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Abstract

Scripts are structured sequences of events to-
gether with the participants, which are extract-
ed from the texts. Script event prediction aim-
s to predict the subsequent event given the
historical events in the script. Two kinds of
information facilitate this task, namely, the
event-level information and the script-level in-
formation. At the event level, existing stud-
ies view an event as a verb with its partici-
pants, while neglecting other useful properties,
such as the state of the participants. At the
script level, most existing studies only consid-
er a single event sequence corresponding to
one common protagonist. In this paper, we
propose a Transformer-based model, called M-
CPredictor, which integrates deep event-level
and script-level information for script event
prediction. At the event level, MCPredictor u-
tilizes the rich information in the text to obtain
more comprehensive event semantic represen-
tations. At the script-level, it considers mul-
tiple event sequences corresponding to differ-
ent participants of the subsequent event. The
experimental results on the widely-used New
York Times corpus demonstrate the effective-
ness and superiority of the proposed model.

1 Introduction

Scripts, consisting of structured sequences of
events, are a kind of knowledge that describes ev-
eryday scenarios (Abelson and Schank, 1977). A
typical script is the restaurant script, which de-
scribes the scenario of a person going to a restau-
rant. In this script, “customer enter restaurant”,
“customer order food”, “customer eat food” and
“customer pay bill” happen successively. This struc-
tured knowledge is helpful to downstream natural
language processing tasks, such as anaphora res-
olution (Bean and Riloff, 2004) and story genera-
tion (Chaturvedi et al., 2017).

Script event prediction aims to predict the sub-
sequent event based on the historical events in the

Historical 

Events

Candidate Events

customer enter restaurantcustomer enter restaurant

customer sit downcustomer sit down

customer order foodcustomer order food

waiter offer foodwaiter offer food

customer criticize waitercustomer criticize waiter customer praise waitercustomer praise waiter

Figure 1: An example of the script event prediction
task, where two essential participants are underlined.

script. What is vital to this task is to understand the
historical events comprehensively. Therefore, two
categories of information are essential, namely, the
event-level information and the script-level infor-
mation. The event-level information contains nec-
essary elements to describe the events, such as the
verbs and their participants, while the script-level
information describes how the events are connected
and structured, such as via the temporal order or a
common participant.

The existing studies only consider the verb with
its participants (usually the headwords) at the event
level. However, this event representation method
suffers from a lack of necessary information to de-
rive a more accurate prediction. There exists other
important properties of the events in the original
texts, such as the intention and the state of the par-
ticipants. For instance, as shown in Figure 1, if the
waiter’s service is friendly, the customer will be
more likely to praise the waiter. If the customer
is irritable, he/she will be more likely to criticize
the waiter. Unfortunately, the current formulation
does not consider these features. From the aspec-
t of the script-level information, existing studies
only model the events that share a specific protag-
onist. These events are organized into a sequence
by temporal order, which is thus called the narra-
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tive event chain. However, an event may contain
multiple participants, each of which has its own
influence on the occurrence of the event. As shown
in Figure 1, the two participants, i.e., the customer
and the waiter, take their own actions and jointly
determine whether the customer will criticize or
praise the waiter.

Motivated by these observations, at the event
level, we trace the events back to their original
texts and consider all the constituents in the texts
that describe the events. Then, we utilize the infor-
mative constituents to obtain more comprehensive
event semantic representations. With respect to the
script level, we view the script as multiple narra-
tive event chains derived from the participants of
the subsequent event. Via modeling the narrative
event chains of multiple participants, we are able to
capture their behavior trends and predict the occur-
rence of the subsequent event. Thus, by integrating
the above deep event-level and script-level infor-
mation, we propose MCPredictor, a Transformer-
based script event prediction model. At the even-
t level, MCPredictor contains an event encoding
component and a text encoding component. Via
aggregating the output of the two components, it
obtains more comprehensive event semantic repre-
sentations. At the script level, MCPredictor con-
tains a chain modeling component and a scoring
component. The former integrates the temporal
order information into event representations. The
latter aggregates the influence of multiple narrative
event chains through an attention mechanism to
predict the subsequent event. In general, this paper
has the following main contributions:

