RoBERTa we find a
weak positive and negative correlation respectively.

F Ablation Studies

F.1 Effect of increasing path density

Here, we report the detailed analysis of the effect of
increasing m and f in Tables 7 and 8 respectively.
In Table 7, we report the Log-odds score along with
Delta %. We do not note any consistent trend in
Log-odds with increasing m for both IG and DIG.
The results of IG suggest that, as long as the Delta
% is sufficiently low, decreasing Delta % any further
doesn’t impact the explanations very significantly.
Further, in Table 8, we report the WAE metrics to
emphasize that our up-sampling strategy doesn’t
increase the WAE by a significant amount, which
is desirable. Also, we note a consistent increase
(although marginally) in Log-odds with decreasing
Delta %. But per our previous observations on IG,
we believe these changes do not imply a causal
relation between the two.

K Log-odds ↓ WAE ↓ Delta % ↓

10 -1.258 0.276 21.405
30 -1.263 0.310 12.228
100 -1.277 0.276 14.155
200 -1.194 0.295 10.647
300 -1.216 0.286 8.523
500 -1.259 0.227 4.926

Table 9: Effect of increasing the neighborhood size K
of KNNV for DIG. Please refer to Appendix F.2 for
more details.

F.2 Effect of increasing neighborhood size

In this section, we study the effect of increasing the
neighborhood size in DIG. The results are shown
in Table 9. We observe a clear decreasing trend
in Delta % with increasing neighborhood size, but
there is no clear trend on Log-odds or WAE. Hence,
we believe that the neighborhood size has little
impact on the explanation quality, but we should
still ensure sufficiently low Delta.

F.3 Discussion on computational complexity

In this section, we briefly discuss the computa-
tional complexity of our proposed interpolation
strategies. The algorithms for DIG-GREEDY and
DIG-MAXCOUNT are presented in Algorithms 1
and 2 respectively. From there, we observe that
both our algorithms have a running time complex-
ity of O(nmK), where n is the number of words,
m is the number of interpolation points, and K is
the KNNV neighborhood size. While it is com-
putationally feasible to parallelize the loops cor-
responding to n and K, the same cannot be said
for the loop corresponding to m because we select
the interpolation points iteratively. Although we
empirically find in Section F.1 that a small number
of interpolation points are sufficient to calculate
the explanations, we believe this bottleneck can
be further tackled through efficient design of non-
iterative search algorithms. We leave this for future
works.

G Visualizations of explanations

In this section, we present some interesting sen-
tence visualizations based on explanations from
DIG and IG for SST2 dataset in Figure 6. We
show the sentence visualization and the model’s
predicted sentiment for the sentence for each ex-
planation algorithm. In the visualizations, the red
highlighted words denote positive attributions and

10298

blue denotes negative attributions. That is, the ex-
planation model suggests that the red highlighted
words support the predicted label whereas the blue
ones oppose (or undermine) the prediction. We
observe that in many cases, DIG is able to high-
light more plausible explanations. For example,
in sentence pairs 1-7, clearly the DIG highlights
are more inline with the model prediction. But we
want to emphasize that it does not mean that our
method always produces more plausible highlights.
For example, for sentences 8-10, we observe that
highlights from IG are more plausible than those
of DIG. Hence, this shows that, while it could be
a good exercise to visualize the attributions as a
sanity check, we should rely more on automated
metrics and human evaluations to correctly com-
pare explanation algorithms.

Algorithm 1: DIG-GREEDY

Input :Sentence s = [w1, w2, . . . wn],
k-nearest neighbor graph for the
vocabulary KNNV , number of
interpolation points m

Output :Interpolations
1 points = []n∗m
2 for i← 1 to n do
3 for j ← 1 to m do
4 dists = { }
5 for k ← 1 to K do
6 nbr ← KNNV (wi)[k]
7 c′ ← MONOTONIZE(nbr, wi)
8 dists[nbr]←

Distance(nbr, c′)
9 end for

10 a← arg mina′∈dists dists[a
′]

11 c← MONOTONIZE(a,wi)
12 points[i, j]← c

13 end for
14 end for
15 return points

Algorithm 2: DIG-MAXCOUNT

Input :Sentence s = [w1, w2, . . . wn],
k-nearest neighbor graph for the
vocabulary KNNV , number of
interpolation points m

Output :Interpolations
1 points = []n∗m
2 for i← 1 to n do
3 for j ← 1 to m do
4 a← arg maxa′∈KNNV (wi) |Ma′ |
5 c← MONOTONIZE(a,wi)
6 points[i, j]← c

7 end for
8 end for
9 return points

10299

Figure 6: Some example visualizations of attributions from DIG and IG for the DistilBERT model fine-tuned on
SST2 dataset. The sentence visualization is followed by model’s sentiment prediction for the sentence. Here, the
red highlighted words denote positive attributions and blue denotes negative attributions. For more details, please
refer to Appendix G

