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Abstract

With the wide availability of Pre-trained Lan-
guage Models (PLMs), multi-task fine-tuning
across domains has been extensively applied.
For tasks related to distant domains with differ-
ent class label sets, PLMs may memorize non-
transferable knowledge for the target domain
and suffer from negative transfer. Inspired by
meta-learning, we propose the Meta Distant
Transfer Learning (Meta-DTL) framework to
learn the cross-task knowledge for PLM-based
methods. Meta-DTL first employs task rep-
resentation learning to mine implicit relations
among multiple tasks and classes. Based on
the results, it trains a PLM-based meta-learner
to capture the transferable knowledge across
tasks. The weighted maximum entropy reg-
ularizers are proposed to make meta-learner
more task-agnostic and unbiased. Finally, the
meta-learner can be fine-tuned to fit each task
with better parameter initialization. We evalu-
ate Meta-DTL using both BERT and ALBERT
on seven public datasets. Experiment results
confirm the superiority of Meta-DTL as it con-
sistently outperforms strong baselines. We
find that Meta-DTL is highly effective when
very few data is available for the target task.

1 Introduction

Owning to the availability of Pre-trained Language
Models (PLMs), the performance of various text
classification tasks has been significantly improved.
Notable PLMs include BERT (Devlin et al., 2019),
ALBERT (Lan et al., 2020), XLNet (Yang et al.,
2019), T5 (Raffel et al., 2020), GPT-3 (Brown et al.,
2020) and many others. It can be safely concluded
that PLM-based approaches achieve state-of-the-art
results for a majority of text classification tasks.

Among these methods, a key procedure of PLMs
is fine-tuning, which enables parameters of PLMs
to fit specific datasets. Hence, the performance of
PLMs on a downstream task may be limited by
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Figure 1: A simple example of Meta Distant Transfer
Learning for review analysis. (Best viewed in color.)

the availability of the training set. As reported by
several benchmarks such as GLUE (Wang et al.,
2019b) and SuperGLUE (Wang et al., 2019a),
some PLMs may not perform well in low-resource
tasks. A popular solution in NLP is transfer learn-
ing (Zhuang et al., 2019; Alyafeai et al., 2020). For
PLMs, these models can be fine-tuned over both
source-domain and target-domain datasets by var-
ious multi-task training strategies (Li et al., 2019;
Arase and Tsujii, 2019). Unfortunately, several
studies reveal that multi-task training of PLMs
across domains does not always guarantee satis-
factory results (Sun et al., 2019; Wang et al., 2020).
As PLMs usually have large parameter space and
strong memorization power, learning from source-
domain datasets may force PLMs to memorize non-
transferable knowledge of source domains, leading
to the negative transfer effect (Wang et al., 2019d).

Besides, a large number of transfer learning al-
gorithms address tasks across similar sub-domains,
with the same set of class labels. 1 When there exist
large domain gaps and class label differences, these
transfer learning solutions are likely to fail. Con-
sider a simple, motivation example in Figure 1. De-

1For example, the Amazon Reviews (Blitzer et al., 2007)
dataset is often used for evaluating transfer learning algo-
rithms, which consists e-commerce product reviews divided
into four sub-domains: book, DVD, electronics and kitchen.
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spite the fact that the two datasets (SST-5 (Socher
et al., 2013) and Amazon Reviews (Blitzer et al.,
2007)) are diverse in domains and classification tar-
gets, they aim to solve similar review analysis tasks.
It would be beneficial for the two task-specific mod-
els to learn from each other. A few methods address
the distant domain issue in transfer learning (Tan
et al., 2017; Xiao and Zhang, 2020), but are not
designed for PLMs. A natural question arises: how
can we transfer knowledge across distant domains
with different classification targets for PLM-based
text classification?

Recently, meta-learning has been studied exten-
sively, which learns parameters that can be adapted
to a group of similar tasks (Finn et al., 2017, 2018).
For PLMs, Wang et al. (2020) suggest that training
a meta-learner for PLMs is highly effective to cap-
ture transferable knowledge across sub-domains.
However, this method is not designed for tasks
across diverse domains and class label sets. Ad-
ditionally, it lacks the mechanism to learn task-
agnostic representations and may fit too much to
specific targets in certain datasets.