• We emphasize the importance of both the
event-level information and the script-level
information for script event prediction, and go
deep into it;

• We propose the MCPredictor model to inte-
grate both kinds of information for script even-
t prediction. It introduces rich information
from the original texts to enhance the event-
level information and learns the script-level
information by aggregating the influence of
multiple narrative event chains on the subse-
quent event;

• The proposed model achieves state-of-the-art
performance on the widely-used benchmark
dataset. The event-level and the script-level

information introduced by us are also testified
to be effective.

2 Related Work

Recent studies on script event prediction start from
(Chambers and Jurafsky, 2008), which proposes
the basic structure of the narrative event chain with
a specific participant (called the protagonist). Each
event is represented as a tuple of the verb and the
dependency relation between the verb and the pro-
tagonist, i.e., 〈verb, dependency〉. Then, it uses
Pointwise Mutual Information (PMI) to measure
the score of two events to be in the same narrative
event chain. Finally, it aggregates the pairwise s-
cores to infer a candidate’s probability of being the
subsequent event of the narrative event chain.

Balasubramanian et al. (2013) pointed out that
the event representation method mentioned above
may lose the co-occurrence information between a
subject and its object. Therefore, they represented
an event as a 〈subject, verb, object〉 triple. Pi-
chotta and Mooney (2014); Granroth-Wilding and
Clark (2016) further extended the event represen-
tation method by taking the indirect object into
consideration. Following studies on script event
prediction are mainly based on this event represen-
tation method. The above symbolic representation
methods may cause the sparsity problem. There-
fore, distributed event representation method is ap-
plied in more recent studies (Modi and Titov, 2014;
Granroth-Wilding and Clark, 2016). In addition,
early studies aggregate the scores of each event in
the narrative event chain and the candidate event, ig-
noring the temporal order of the events. Therefore,
Pichotta and Mooney (2016); Wang et al. (2017);
Lv et al. (2019) introduced LSTM to integrate tem-
poral order information 1. Li et al. (2018) further
converted the narrative event chain to a narrative
event evolutionary graph and used graph neural
networks to model it.

Conventionally, an event contains a verb and
several participants, where the headwords are used
to represent the participants. This event represen-
tation method suffers from a lack of information
since only a few words are considered. There-
fore, Ding et al. (2019) used if-then commonsense
knowledge to enrich the event representation. Lee
and Goldwasser (2019); Zheng et al. (2020); Lee
et al. (2020) labeled extra discourse relations be-

1Following (Wang et al., 2017), we use the term “temporal
order”. Precisely, it is the “narrative order”.
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tween the events according to the conjunctions be-
tween them. Zheng et al. (2020); Lv et al. (2020);
Lee et al. (2020) introduced pre-trained language
models, such as BERT (Devlin et al., 2019), to
script event prediction and achieved excellent per-
formance. Still, these studies lose some of the
informative constituents in the texts that directly
describe the events.

The above models all focus on a single narra-
tive event chain. The only study that considers the
multiple chains is (Chambers and Jurafsky, 2009).
However, our study is different from it in the fol-
lowing aspects: (1) when representing an event, it
only considers the verb and the dependency rela-
tion between the verb and the protagonist, while we
keep all the participants in an event; (2) it adopts
the symbolic event representation method and a
pair-based model (PMI), while we use distribut-
ed event representation method and consider the
temporal order information.

3 Problem Statement

In this paper, an event e = 〈v, a0, a1, a2, t〉 consists
of a verb v, three participants 2 (i.e., subject a0,
object a1, and indirect object a2), and its original
sentence t where the event appears. Here, t =
{w0, w1, ...} consists of a sequence of words.

