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Abstract

Interpolation-based regularisation methods for
data augmentation have proven to be effec-
tive for various tasks and modalities. These
methods involve performing mathematical op-
erations over the raw input samples or their
latent states representations - vectors that of-
ten possess complex hierarchical geometries.
However, these operations are performed in
the Euclidean space, simplifying these repre-
sentations, which may lead to distorted and
noisy interpolations. We propose HypMix, a
novel model-, data-, and modality-agnostic in-
terpolative data augmentation technique oper-
ating in the hyperbolic space, which captures
the complex geometry of input and hidden
state hierarchies better than its contemporaries.
We evaluate HypMix on benchmark and low
resource datasets across speech, text, and vi-
sion modalities, showing that HypMix con-
sistently outperforms state-of-the-art data aug-
mentation techniques. In addition, we demon-
strate the use of HypMix in semi-supervised
settings. We further probe into the adversar-
ial robustness and qualitative inferences we
draw from HypMix that elucidate the efficacy
of the Riemannian hyperbolic manifolds for
interpolation-based data augmentation.

1 Introduction

Deep learning methods have improved the state-of-
the-art in a wide range of tasks. Yet, when only lim-
ited training data is available, they are prone to over-
fitting (Zou and Gu, 2019). Numerous data aug-
mentation techniques have been proposed, which
involve performing operations such as cropping or
rotation (Lecun et al., 1998), or paraphrasing (Ku-
mar et al., 2019) individual examples. However,

∗Equal contribution.

these methods are modality- or dataset-dependent
and require domain expertise. Compared to such
alteration-based methods, interpolation-based ap-
proaches such as Mixup (Zhang et al., 2018) have
shown improved performance and generalizability
across different modalities. Mixup generates vir-
tual training samples from convex combinations
of individual inputs and labels to expand the train-
ing distribution. Performing Mixup over the latent
representations of inputs has led to further improve-
ments, as the hidden states of deep neural networks
carry more information than raw input samples,
(Verma et al., 2019a; Chen et al., 2020a). However,
most data augmentation methods can only utilize
existing labeled data.

Semi-supervised learning methods, on the other
hand, can leverage unlabeled data for training. Sev-
eral semi-supervised methods use interpolation
based regularization methods over unlabeled sam-
ples to predict soft labels, and combine them with
existing labeled samples to increase the overall
training data (Verma et al., 2019b; Chen et al.,
2020b). Semi-supervised methods use consistency
based regularization training (Miyato et al., 2019)
which makes the model predictions robust to per-
turbations on unlabeled samples. However, current
semi-supervised learning methods do not general-
ize across modalities or datasets.

Existing data-augmentation and semi-supervised
learning methods operate in the Euclidean space,
which is a simplified representative geometry. Rep-
resentations across modalities inherently possess
properties that the Euclidean space is incapable of
modeling, and can be better expressed using the
more general hyperbolic space (Ganea et al., 2018).
The interference of sound waves is hyperbolic in
nature, which generates hyperboloid waveforms
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(Khan and Panigrahi, 2016). Natural language text
exhibits hierarchical structure in a variety of re-
spects and embeddings are more expressive when
represented in the hyperbolic space (Dhingra et al.,
2018). Data augmentation using Möbius opera-
tions over images has shown more diversification
and generalization compared to Euclidean opera-
tions (Zhou et al., 2021). Performing interpolative
operations over representations having complex ge-
ometry in the hyperbolic space can lead to more
suitable representations for model training.

Building on prior research in limited data and
data augmentation studies, and the hyperbolic char-
acteristics of speech, text, and vision, we propose
HYPMIX1: a model, data, and modality agnostic
interpolative regularization method operating in the
hyperbolic space. We further extend HYPMIX to
semi-supervised settings, which is especially ef-
fective in extremely low resource environments.
We probe the effectiveness of HYPMIX through
extensive experiments over three different tasks for
supervised and semi-supervised settings on bench-
mark and low resource datasets across speech, text,
and vision in different languages with varying class
label distribution. HYPMIX outperforms current
state-of-the-art modality and task specific data aug-
mentation methods across all the datasets for both
supervised and semi-supervised conditions.

Our contributions can be summarized as:

• We propose HYPMIX, a novel model, data, and
modality agnostic interpolative regularization
based data augmentation method functioning in
the hyperbolic space.