To this end, the Meta Distant Transfer Learn-
ing (Meta-DTL) framework is proposed2. Spe-
cially, Meta-DTL employs a task representation
learning procedure to obtain a collection of proto-
type vectors for each task. To understand how to
transfer across these tasks and classes, we con-
struct a Meta Knowledge Graph (Meta-KG) to
characterize the implicit relations among tasks and
classes, based on the representations of multiple
tasks. The meta-learner in Meta-DTL can be ini-
tialized by any PLMs and trained by multi-task
learning with rich meta-knowledge injected from
Meta-KG. Additionally, we design the Weighted
Maximum Entropy Regularizers to make the model
more task-agnostic and unbiased. Finally, the meta-
learner can be fine-tuned to fit each task using its
own training set. In this way, the model is able to
digest the cross-task, transferable knowledge and
alleviates negative transfer.

We apply Meta-DTL to BERT (Devlin et al.,
2019) and ALBERT (Lan et al., 2020) for three
sets of NLP tasks (seven public datasets in total):
i) coarse and fine-grained review analysis across

2We name our algorithm to be Meta Distant Transfer
Learning because it is inspired by the idea of meta-learning
to capture the cross-task knowledge for task adaptation. We
would like to clarify that Meta-DTL is used in a distant trans-
fer learning setting for PLMs, instead of the traditional K-way
N-shot setting in meta-learning (Finn et al., 2017, 2018).

domains; ii) natural language inference (across sen-
tence relation prediction and scientific question
answering); and iii) lexical semantics (across hy-
pernymy detection and lexical relation classifica-
tion). Experiments show that Meta-DTL consis-
tently outperforms strong baselines. We also show
that Meta-DTL is highly useful for text classifica-
tion when very few training samples of the target
task are available.

2 Related Work

In this section, we summarize the related work on
PLMs, transfer learning and meta-learning.

2.1 Pre-trained Language Models

PLMs have brought NLP to a new era, pushing
the performance of various NLP tasks to new
heights (Qiu et al., 2020). Among these models,
ELMo (Peters et al., 2018) employs BiLSTM to
learn context-sensitive embeddings from both direc-
tions. BERT (Devlin et al., 2019) is one of the most
popular PLMs that learns language representations
by transformer encoders. ALBERT (Lan et al.,
2020) employs several parameter sharing and fac-
torization techniques to reduce the sizes of BERT-
style models. Other transformer encoder-based
architectures include Transformer-XL (Dai et al.,
2019), XLNet (Yang et al., 2019), Big Bird (Za-
heer et al., 2020), etc. The encoder-decoder archi-
tectures are used in T5 (Raffel et al., 2020) and
GPT-3 (Brown et al., 2020), which are ultra-large
PLMs with 11 billion and 175 billion parameters,
respectively. PLMs can also be pre-trained by su-
pervised tasks, such as MT-DNN (Liu et al., 2019).
Apart from pre-training PLMs, a few works fo-
cus on fine-tuning, such as Sun et al. (2019); Cui
et al. (2019); Zhao and Bethard (2020); Wang et al.
(2020). Different from these works, we pay at-
tention to transferring knowledge across distant
domains for PLMs.

2.2 Transfer Learning

Transfer learning is a widely used paradigm for
transferring resources from source domains to tar-
get domains (Pan and Yang, 2010; Lu et al., 2015;
Zhuang et al., 2019; Wang et al., 2019c). For deep
neural networks, it is common practice to learn
similar tasks by multi-task learning. Among these
methods, the “shared-private” architectures are fre-
quently applied (Liu et al., 2017; Chen et al., 2018;
Qiu et al., 2019), consisting of task-specific sub-
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Figure 2: The high-level architecture of Meta-DTL. (Best viewed in color.)

networks and a shared sub-network. Meta-DTL
transfers knowledge across tasks from a different
perspective, which captures transferable knowledge
by the meta-learner and passes the knowledge to
task-specific models by fine-tuning.