The script event prediction task aims to predict
the most probable subsequent event e∗ given the
candidate event set S and the historical events H.
Here, S = {ec0 , ec1 , ..., ecm−1} consists of the m
candidate events andH = {e0, e1, ...} consists of
the happened events. Note that, since the candi-
date events have not happened yet, there are no
corresponding sentences for them.

4 The MCPredictor Model

In this section, we will describe our MCPredictor
model. As show in Figure 2, it consists of four
main components: (1) event encoding, (2) text en-
coding, (3) chain modeling, and (4) scoring. We
will describe the model in single-chain mode and
then introduce how the results from the multiple
chains (derived from different participants of the
candidate event) are aggregated. Finally, we will
list the variants of the scoring component.

2 Usually, an event only contains one or two participants,
However, to uniformly characterize all possible conditions,
we pad the missing participants with null.

4.1 Event Encoding Component
The event encoding component aims to map the
events into low-dimensional vectors. The embed-
dings ei

3 for events ei (i ∈ {0, ..., n − 1}, n
is the number of historical events) is calculated
via mapping the verbs vi and their participants
ai,0, ai,1, ai,2 into the same vector space Rdw :

ei = tanh(W T
v vi +W T

a0ai,0+

W T
a1ai,1 +W T

a2ai,2 + be),
(1)

whereWv,Wa0,Wa1,Wa2 ∈ Rdw×de are mapping
matrices; be ∈ Rde is the bias vector; dw is the
word embedding size and de is the event embedding
size. The candidate event ec is encoded similarly.

4.2 Text Encoding Component
The text encoding component is to encode the sen-
tence where each event appears into a vector. Since
pre-trained language models, such as BERT (De-
vlin et al., 2019), have shown great power in encod-
ing natural language, we apply BERT-tiny in this
component and use the output embedding of the
“[CLS]” tag as the sentence embedding.

Specifically, to avoid information leakage, we
replace the other events in the same narrative event
chain with the “[UNK]” tag when encoding the
sentence of the focused event in this componen-
t. In addition, we add role tags before and after
the verb to specify dependency relation (“[subj]”,
“[obj]” or “[iobj]”) between the verb and the pro-
tagonist. For instance, the sentence “He entered
the restaurant and asked the waiter for the menu”
will be converted into “He [subj] entered [subj]
the restaurant and [UNK] ”, if we focus on the
event corresponding to the verb “entered”.

Then, the embeddings of events ei that integrate
sentence information are:

e′i = ei + BERT(ti), (2)

where BERT is the BERT-tiny network and ti are
the converted sentence corresponding to events ei.

4.3 Chain Modeling Component
In the above components, the events are separately
encoded without temporal information. Therefore,
we use stacked Transformer (Vaswani et al., 2017)
layers to deeply integrate the temporal order infor-
mation into the event representations. Following

3 In what follows, following the convention, the embed-
dings are denoted with the same letters but in boldface.
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Figure 2: An illustrative diagram of the proposed MCPredictor model.

the convention (Wang et al., 2017; Li et al., 2018),
to model the interactions between the historical
events (i.e., the historical narrative event chain) and
the candidate event, we append the candidate event
to the end of the historical narrative event chain.
As mentioned in Section 3, there is no correspond-
ing sentence for the candidate event, thus, we only
use its event embedding calculated by Equation 1.
Additionally, the positional embeddings (Vaswani
et al., 2017) are added to the event embeddings to
specify their positions in the chain. Finally, the
last Transformer layer outputs the hidden vectors
hi and hc for historical events ei and the candidate
event ec, respectively.

4.4 Scoring Component

The scoring component aims to calculate the score
of each candidate event. This component contain-
s two steps: event-level scoring and script-level
aggregation. The former calculates the similarity
score between each historical event and the candi-
date event. The latter aggregates these scores to
derive the similarity score between the script and
the candidate event. Besides, we will describe the
variants of this component.