• We devise a novel Möbius Gyromidpoint Label
Estimation (MGLE) method to predict soft la-
bels for unlabeled data, and extend HYPMIX to
a hyperbolic semi-supervised learning method.

• HYPMIX outperforms several strong baselines
and Euclidean counterparts across speech, text,
and vision across benchmark and low-resource
datasets, including semi-supervised settings for
Urdu and Arabic tasks.

• We further probe the effectiveness of HYPMIX

in comparison to existing methods through layer-
wise ablation studies and adversarial robustness.

1Our code is available at: https://github.com/
caisa-lab/hypmix-emnlp.

2 Background and Related Work

Data Augmentation enables use of limited train-
ing data, with approaches involving modifying
the individual training instances, such as cropping
(Simonyan and Zisserman, 2015) or paraphrasing
(Wei and Zou, 2019; Kumar et al., 2019). Mixup
techniques (Zhu et al., 2019) perform interpolation
among input samples and have proven to perform
better than modifying individual instances as it in-
corporates the prior knowledge that linear interpo-
lations of feature vectors should lead to linear inter-
polations of the associated targets. Recent works
(Jindal et al., 2020a; Verma et al., 2019a) perform
Mixup operations over hidden state representation
of input samples instead of the inputs, as high-
level representations are often low-dimensional and
carry more useful information of input samples
as compared to raw inputs. Latent interpolation
methods have not been generalized across modali-
ties and operate in the simplified Euclidean space
which is unable to capture the complex characteris-
tics possessed by latent state representations.

Semi-supervised Learning methods leverage
unlabeled data which is typically available in larger
quantities (Clark et al., 2018). Consistency reg-
ularization methods for semi-supervised learning
predict soft labels for unlabeled data and train mod-
els on different permutations of labeled and unla-
beled data (Verma et al., 2019b; Chen et al., 2020a).
Chen et al. (2020b) uses a label guessing strategy
on different augmentations of unlabeled data and
combines it with labeled data for training models.
However, these methods perform label prediction
for unlabeled data using Euclidean operations.

Hyperbolic Learning has proven to be effective
in representing information where relations among
data points possess hierarchical and tree-like nature
(Aldecoa et al., 2015). Learning in the hyperbolic
space has been applied to various natural language
processing (Dhingra et al., 2018; Gulcehre et al.,
2019; Tay et al., 2018), and computer vision tasks
(Khrulkov et al., 2020; Peng et al., 2020) as well
as graph (Chami et al., 2019), sequence (Tay et al.,
2018), and financial (Sawhney et al., 2021) learn-
ing. However, the ability of the hyperbolic space
to model complex representations while perform-
ing interpolative operations across modalities is
unexplored.

https://github.com/caisa-lab/hypmix-emnlp
https://github.com/caisa-lab/hypmix-emnlp
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Figure 1: Overview of HYPMIX and MIXH applied at layer k over hidden representations of input xi and xj . We
perform the forward pass for the inputs upto layer k, and use the mixed representation for the continued pass.

3 Methodology: HYPMIX

We first formulate the task and introduce the hyper-
bolic space (Ganea et al., 2018) and Mixup (Zhang
et al., 2018) (§3.1). Using the hyperbolic opera-
tions, we then introduce Mixup in the hyperbolic
space (§3.2), and extend it to operate on the hid-
den state representations of neural networks. We
call the resulting approach HYPMIX. An overview
of the steps is presented in Figure 1. We formu-
late HYPMIX for both supervised (§3.3) and semi-
supervised (§3.4) methods. We test HYPMIX on
classification tasks across speech, text, and vision.

3.1 Preliminaries

Hyperbolic Space is a non-Euclidean geome-
try with constant negative curvature. We use the
Poincaré ball model of the hyperbolic space (Ganea
et al., 2018), defined as (B, gBx ), where the man-
ifold B = {x ∈ Rn : ||x|| < 1}, endowed with
the Riemannian metric gBx =λ

2
xg
E , where the con-

formal factor λx = 2
1−||x||2 and gE = diag[1, .., 1]

is the Euclidean metric tensor. We denote the tan-
gent space centered at point x as TxB. We use the
Möbius gyrovector space to generalize standard
mathematical operations to the hyperbolic space:
Möbius Addition, ⊕ for a pair of points x, y∈B,

x⊕ y :=
(1 + 2〈x, y〉+ ||y||2)x+ (1− ||x||2)y

1 + 2〈x, y〉+ ||x||2||y||2 (1)

where, 〈., .〉 denotes the Euclidean inner product
given by 〈x, y〉=x0y0+x1y1+. . .xn−1yn−1, and
|| · || denotes the norm given by ||x||=

√
〈x, x〉.