2.3 Meta-learning

Meta-learning aims to train meta-learners that can
quickly adapt to different tasks with little training
data (Vanschoren, 2018). Typically, meta-learning
is applied in few-shot learning as a K-way N-shot
problem, such as few-shot image classification in
computer vision (Zhang et al., 2020; Afrasiyabi
et al., 2020). In NLP, applications that employ
meta-learning include few-shot link prediction in
knowledge graphs (Chen et al., 2019), relation clas-
sification (Ye and Ling, 2019; Wang et al., 2021b),
natural language generation (Chen et al., 2020),
question answering (Hua et al., 2020), named entity
recognition (Yang and Katiyar, 2020), text classi-
fication (Bao et al., 2020; Wang et al., 2021a) etc.
In contrast, Meta-DTL is not a typical K-way N-
shot algorithm. Similar to Wang et al. (2020); Pan
et al. (2021), it leverages the techniques of meta-
learning to obtain the meta-learner, which is better
at learning knowledge across tasks.

3 Meta-DTL: The Proposed Framework

In this section, we first present our task. After that,
the technical details of the Meta-DTL framework
are elaborated.

3.1 A Brief Overview of Meta-DTL

3.1.1 Task Overview
Let T1, · · · , TK be K text classification tasks,
with the corresponding training sets denoted as
D1, · · · ,DK . In the single-task setting, the goal
of the task Ti is to learn a model from Di to map
its input instance to one of the class labels in Ci,
where Ci is the class label set of Ti.

Apart from the domain differences, we consider
the situation where the class label sets may also
be different. Formally, among the K tasks, there
exists at least one task pair (Ti and Tj) such that
the lassociated abel sets Ci 6= Cj . 3 Re-consider the
example in Figure 1. The goal is to classify reviews
into a 5-point rating scale and a positive/negative
rating scale, respectively, in two distant domains
(i.e., movies and e-commerce products). We can
conclude it is crucial for the model to learn what to
transfer and how to transfer across these tasks, in
order to improve the performance of both models.

3.1.2 Solution Overview
An overview of Meta-DTL is shown in Figure 2.
It consists of three modules: i) Task Representa-
tion Learning (TRL), ii) Multi-task Meta-learner
Training (MMT), and iii) Task-specific Model Fine-
tuning (TMF).

Specially, for each task Ti, TRL employs a pre-

3We add such constraint in our work to show that Meta-
DTL works well in more challenging scenarios. Nonetheless,
Meta-DTL also works without such constraint.
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trained task encoder to do a one-pass scan over
the training set Di. It represents each task Ti as
a collection of prototypical vectors, denoted as
Pi = {~pi,j} where ~pi,j is the j-th prototypical
embedding vector of Ti, corresponding to the j-th
class in Di. Here, Pi gives us a panoramic pic-
ture of the task Ti in the embedding space. As we
aim to address distant transfer learning, simple
multi-task training inevitably suffers from nega-
tive transfer. In MMT, we obtain a meta-learner
M that only digests transferable knowledge across
all the K tasks. We first construct a prototype-
based Meta Knowledge Graph (Meta-KG, denoted
as G) from Pi, · · · ,PK , implicitly describing the
relations among tasks and classes. For each train-
ing instance of all tasks xi,j , we query xi,j in G
to generate the meta-knowledge score mi,j , which
represents the degree of the knowledge transferabil-
ity of the input xi,j . 4 Additionally, the Weighted
Maximum Entropy Regularizers (WMERs) are pro-
posed and integrated into the model to make the
meta-learnerM more task-agnostic and unbiased.
Finally, in TMF, we fine-tune the meta-learnerM
to generate the K classifiers for the K tasks, based
on their own training sets D1, · · · ,DK .