4.4.1 Event-Level Scoring
Aggregating the event-level similarity scores after
modeling the temporal order is better than only

considering the event-pair similarity scores or only
using the last hidden vector of the chain for predic-
tion, as verified by (Wang et al., 2017). Therefore,
before evaluating the script-level similarity scores,
we calculate the pairwise similarity scores si be-
tween the candidate event ec and historical events
ei using the hidden vectors from the chain model-
ing component in Section 4.3. Here, we use the
negative Euclidean distance (denoted as E-Score)
as the similarity scores:

si = −||hi − hc||2. (3)

4.4.2 Script-Level Aggregation
This step is to aggregate the event-level scores from
multiple narrative event chains. Let us begin with
a single narrative event chain.

We use an attention mechanism to derive the
similarity score f between the historical narrative
event chain and the candidate event ec:

f =

n−1∑
i=0

αisi, (4)

where the attention weight αi of each event ei is
calculated by:

αi =
exp(ui)∑n−1

k=0 exp(uk)
, (5)
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where we use the scaled-dot product atten-
tion (Vaswani et al., 2017):

ui =
1√
de

hT
i hc. (6)

The similarity score is calculated by aggregating
the similarity scores from multiple chains:

oci =
2∑

j=0

fi,j , (7)

where fi,j is the similarity score between the can-
didate event eci and the historical narrative event
chain corresponding to its j-th participant.

Then, the probability of each candidate event
eci ∈ S to be the correct subsequent event is calcu-
lated by:

Pr(eci |H) =
exp(oci)∑m−1

k=0 exp(ock)
, (8)

where oci is the score of each candidate event.
Note that, in previous studies, only a single nar-

rative event chain of the given protagonist is consid-
ered in the historical eventsH. Therefore, the score
of each candidate event oci is equal to fi, where
fi represents the similarity score of the historical
narrative event chain and the candidate event eci
calculated via Equation 4.

Finally, we select the most possible candidate
event as the subsequent event e∗ as follows:

e∗ = arg max
eci∈S

Pr(eci |H). (9)

4.4.3 Variants
We try three other similarity score functions and
three other attention functions on the proposed
model. The score functions are:

• C-Score is the cosine similarity:

C-Score(hi,hc) =
hT
i hc

||hi||||hc||
. (10)

• M-Score is the negative Manhattan distance:

M-Score(hi,hc) = −||hi − hc||1. (11)

• L-Score is the linear transformation score:

L-Score(hi,hc)=wT
sehi + wT

schc + bs, (12)

where wse,wsc ∈ Rde are the weight vectors
and bs ∈ R is the bias.

The attention functions are:

• Average attention simply averages the event-
level scores;

• Dot product attention is calculated by:

ui = hT
i hc. (13)

• Additive attention is calculated by:

ui = wT
aehi + wT

achc + ba, (14)

where wae,wac ∈ Rde are the weight vectors
and ba ∈ R is the bias.

4.5 Training Details
The training objective is to minimize the cross-
entropy loss:

L(Θ) = − 1

N

N∑
i=1

log Pr(e∗i |Hi)+λL2(Θ), (15)

where e∗i andHi denote the correct answer and the
historical events for the i-th training sample, re-
spectively; N is the number of training samples; Θ
denotes all the model parameters; L2(·) denotes the
L2 regularization; λ denotes the regularization fac-
tor. We then train the model using Adam (Kingma
and Ba, 2015) algorithm with 100-size mini-batch.

5 Experiments

In this section, we compare MCPredictor with a
number of baselines to validate its effectiveness.
In addition, we investigate the variants of MCPre-
dictor and the importance of different constituents.
Finally we conduct case studies on the model.