We define the exponential and logarithmic maps
to project vectors between the Euclidean and hy-
perbolic space respectively.

Exponential Mapping2 maps the tangent vector v
to the point expx(v) on the Poincaré ball,

expx(v) := x⊕
(

tanh
(
λx||v||

2

)
v

||v||

)
(2)

Logarithmic Mapping maps a point y ∈ B to a
point logx(y) on the tangent space at x,

logx(y) :=
2

λx
arctanh (|| − x⊕ y||) −x⊕ y

|| − x⊕ y|| (3)

For exponential and logarithmic mapping, we
choose the tangent space center x = 0 and use
exp0(·) and log0(·).
Möbius Scalar Multiplication � multiplies matrix
x ∈ B with scalar r ∈ B,

r � x = tan
(
r tan−1(‖x‖)

) x

‖x‖
(4)

Mobius Gyromidpoint Mg calculates the hy-
perbolic weighted addition for gyrovectors
{x1, . . . ,xn} and weights {α1, . . . , αn},

Mg(x1,x2, . . . ,xn, α1, α2, . . . , αn) =

(x1 � α1)⊕ (x2 � α2) . . .⊕ (xn � αn)
(5)

Mixup (Zhang et al., 2018) involves training a
neural network on convex combinations of a pair
of instances and their labels. For two labeled data
points (xi, yi) and (xj , yj), mixup uses linear inter-
polation with mixing ratio r to generate the syn-
thetic sample x′ and corresponding mixed label y′,

x′ = mix(xi, xj) = r·xi + (1− r)·xj
y′ = mix(yi, yj) = r·yi + (1− r)·yj

(6)

By leveraging the hyperbolic operations and
Mixup, we define Mixup in the hyperbolic space.

2We use the implementation by geoopt: https://
geoopt.readthedocs.io/

https://geoopt.readthedocs.io/
https://geoopt.readthedocs.io/
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3.2 Formulating Mixup in Hyperbolic Space

For inputs possessing complex geometrical prop-
erties, performing mathematical operations in the
Euclidean spaces often lead to vectorial distortions
which can be stabilized by using the hyperbolic
space (Ganea et al., 2018). To minimize these dis-
tortions, we formulate MIXH, Mixup in the hyper-
bolic space by leveraging hyperbolic operations
as building blocks. First, we replace Euclidean
arithmetic addition (+) and scalar product (·) with
their Möbius counterparts: addition (⊕) and scalar
multiplication (�) respectively. We then transform
inputs to the hyperbolic space using the exponen-
tial mapping exp0(·), perform Mixup to generate
convex combinations of pairs of inputs xi, xj , and
map them back to the Euclidean space using the
logarithmic mapping log0(·). Formally,

MIXH(xi, xj)= log0(r�exp0(xi)⊕(1− r)�exp0(xj))
(7)

We now extend MIXH as a generalizable interpola-
tive regularizer over hidden state representations
across neural network layers.

3.3 HYPMIX: Interpolative MIXH

Previous works (Chen et al., 2020b; Jindal et al.,
2020b) applying interpolation based regularization
in the latent space of neural networks operate in the
Euclidean space, which cannot capture the complex
geometries of hidden state vectors (Tifrea et al.,
2019). To better model the fine-grained informa-
tion present in latent representations using the hy-
perbolic space, we extend MIXH to the hidden
representation space. Let fθ(·) denote any general
base model with parameters θ having N layers.
fθ,n(·) denotes the n-th layer of the model and hn
is the hidden space vector at layer n for n ∈ [1, N ]
and h0 denotes the input vector.