3.2 Task Representation Learning

The first step of TRL is to learn the implicit re-
lations among classes across K tasks. In meta-
learning, prototypes are frequently employed to
characterize the class information by concrete rep-
resentations (Snell et al., 2017). We notice that
in NLP tasks, a lot of class labels have rich mean-
ings that are useful to model the class semantics.
For example, the label positive in review analysis
can be directly associated with positive terms in re-
views (e.g., “price-worthy”, “good value”, “enjoy-
able”). Let Di,j be the subset of Di with instances
assigned to the j-th class label, i.e., Di,j = {xi,j ∈
Di|ci,j = cj , cj ∈ Ci}. The j-th prototypical vec-
tor ~pi,j of task Ti is defined as follows:

~pi,j =
1

|Di,j |
∑

xi,j∈Di,j

E(xi,j , ci,j)

where E(·, ·) is an embedding function that encodes
both the textual input xi,j and its class label ci,j by
PLMs. By combining all such vectors, we obtain

4Utilizing the meta-knowledge score mi,j can be also
viewed as selecting the most common training instances in
the distant transfer learning setting.

Algorithm 1 Meta-learner Training Algorithm

1: Construct the Meta-KG G(V,L);
2: for each training instance xi,j ∈

⋃
i=1,··· ,K Di

do
3: Compute αi,j , βi,j and mi,j based on G;
4: end for
5: Restore the underlying PLM’s parameters from

the pre-trained model, with others randomly
initialized;

6: while number of training steps does not reach
a limit do

7: Sample a batch B = {xi,j} from⋃
i=1,··· ,K Di, each selected with the proba-

bility p(xi,j) = 1
K|Di| ;

8: Update all parameters by minimizing the
loss function

∑
xi,j∈B L(xi,j);

9: end while
10: return the meta-learnerM (i.e., the collection

of updated parameters of the PLM).

the representation of the task Ti as: Pi = {~pi,j}. 5

The self-attention mechanism (Vaswani et al.,
2017) frequently used in PLMs such as BERT (De-
vlin et al., 2019) and ALBERT (Lan et al., 2020)
makes it quite straight-forward to implement the
function E(·, ·). For single-text classification, the
input to the pre-trained encoder is formatted as
“[CLS]xi,j[SEP]ci,j[SEP]”. For text pairs, the in-
put is “[CLS]x(1)i,j [SEP]x(2)i,j [SEP]ci,j[SEP]” where

x
(1)
i,j and x(2)i,j represent the pair of xi,j . During the

forward pass of the hidden layers, the text inputs
and the class label can attend to each other. Hence,
the label information is fused into the input text rep-
resentations. Finally, we take the average pooled
output of the last encoder layer as E(xi,j , ci,j). 6

3.3 Multi-task Meta-learner Training

The training algorithm of the meta-learner is sum-
marized in Algorithm 1.

3.3.1 Obtaining the Meta-knowledge
After TRL, we represent all the acquired knowl-
edge Pi, · · · ,PK as the Meta-KG G(V,L). In G,
each prototypical vector ~pi,j is treated as a node

5Note that we have also tested using multiple prototypical
vectors (generated by K-means) to represent the semantics of
a class and achieved similar performance. For simplicity, we
use the “one-vector-per-class” setting in this paper.

6In some cases where the class labels have no semantic
meanings (for example, IDs only), the input embeddings of
the class labels to the task encoder can be randomly initialized.
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in V . Each edge li,j,m,n ∈ L denotes the simi-
larity between two prototypical vectors ~pi,j and
~pm,n. For simplicity, we have assume edge weight
w(li,j,m,n) = cos(~pi,j , ~pm,n), with cos(·, ·) being
the cosine similarity function. Hence, G is a highly
condensed representation of all the K tasks, con-
sidering the class semantics.

During MMT, for each input xi,j , we query xi,j
in G to generate the meta-knowledge mi,j . Here,
we treat the meta-knowledge as a scalar to repre-
sent the degree of transferablity. Firstly, we define
the instance-level meta-knowledge αi,j as follows:

αi,j = max
~pm,n∈P̃i

cos(E(xi,j , ci,j), ~pm,n)

where P̃i is the collection of all prototypical vectors
not associated with the task Ti. Hence, if (xi,j , ci,j)
is similar to the instances in any class of the K − 1
tasks, it should be more transferable, thus is more
useful when we train the meta-learner.