5.1 Dataset
Following (Granroth-Wilding and Clark, 2016),
we extract events from the widely-used New Y-
ork Time portion of the Gigaword corpus (Graff
et al., 2003). The C&C tool (Curran et al., 2007)
is used for POS tagging and dependency parsing,
and OpenNLP 4 for coreference resolution. For the
participants that are coreference entities, we select
the events they participate in to construct the event
chain. For the non-coreference entities, we select
the events by matching their headwords. The short
chains will be padded with null events (verb and
arguments are all null) to the max sequence length.

4http://opennlp.apache.org
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# train documents 830,645
# development documents 103,583
# test documents 103,805
# train samples 1,440,295
# development samples 10,000
# test samples 10,000

Table 1: Detailed information about the dataset.

Since the development and test sets are unavailable,
we generate them using the codes from Granroth-
Wilding and Clark (2016) and their development
and test document split. Thus, the results of the
baseline models may be different from what they
are reported in previous studies. Detailed informa-
tion about the dataset is shown in Table 1, where
#X denotes the size of X. Each sample in the train-
ing set, development set, and test set contains five
candidate events, where only one choice is correct.

5.2 Experiment Settings

Following the convention, event sequence length n
is set to 8; word embedding size dw is set to 300;
event embedding size de is set to 128; the number
of Transformer layers is selected from {1, 2}; the
dimension of the feed-forward network in Trans-
former is selected from {512, 1024}; the dropout
rate is set to 0.1; the learning rate is set to 1e-4
except that the learning rate of BERT-tiny is set to
1e-5; the regularization factor λ is set to 1e-6. All
the hyper-parameters are tuned on the development
set, and the best settings are underlined. All the
experiments are run under Tesla V100.

5.3 Baselines

• PMI (Chambers and Jurafsky, 2008) uses
PMI to measure the pairwise similarity of
events.

• Event-Comp (Granroth-Wilding and Clark,
2016) uses multi-layer perceptron to encode
events and calculates their pairwise similarity.

• PairLSTM (Wang et al., 2017) uses LSTM
to integrate temporal order information into
event embeddings.

• SGNN (Li et al., 2018) merges all the narra-
tive event chains into a narrative event evolu-
tion graph. The scaled graph neural network
is used to obtain graph information in event
embeddings.

Method Accuracy(%)
PMI* 30.52
Event-Comp* 49.57
PairLSTM* 50.83
SGNN* 52.45
SAM-Net* 54.48
Lv2020* 58.66
NG* 63.59
PMI 30.28
Event-Comp 50.19
PairLSTM 50.32
SGNN 52.30
SAM-Net 55.60
SCPredictor-s 58.28
MCPredictor-s 59.24
SCPredictor 66.24
MCPredictor 67.05

Table 2: Model accuracy on the test set. “*” denotes
the performance from previous studies.

• SAM-Net (Lv et al., 2019) uses an LSTM net-
work and self-attention mechanism to capture
semantic features.

• NG (Lee et al., 2020) builds a narrative graph
to enrich the event semantic representation via
introducing discourse relations.

• Lv2020 (Lv et al., 2020) introduces external
commonsense knowledge and uses a BERT-
based model to predict the subsequent event.

• SCPredictor, an ablation of MCPredictor, re-
moves the scores from the other narrative
event chains at the script level.

• SCPredictor-s and MCPredictor-s, abla-
tions of SCPredictor and MCPredictor, respec-
tively, remove the sentence information at the
event level.

For PMI, we use the version implemented by
(Granroth-Wilding and Clark, 2016). For PairLST-
M, we adopt the version implemented by (Li et al.,
2018). For others, we use the versions provided in
their original papers. For comparison, accuracy(%)
of predicting the correct subsequent events is used
as the evaluation metric.