We introduce HYPMIX as hyperbolic interpo-
lation at a layer k ∼ [1, N ], for which we first
calculate the latent representations separately for
the inputs for layers before the k-th layer. For input
samples xi, xj , we let hin, h

j
n denote their respec-

tive hidden state representations at layer n of fθ(·),

hin=fθ,n(h
i
n−1), n ∈ [1, k]

hjn=fθ,n(h
j
n−1), n ∈ [1, k]

(8)

We then apply MIXH over the individual hidden

Figure 2: An overview of MGLE and hyperbolic semi-
supervised learning with HYPMIX.

state representations hik, h
j
k from layer k as:

hk=MIXH(hik, h
j
k)

= log0(r�exp0(h
i
k)⊕(1− r)�exp0(h

j
k))

(9)

The mixed hidden representation hk is used as the
input for the continuing forward pass,

hn=fθ,n(hn−1); n ∈ [k + 1, N ] (10)

We define HYPMIX(fθ(·), r, k) for a layer k and
mixing ratio r to obtain the final hidden layer rep-
resentation hN as,

hN = HYPMIX(xi, xj , fθ(·), r, k) (11)

Supervised Network Optimization For classifi-
cation, we apply a perceptron gφ(·) with parame-
ters φ to calculate the class logits from the final
hidden state output hN . We optimize the model
using KL-divergence loss (KL) to bring the model
output distribution closer to the mixed label distri-
bution. We minimize the loss L between the mixed
label y′ and logits obtained from HYPMIX,

L = KL(mix(yi, yj)||gφ(HYPMIX(xi, xj , fθ(·), r, k)))
(12)

3.4 Hyperbolic Semi-supervised Learning
Semi-supervised training methods leverage unla-
beled data to improve the training for limited or low
resource settings (Verma et al., 2019b). We extend
HYPMIX to effectively utilize p labeled data points,
Xl={xl1, xl2, . . . , xlp} and q unlabeled data points,
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Xu = {xu1 , xu2 , . . . , xuq} using a semi-supervised
training strategy in the hyperbolic space (Figure 2).

We first use existing data augmentation tech-
niques across different modalities to increase
the unlabeled training data Xu. For an un-
labeled sample xus , we generate Z augmented
samples using different augmentation methods
such as backtranslation (Edunov et al., 2018)
and combine them to generate unlabeled aug-
mented sets, Xa = {Xa,1, Xa,2, . . . , Xa,Z |Xa,z =
{xu1,z, xu2,z, . . . , xuq,z}, z ∈ [1, Z]}.

Möbius Gyromidpoint Label Estimation
(MGLE) predicts soft logits for unla-
beled and augmented data in the hyperbolic
space, allowing us to combine the unla-
beled data with limited training data using
HYPMIX for training. For an unlabeled sam-
ple xus and corresponding augmented samples
{xus,1, xus,2, . . . , xus,Z}, we compute the Möbius Gy-
romidpoint Mg of the hyperbolic mapped outputs
{gφ(fθ(xus )), gφ(fθ(xus,1)), . . . , gφ(fθ(xus,Z))}
with fixed weights {wo, w1, . . . , wZ |wi ∈
(0.5, 1.5)}, where weight wo is applied to the
original unlabeled sample. The weights control the
contribution of different augmentation techniques
based on their augmentation quality. We map the
predicted output logits to the Euclidean space
using log0(·) to predict the soft logits yus ,

yus = log0(Mg(exp0(gφ(fθ(x
u
s ))), exp0(gφ(fθ(x

u
s,1))),

. . . , exp0(gφ(fθ(x
u
s,Z))), wo, w1, . . . , wZ))

(13)

We sharpen the output yus with a hyperparameter
temperature T , to prevent it from being too uniform
if the model predictions are random,

yus =
(yus )

1
T

||(yus )
1
T ||1

(14)

where || · ||1 is the l1-norm of the vector.

Semi-supervised Network Optimization For
optimizing the model in semi-supervised settings,
we use the training set X = Xl∪Xu∪Xa with
labels Y =Yl∪Yu∪Ya, where Yu is used for both
unlabeled and augmented inputs, i.e. Ya = Yu. We
then uniformly sample two elements, xi, xj ∼ X
and the corresponding labels yi, yj ∼ Y , and apply
HYPMIX(xi, xj). We optimize the model using
KL-divergence loss L over the model outputs and
the mixed labels mix(yi, yj),

L = KL(mix(yi, yj)||gφ(HYPMIX(xi, xj))) (15)

Dataset Class Labels # Classes # Samples

Sp
ee

ch ESC-10 (2015) Sound Source 10 400
US8K (2017) Sound Source 10 8,732
Urdu SER (2018) Emotion 4 400

Te
xt

AG News (2018) News Topic 4 127,600
DB Pedia (2012) Wiki Topic 14 630,000
Arabic HS (2018) Hate Speech 2 3,950

V
is

. CIFAR-10 (2009) Object 10 60,000
CIFAR-100 (2009) Object 100 60,000

Table 1: Datasets, tasks, # classes and # samples.