However, using the weight αi,j alone is not suffi-
ciently robust when the input instance is an abnor-
mal sample (i.e., an outlier). We further consider
the class-level meta-knowledge βi,j as follows:

βi,j = max
~pm,n∈P̃i

cos(~pi,j , ~pm,n)

where we replace E(xi,j , ci,j) with its class proto-
typical vector ~pi,j . We can see that the computation
is highly efficient as all such weights have been
pre-computed and stored in G. Finally, the meta-
knowledge mi,j is computed as: mi,j =

αi,j+βi,j
2 .

3.3.2 Training the Meta-learner
As discussed earlier, the properties of a good meta-
learner should be twofold: i) capturing transfer-
able knowledge and ii) being task-agnostic and
unbiased.

The architecture of the meta-learner in Meta-
DTL is similar to MT-DNN (Liu et al., 2019) where
each task has its own task-specific output layer, plus
a shared PLM-based encoder. The parameters of
the underlying PLM encoder are initialized by its
pre-training results. A meta controller is designed
to control the training process. It constrains that
each data instance xi,j is selected with the probabil-
ity p(xi,j) = 1

K|Di| . Hence, each task Ti is selected
with the probability p(Ti) =

∑
xi,j∈Di

p(xi,j) =
1
K . Here, we employ the uniform distribution, i.e.,
p(Ti) = 1

K , which ensures that each task has equal
opportunity to be learned. During training, the first

loss is the weighted cross-entropy lossLCE(xi,j): 7

LCE(xi,j) = −
∑
c∈Ci

1(ci,j=c)mi,j log τc(xi,j)

where 1(·) is the indicator function that returns 1 if
the input function is true and 0 otherwise. τc(xi,j)
is the predicted probability of xi,j associated with
the class c ∈ Ci. LCE(xi,j) ensures that each sam-
ple xi,j is weighted by mi,j . Hence, transferable
instances gain larger weights during training.

However, minimizing LCE(xi,j) may result in
a biased meta-learner. Consider a simple exam-
ple where T1 and T2 are highly similar to each
other; T3 is more dis-similar. Based on the previ-
ous procedure, training instances of T1 and T2 have
larger weights in general. Hence, the meta-learner
is biased towards T1 and T2, which gives poor ini-
tialization values when learning the final model
for T3. To make the model more task-agnostic, in-
spired by Jamal and Qi (2019), we integrate the
meta-knowledge into the maximum entropy regu-
larization and propose the Weighted Maximum En-
tropy Regularizers (WMERs) as an auxiliary loss,
denoted as LME(xi,j):

LME(xi,j) = −
∑
c∈Ci

mi,j

|Ci|
log τc(xi,j)

where the predicted probability of each sample
xi,j is compared against the |Ci|-dimensional uni-
form distribution ( 1

|Ci| , · · · ,
1
|Ci|) by cross-entropy,

weighted by mi,j . LME(xi,j) penalizes the meta-
learner for fitting too much to specific tasks, avoid-
ing the generation of biased models. Finally, the
total sample-wise loss L(xi,j) is derived as:

L(xi,j) = −
∑
c∈Ci

mi,j(1(ci,j=c)+
λ

|Ci|
) log τc(xi,j)

where λ ∈ (0, 1) is a pre-defined balancing factor
between the two losses.
Discussion. Based on the derivation of L(xi,j),
we can see that each sample xi,j is only associ-
ated with a |Ci|-length constant vector where each
element is mi,j(1(ci,j=c) +

λ
|Ci|), which can be pre-

computed based on G. Re-consider the process
in Algorithm 1. We do not use second-order up-
date steps similar to MAML (Finn et al., 2017).
This is because i) such training process of large-
scale PLMs would be computationally expensive;

7For simplicity, we omit all regularization terms in the loss
function throughout this paper. The three losses LCE(xi,j),
LME(xi,j) and L(xi,j) refer to the sample-wise loss only.
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ii) our algorithm does not have any meta-testing
steps. Hence, our algorithm is highly efficient for
learning across multiple NLP tasks in a large scale.