5.4 Results and Analyses
Final experimental results on the script event pre-
diction task are shown in Table 2. From the results,
we have the following observations:
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• SCPredictor and MCPredictor outperform
SCPredictor-s and MCPredictor-s respective-
ly by more than 7.81%. This significant im-
provement indicates that introducing sentence
information at the event level successfully en-
hances the event representations;

• MCPredictor-s and MCPredictor outperform
SCPredictor-s and SCPredictor respectively,
which demonstrates the effectiveness of in-
troducing multiple narrative event chains at
the script level. In addition, the improvemen-
t of multiple chains decreases slightly when
the sentence information is introduced (from
0.96% to 0.81%). This is probably because
extra events brought by other narrative event
chains may partially covered by the sentences
corresponding to existing events. In the devel-
opment set, only about 13% of the samples
contain the extra events that are not covered by
the sentences corresponding to existing events
when introducing other narrative event chain-
s. Still, the multiple narrative event chains
contribute to the model;

• SCPredictor-s outperforms existing models
(i.e., PMI, Event-Comp, PairLSTM, SGNN,
and SAM-Net) by more than 2.68% under the
same input (only the verb and the headwords
of the participants are used). This improve-
ment indicates that the Transformer networks
can model the script better than existing net-
work structures.

5.5 Human Evaluation
In addition to automatic evaluation, we also conduc-
t human evaluation to further study the performance
of the proposed MCPredictor model. Specifically,
we randomly select 100 samples in the developmen-
t set. Without loss of generality, we select SAM-
Net model to compare with MCPredictor manu-
ally under these samples. MCPredictor correctly
answers 72 out of 100, while SAM-Net only cor-
rectly answers 60. These results demonstrate that
the MCPredictor generally derives more plausible
answers.

5.6 Comparative Studies on Variants
To further study the effects of different scoring
functions and attention functions, we conduct com-
parative studies on the development set.

The comparative results on different scoring
functions are listed in Table 3, where ∆ means the

Method Accuracy(%) ∆

E-Score 67.35 /
M-Score 65.36 -1.99
L-Score 65.05 -2.30
C-Score 60.68 -6.63

Table 3: Performance comparison of MCPredictor over
different scoring functions.

Method Accuracy(%) ∆

scaled-dot 67.35 /
dot 66.21 -1.14
additive 65.84 -1.51
avg 64.74 -2.61

Table 4: Performance comparison of MCPredictor over
different attention functions.

performance difference between the best scoring
function and each alternative scoring function. As
presented in Table 3, E-Score achieves the best per-
formance among the four scoring functions, which
is consistent with the result in (Li et al., 2018). The
reason for C-Score underperforming the other three
scoring functions may be that it only measures the
angle between the two vectors, however, ignores
their lengths.

Similarly, the comparative results on different
attention functions are listed in Table 4. In this ta-
ble, scaled-dot is the scaled-dot product attention in
Equation 6, dot indicates the dot product attention
in Equation 13, additive is the additive attention
in Equation 14, and avg denotes the average atten-
tion. Similar to Table 3, ∆ means the performance
difference. As shown in Table 4, the scaled-dot
product attention outperforms the others. The av-
erage attention underperforms the other attention
functions, which shows the effectiveness of the at-
tention mechanism. The reason for dot product
attention under-performing the scaled-dot attention
function may be that dot product attention tends to
give a single event too much weight, which may
suppress the contributions of other related events.

5.7 Detailed Analyses on Constituents

What is the contribution of each constituent from
the sentences? To go deep into it, we use a masking
mechanism to hide some constituents. The results
on the development set are listed in Table 5, where
“All” denotes that all constituents are used; “V” de-
notes the verbs; “N” denotes the nouns; “J” denotes
the adjectives; “R” denotes the adverbs; and “-X”
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Protagonist A: First Virtual Original Sentence
set+up(executive, company) First Virtual, which Ungermann set up in ...

demonstrate(executive, product) First Virtual ... publicly demonstrated its products ...
aim(company, null, segment) First Virtual is aiming at an emerging segment ...

be(company, able) First Virtual is able to offer its lower prices by
limiting its ATM network speeds to 25 million bits
a second ...

offer(company, price)
limit(company, speed, bit)

sneak(company, null, organization) it could sneak into organizations ...
develop(company, software) First Virtual has also developed software ...

protagonist B: Ralph Ungermann Original Sentence
consider(father, executive) Ralph Ungermann ... is considered a founding father ...

set+out(executive, problem) Ralph Ungermann ... has set out to solve his newest company ...
set+up(executive, company) First Virtual, which Ungermann set up in ...

predict(executive) Ungermann predicts that ...
contend(executive) Ungermann contends that ...

correct choice: sell(executive, company); wrong choice: launch(company, attack)

Table 6: Case study of MCPredictor. The historical events used by SCPredictor are in boldface.