4 Experimental Setup

4.1 Datasets and Preprocessing
We consider benchmark and low-resource datasets
across speech, text, and vision spanning a vary-
ing number of classes, languages, and class imbal-
ances for a comprehensive evaluation of HYPMIX.
We choose these datasets based on existing works
across different task settings and baselines for a
fair comparison with HYPMIX. We also choose
datasets with comparatively lower language re-
sources, different structures, and language roots,
leading to a more diverse evaluation of HYPMIX.
We summarize dataset statistics in Table 1. We
follow the same preprocessing across all datasets
as done by previous works (Jindal et al., 2020b),
(Chen et al., 2020b), (Verma et al., 2019a).

4.2 Task Setup
We evaluate HYPMIX on three different settings
for an extensive analysis: supervised training with
limited training data, semi-supervised training with
low resource data, and a fully supervised setup with
complete training data.

Speech Following previous works, we use
EnvNet-v2 with strong augmentation (Tokozume
et al., 2018) as our base architecture fθ(·) followed
by a fully connected layer gφ(·). We modify MIXH
to account for the auditory perception and ampli-
tude of speech signals (Tokozume et al., 2018). We
use Fourier and Inverse Fourier Transform to gen-
erate augmented samples. We compare HYPMIX

with the current state-of-the-art method Speechmix
(Jindal et al., 2020b) across multiple settings.

Text Following Chen et al. (2020b), we use
BERT-base (Devlin et al., 2019) as the backbone
architecture (fθ(·)) for English datasets and BERT-
base-arabic (Safaya et al., 2020) for the Arabic
dataset. We use a two layer MLP with hidden
size 128 as the classifier (gφ(·)) and generate aug-
mented data using back-translation (Edunov et al.,
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Model Speech (Error rate ↓) Text (Error rate ↓) Vision (Error rate ↓)

ESC-10 Urdu SER AG News DBPedia Arabic HS CIFAR-10 CIFAR-100

#Samples n 5 10 15 5 10 20 10 200 10 200 50 100 10 100 500 10 100 500

Base Model 47.1 32.5 26.2 28.7 23.8 18.2 30.5 12.5 4.8 1.5 42.1 40.6 65.7 34.2 14.9 79.7 41.1 21.2
+ EUCMIX 33.2 24.2 21.0 18.8 16.5 13.7 25.9 11.9 3.2 1.3 41.1 39.6 64.6 32.3 14.1 78.8 40.3 20.3
+ HYPMIX 30.3� 22.2� 19.5� 16.5� 15.2� 12.5� 21.8� 11.8 3.0� 1.2 40.3� 38.9� 63.7� 30.9� 14.5 77.9� 39.4� 20.5

Table 2: Performance comparison of HYPMIX on limited data. EUCMIX is Euclidean mixup: SpeechMix (Jindal
et al., 2020b) for sound, TMix (Chen et al., 2020b) for text and Manifold Mixup (Verma et al., 2019a) for vision. n
is the number of labeled training samples per class. Improvements are shown with blue (↓). Bold shows the best
result. � shows significant (p<0.01) improvement over EUCMIX methods under Wilcoxon’s signed-rank test.

2018). We compare HYPMIX with TMix and Mix-
Text (Chen et al., 2020b) for supervised and semi-
supervised training respectively.

Vision Following Verma et al. (2019a), we use
PreActResNet18 (He et al., 2016) as the backbone
architecture (fθ(·)) and a linear layer as the classi-
fier (gφ(·)). We compare HYPMIX with manifold
mixup (Verma et al., 2019a) for different settings.

4.3 Training Setup
Speech We use Nesterov’s accelerated gradient
(Sutskever et al., 2013) using momentum of 0.9,
weight decay of 5e− 4, learning rate of 0.01 and
mini-batch size of 64 for 2000 epochs. For ESC-
10, we train the model on 5 folds, and for Ur-
banSound8k, we train the model on 10 folds to
report the average error rate. We randomly sam-
ple the mixing ratio from a uniform distribution,
r ∼ U(0, 1). For semi-supervised training, we use
50 unlabeled samples from each class.