3.4 Task-specific Model Fine-tuning

After obtaining the meta-learnerM, in TMF, we
fine-tune M to generate K classifiers for the K
underlying tasks separately, based on their own
task-specific training sets D1, · · · ,DK . The meta-
knowledge and WMERs are removed from the loss
function. Hence, the total dataset-level loss func-
tion L∗(Ti) of the task Ti is defined as follows:

L∗(Ti) = −
∑

xi,j∈Di

∑
c∈Ci

1(ci,j=c) log τ
∗
c (xi,j)

where τ∗c (xi,j) is the task-specific prediction func-
tion of the input xi,j w.r.t. the class c ∈ Ci.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the performance of Meta-DTL and com-
pare it against strong baselines.

4.1 Datasets and Experimental Settings

We employ both BERT (Devlin et al., 2019) and
ALBERT (Lan et al., 2020) as our PLMs to evaluate
Meta-DTL8. Three sets of NLP tasks are used for
evaluation, with the statistics of all the seven public
datasets reported in Table 1:

• Review Analysis: It transfers knowl-
edge across three datasets for coarse and
fine-grained review sentiment classification,
namely Amazon (Blitzer et al., 2007),
IMDb (Maas et al., 2011) and SST-5 (Socher
et al., 2013). Note that the domains of SST-5
and IMDb are different from Amazon.

• Natural Language Inference: Two different
sentence pair classification tasks related to
Natural Language Inference (NLI) are con-
sidered. MNLI (Williams et al., 2018) is a
large-scale benckmark dataset, with the task
of predicting the relation between a sentence
pair as “entailment”, “neutral” or “contradic-
tion”. SciTail (Khot et al., 2018) is a scientific
question answering task, with only two labels:
“entailment” and “neutral”.

8We use Google’s official base models. See: https://
github.com/google-research/bert and https:
//github.com/google-research/albert.

• Lexical Semantics: We further consider two
term pair classification tasks extensively stud-
ied in lexical semantics. Shwartz (Shwartz
et al., 2016) is a popular dataset for hyper-
nymy detection, which aims at classifying
term pairs into “hypernymy” (“is-a”) or “non-
hypernymy” based on their semantic mean-
ings. BLESS (Baroni and Lenci, 2011) is a
dataset derived from WordNet, which is used
to evaluate lexical relation classification mod-
els. The BLESS task involves a wider spec-
trum of lexical relation types, such as hyper-
nymy, co-hyconymy and meronymy.

In each set of the experiments, we transfer knowl-
edge from all the other tasks in the same set to the
target one. For example, the model for SST-5 is
trained by transferring the knowledge from both
Amazon and IMDb, together with its own train-
ing set (SST-5). The training/development/testing
splits of Amazon and MNLI are the same as
in Wang et al. (2020). As IMDb does not contain a
separate development set, we randomly sample a
proportion of the training set for parameter tuning.
We use the lexical split of the Shwartz dataset in
the experiments to prevent lexical memorization
and make the results more robust. For data splits
of other datasets, refer to their original papers. 9

We implement Meta-DTL and all the baselines
on two popular PLMs: BERT (Devlin et al., 2019)
and ALBERT (Lan et al., 2020). All the algorithms
are implemented with TensorFlow and trained with
NVIDIA Tesla V100 GPU (32GB). We use Ac-
curacy as the evaluation metric for all the tasks.
For better reproductivity, we uniformly set the se-
quence length as 128 for the first two sets of experi-
ments and 32 for the third, and set the batch size as
32. The learning rate is tuned from {5e−5, 1e−5}.
The numbers of epochs for MMT and TMF are
tuned from 1 ∼ 3 and 3 ∼ 5, respectively. λ is
set to 0.1 in default. The parameter regularization
and the optimizer settings are the same as in De-
vlin et al. (2019). Since we do not modify the
architecture of our final models, models trained
by Meta-DTL should have the same size and in-

9Note that the experimental settings in our work may look
similar to Wang et al. (2020). However, the task of the previous
work is to transfer knowledge among different sub-domains
within the same task, such as different sub-domain datasets in
Amazon and MNLI, respectively. Our experimental settings
are significantly more challenging as we aim to transfer knowl-
edge across datasets with distant domains, language styles and
class labels. The learning gaps between tasks in our work are
much larger than Wang et al. (2020).