Constituents Accuracy(%) ∆

All 67.35 /
-V 60.54 -6.81
-N 64.81 -2.54
-J 66.89 -0.46
-R 67.03 -0.32
-V(self) 67.29 -0.06
-V(others) 60.90 -6.45
-V&N 55.36 -11.99
-V&R 60.23 -7.12
-N&J 64.10 -3.25
-R&J 66.55 -0.80

Table 5: Performance comparison of MCPredictor over
different constituents.

denotes that X is masked. In addition, we study
the influence of their pairwise combinations X and
Y (denoted as “X&Y”). Considering the modifica-
tion relationship between the constituents, we only
conduct the experiments on the combinations of
“V&R”, “V&N”, “N&J”, and “R&J”, respectively.

Masking the verbs brings 6.81% decrease to the
performance. To further study the influences of
different verbs, we mask the focused verb (denoted
as “V(self)”) and the verbs excepting the focused
one (denoted as “V(others)”) separately. The re-
sults show that masking the focused verb almost do
no harm to the performance, while masking others
brings 6.45% decrease to the performance. This is
because the event encoding component still obtains
the information about the focused event despite the

text encoding component masking it. In addition,
these results show that the implicit relevance of the
other verbs and the focused verb is important for
script event prediction.

Masking the nouns brings 2.54% decrease to the
performance. The nouns are usually the partici-
pants which influence the word sense of the verbs.
Thus, the nouns are also important for prediction.

Masking the adjectives brings 0.46% decrease to
the performance when comparing “All” and “-J”,
while it brings 0.71% decrease when comparing “-
N” and “-N&J”. This phenomenon shows that using
the combination of the nouns and the adjectives
brings richer semantic information than using them
separately. The same phenomenon also appears
when comparing “All”, “-V”, and “-V&R” .

5.8 Case Studies

To have a better understanding of the effects of mul-
tiple narrative event chains, we study the cases in
the development set where the MCPredictor model
selects the correct choice while the SCPredictor
model selects the wrong one. As presented in Ta-
ble 6, protagonist A is “company” in the events, and
protagonist B is “executive” in the events. When
only the narrative event chain of protagonist A is
provided, the correct candidate event is not very
convincing, since protagonist B is rarely mentioned
in this chain. In addition, the events in this chain
are common, and many events can be the subse-
quent event. Thus, SCPredictor is likely to select
the wrong candidate event as the prediction result.
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On the contrary, MCPredictor integrates evidence
from both narrative event chains. It is thus able to
predict the correct candidate event. Moreover, the
events contain less information comparing to the
original sentences, which shows the necessity to
introduce the sentence information for them.

6 Conclusion and Future Work

In this paper, we proposed the MCPredictor model
to handle the script event prediction task, which
integrates deep event-level and script-level informa-
tion. At the event level, MCPredictor additionally
utilizes the original sentence to obtain more infor-
mative event representation. At the script level, it
considers multiple event sequences corresponding
to different participants of the subsequent event.
Experimental results demonstrate its merits and
superiority.

However, currently, we still need to know the par-
ticipants of the candidate events to extract multiple
chains. When participants are unknown, we have to
enumerate all possible combinations of entities in
the script, which is time-consuming. Moreover, ex-
tracting informative constituents of events besides
the verb and their participants is still a challenge.
In the future, we will study these problems.
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