Text We use AdamW (Loshchilov and Hutter,
2019) optimizer with a learning rate 1e− 5 for the
BERT encoder and 1e− 3 for the MLP. We follow
Chen et al. (2020b) to sample the mixing ratio r
from a beta distribution based on the number of
labeled samples. For semi-supervised setting, we
use 1000 unlabeled samples from each class.

Vision We use Nesterov’s accelerated gradient
(Sutskever et al., 2013) using momentum of 0.9
and learning rate of 0.1, batch size of 100 to train
for 2000 epochs. Following Verma et al. (2019a),
we sample the mixing ratio r ∼ Beta(2, 2), where
Beta denotes the Beta distribution.

5 Results and Analysis

5.1 Supervised Training with Limited Data
We compare HYPMIX in a limited training data
setup with baseline methods in Table 2. We ob-

serve that Euclidean mixup techniques (EUCMIX)
improve the performance over base models, indi-
cating the importance of using the latent repre-
sentation space of neural network architectures to
perform interpolative regularization (Verma et al.,
2019a). HYPMIX further improves performance
(p<0.01) over Euclidean methods across modali-
ties, validating that the hyperbolic space is able tp
better capture the complex geometry of latent rep-
resentations for different inputs when performing
interpolative operations.

HYPMIX shows maximum improvement when
applied on extremely low training data, with sam-
ples in order of n = 10. This is in line with works
(Zhou et al., 2021) which suggest that the varia-
tion generated by Möbius operations is very high
as compared to Euclidean operations, leading to
much more diverse samples from a small train-
ing set. This paves a path for better utilization of
low resource datasets for downstream tasks across
different modalities by leveraging the hyperbolic
space. For all modalities, the relative improvement
over the baseline architecture reduces with increas-
ing number of labeled samples per class (n). This
is in line with works (Verma et al., 2019b; Chen
et al., 2020b) observing similar trends, suggesting
that with an increase in number of labeled samples,
the overall diversity of interpolative representations
saturates, leading to lower relative improvements.

Across modalities, we observe maximum im-
provement when HYPMIX is applied on speech
datasets, since speech waves inherently possess hy-
perbolic nature (Khan and Panigrahi, 2016), and
their interpolative augmentation closely resembles
hyperbolic wave interference (Chaturvedi et al.,
1998). Improvements due to HYPMIX on text
datasets ties with works stating that text inherently
displays tree-like hierarchical characteristics and
can be better represented using Riemannian ge-
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Model Urdu SER (↓) Arabic HS (↓)

#Samples n 5 10 20 10 50 100

Base Model 28.7 23.8 18.2 45.5 42.1 40.6

Supervised Training Methods

+ EUCMIX 18.8 16.5 13.7 44.6 41.1 39.6
+ HYPMIX 16.5∗ 15.2∗ 12.5∗ 44.0∗ 40.3∗ 38.9∗

Semi-supervised Training Methods

+ EUCMIX 17.5 13.7 8.7 43.1 38.4 36.6
+ HYPMIX 15.0� 12.5� 5.0� 42.1� 37.5� 35.7�

Table 3: Performance comparison of HypMix in semi-
supervised settings with state-of-the-art methods in
terms of % Error rate. n is the number of labeled
training samples per class. Improvements are shown
with blue (↓) and poorer performance with red
(↑). Bold shows the best result. *, � show signif-
icant (p < 0.01) improvement over Euclidean super-
vised and semi-supervised methods, respectively, under
Wilcoxon’s signed-rank test.

ometry (Tifrea et al., 2019). The improvements
on vision datasets are in line with works suggest-
ing that performing augmentation operations over
images using Möbius operations improves general-
ization while increasing diversity as compared to
simplified Euclidean operations (Zhou et al., 2021).
Improvements across different modalities, datasets,
and base architectures indicate the modality, data,
and model agnostic nature of HYPMIX.

5.2 Semi-Supervised Results: Low-Resource

We probe the effect of using hyperbolic semi-
supervised learning (§3.4) for low resource datasets
using HYPMIX in Table 3. Using semi-supervised
learning shows significant improvements over their
supervised counterparts trained with limited data
for both Euclidean and hyperbolic (HYPMIX)
representations, indicating the importance of us-
ing unlabeled and augmented data as additional
training data. For both Euclidean and hyper-
bolic methods, we see larger improvements with
increasing the number of labeled samples n,
due to the increased number of permutations of
labeled-labeled, unlabeled-labeled, and unlabeled-
unlabeled samples encountered during training.
We observe greater improvements when semi-
supervised training is applied in the hyperbolic
space with HYPMIX (Figure 3) for both speech
and text as compared to EUCMIX, indicating that
the hyperbolic space is able to generate less noisy,
yet more diverse samples by effectively modeling
the complex latent space representations.

5 10 20 30

20

40

60
SpeechMix

HypMix

Urdu SER

%
IM

P
R

O
V

E
M

E
N

T

10 50 100 150

3

4

5

MixText

HypMix

Arabic HS

Figure 3: % improvement with semi-supervised learn-
ing with different resource settings in terms of labeled
samples per class. Red denotes EUCMIX and blue de-
notes HYPMIX.

Layer Set EUCMIX(↓) HYPMIX(↓)

{2, 4, 6, 8} 7.9 6.3
{4, 6, 8} 9.2 8.8
{0, 2, 4, 6} 8.5 7.7
{2, 4, 6} 7.1 7.5

Table 4: Layer-wise ablation (% Error rate) on ESC-10.

Across modalities, speech datasets that are aug-
mented with simpler methods such as mathematical
transforms show larger improvements as compared
to text datasets that are augmented with more com-
plicated methods like backtranslation. We attribute
this difference to the proximity of augmented unla-
beled samples to the original unlabeled data distri-
bution, suggesting that better augmentation meth-
ods and controlling the weights for Möbius Gyro-
midpoint Label Estimation (MGLE, §3.4) based on
the augmentation quality is an important factor for
the performance of semi-supervised methods.

5.3 Layer wise Ablation
We experiment with different sets of layers from
which we uniformly sample k to perform HYPMIX.
We experiment with the best performing layer sets
from corresponding previous works (Jindal et al.,
2020b; Chen et al., 2020b) for a fair comparison.

Speech Table 4 compares the error rates on the
ESC-10 dataset for Speechmix (Jindal et al., 2020b)
and HYPMIX. We observe that HYPMIX achieves
the best performance when the layer set has lay-
ers performing a max-pool operation in EnvNet-v2.
These layers capture different features of sound
such as frequency response and auditory perception
(Tokozume et al., 2018), suggesting that HYPMIX

is able to extend the training distribution by model-
ing various combinations of latent speech vectors
representing different auditory features using hy-
perbolic interpolation.



9865

Layer Set EUCMIX(↓) HYPMIX(↓)

φ 30.5 30.5
{7, 9, 12} 25.9 22.7
{6, 7, 9, 12} 27.8 21.8
{6, 7, 9} 28.1 24.9

Table 5: Layer-wise ablation (% Error rate) on AG
News with n = 10 labeled samples per class.

Text We compare different layer sets of BERT-
base (Devlin et al., 2019) for performing HYP-
MIX for text datasets in Table 5. Layers
{3, 4, 6, 7, 9, 12} of BERT-base contain the most
information about different aspects of natural
language (Jawahar et al., 2019). We experi-
ment with different combinations of the layer set
{3, 4, 6, 7, 9, 12}. EUCMIX achieves the best re-
sult when using the set {7, 9, 12} for interpolation,
layers containing the semantic and syntactic in-
formation. HYPMIX is able to better capture the
syntax tree information present in layer 6 (Jawahar
et al., 2019) and shows higher improvements when
the mixup layer is chosen from {6, 7, 9, 12}, vali-
dating the ability of the hyperbolic space to model
hierarchical information better than the Euclidean
space (Ganea et al., 2018).

During the layer-wise ablation study, we observe
that even though there is intersection between the
optimum layer sets of EUCMIX and HYPMIX, they
are not exactly the same. This leads to interest-
ing questions regarding the representations that Eu-
clidean and hyperbolic spaces capture, and how
can the hyperbolic space be further exploited for
modeling complex geometries.

5.4 Supervised HYPMIX with Complete Data

Model ESC10 (↓) US8K (↓) UrduSER (↓)

EnvNet-v2 (2018) 10.9 24.9 10.1
+ BC Learning (2018) 8.6 21.7 8.7
+ SpeechMix (2020b) 7.1 20.8 6.2

+ HYPMIX-Input 6.5� 20.9 5.0�

+ HYPMIX 6.3� 20.4� 2.5�

Table 6: Performance comparison in terms of % Error
rate(↓) of HypMix with baselines in supervised settings
with full training data. Bold shows the best result. �
show significant (p<0.01) improvement over previous
state-of-the-art method under Wilcoxon’s signed-rank
test.

We compare the performance of HypMix for three
benchmark and low resource speech datasets in Ta-
ble 6 by applying BC Learning (Tokozume et al.,

2018), and Speechmix (Jindal et al., 2020b) over
EnvNet-v2 with strong augmentation (Tokozume
et al., 2018). We observe that mixup-based ap-
proaches, i.e., BC learning and Speechmix improve
the performance over the standard learning models,
validating the importance of interpolative acous-
tic mixup based on the auditory perception of in-
put samples. HYPMIX achieves state-of-the-art
performance (p < 0.01) across all three datasets,
suggesting that the hyperbolic representation bet-
ter models the latent representation of speech sig-
nals and acoustic wave interference, compared to
the Euclidean space. We also present the results
of HYPMIX-Input, where we perform HYPMIX

over the raw inputs instead of latent representa-
tions. HYPMIX-Input outperforms SpeechMix for
two datasets, suggesting that the hyperbolic input
space itself is able to generate diverse synthetic
samples as compared to Euclidean methods.

5.5 Robustness to Adversarial Attacks

Method ESC-10 Urdu SER

FGSM I-FGSM FGSM I-FGSM
EUCMIX 87.92 97.50 68.74 82.50
HYPMIX 82.75 97.47 66.24 77.50

Table 7: Classification errors on adversarial examples
generated using white box FGSM and I-FGSM attacks.

Adversarial attacks provide inputs to models specif-
ically designed to confuse them. We compare
the robustness of HYPMIX and HYPMIX-Input
with BC Learning (Tokozume et al., 2018) and
Speechmix (Jindal et al., 2020b) by performing
white box adversarial attacks using Fast Gradi-
ent Sign Method (FGSM) (Goodfellow et al.,
2015) and Iterative Fast Gradient Sign Method (I-
FGSM) (Kurakin et al., 2016) in Table 7. We ob-
serve that HYPMIX is more robust by 6.1% and
HYPMIX-Input is robust by 5.8% compared to
their Euclidean counterparts, indicating that the
hyperbolic space helps the model generalize better
and make it more resistant to adversarial examples.

5.6 Cost of Hyperbolic Operations

HYPMIX requires additional hyperbolic transfor-
mations such as exponential and logarithmic map-
pings and tangential and hyperbolic tangential op-
erations on-top of EUCMIX. However, on a GPU,
they can be carried out in parallel. Hence, HYP-
MIX requires longer time only by a constant factor
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compared to EUCMIX, with the individual oper-
ations having similar time complexity, which is
of the order of the input dimensions of the latent
representations of the samples to be mixed. We
compare the per iteration time taken by HYPMIX

with EUCMIX in Table 8.

Method AGNews ESC-10

EUCMIX 0.826 0.862
HYPMIX 0.869 0.893

Table 8: Time (in seconds) per iteration for EUCMIX
and HYPMIX.

6 Conclusion and Future Work

Drawing inspiration from works showing that
speech, text, and vision data inherently possess
hyperbolic characteristics and can be better rep-
resented in the hyperbolic space, we propose
HYPMIX, a model, data, and modality agnostic
interpolative regularization method operating in
the hyperbolic space. We devise a Möbius Gyro-
midpoint Label Estimation (MGLE) technique to
predict labels for unlabeled training data and com-
bine it with HYPMIX to formulate a hyperbolic
semi-supervised learning method. HYPMIX out-
performs existing methods for benchmark and low
resource datasets across speech, text, and vision
in supervised and semi-supervised settings with
complete and limited training data. HYPMIX is
also more robust to white-box adversarial attacks
compared to Euclidean methods. HYPMIX being
model, data, and modality agnostic can be extended
to downstream tasks across modalities and inter-
polative augmentation for data such as sequences
and graphs. As future work, we plan to evaluate
HYPMIX on larger datasets and a variety of tasks
such as the GLUE and SuperGLUE benchmarks,
and tasks comprising multimodal settings.
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