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/google-research/albert
https://github.com/google-research/albert
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Name Task Description Classification Label Set #Train #Dev. #Test
SST-5 Fine-grained movie review analysis {1, 2, 3, 4, 5} 8,544 1,101 2,210
Amazon Coarse-grained product review analysis {positive, negative} 7,000 500 500
IMDb Coarse-grained movie review analysis {positive, negative} 23,785 1,215 25,000
MNLI NLI across multiple genres {entailment, neutral, contradiction} 382,702 10,000 9,815
SciTail Scientific question answering {entailment, neutral} 23,596 1,304 2,126
Shwartz Hypernymy detection {hypernymy, non-hypernymy} 20,335 1,350 6,610
BLESS Lexical relation classification {event, meronymy, random, 18,582 1,327 6,637

co-hyponymy, attribute, hypernymy}

Table 1: Statistics and data summarization of all the seven public datasets used in the experiments.

PLM Method Review Analysis Tasks NLI Tasks Lexical Semantic Tasks
SST-5 Amazon IMDb Avg. MNLI SciTail Avg. Shwartz BLESS Avg.

Bert

Single-task 53.4 89.3 95.2 79.3 83.0 92.4 87.7 92.6 93.2 92.9
Multi-task 53.2 89.8 95.6 79.5 83.8 92.0 87.9 92.8 93.0 92.9
Task Comb. 53.2 89.5 94.1 78.9 83.7 92.2 87.9 91.3 91.7 91.5
Meta-FT∗ 53.6 91.0 95.8 80.1 83.9 93.4 88.6 92.8 93.5 93.1
Meta-DTL 54.6†† 91.8†† 98.2†† 81.5 84.2† 93.6†† 88.9 93.2†† 94.8†† 94.0

Albert

Single-task 51.0 87.6 93.6 77.4 80.7 88.2 84.4 92.0 90.7 91.3
Multi-task 50.3 88.1 94.2 77.5 81.0 88.3 84.6 92.4 91.0 91.7
Task Comb. 49.8 88.0 93.6 77.1 80.8 85.2 83.0 91.4 90.6 91.0
Meta-FT∗ 50.8 88.4 95.0 78.0 81.2 88.7 84.9 92.4 91.9 92.1
Meta-DTL 51.2†† 88.8†† 97.6†† 79.2 82.4†† 89.2†† 85.8 92.8† 93.4†† 93.1

Table 2: General performance of Meta-DTL and all the baselines over all the datasets in terms of accuracy. The
p-values of the paired t-tests for each dataset are marked as follows: †† : p < 0.05 and † : 0.05 < p < 0.1.

ference speed as BERT (Devlin et al., 2019) or
ALBERT (Lan et al., 2020). In the following exper-
iments, we reproduce results for all baselines, and
report the accuracy scores of both baselines and our
method averaged from three random runs (with dif-
ferent seeds). Hence, the impact of random seeds
is minimized.

4.2 General Performance Comparison

In this section, we compare Meta-DTL against pre-
vious approaches. The following four methods are
considered as strong baselines:

• Single-task: Fine-tuning BERT (Devlin et al.,
2019) or ALBERT (Lan et al., 2020) on the
single-task training set only.

• Multi-task: Fine-tuning the PLM on all the
tasks by multi-task learning. Each task has
its own prediction heads, with the architecture
similar to MT-DNN (Liu et al., 2019).

• Task Combination: Combining all the train-
ing sets and treating them as one task. The
label set of this method is:

⋃
i=1,··· ,K Ci.

• Meta-FT∗: To our knowledge, Meta-
FT (Wang et al., 2020) achieves the highest
performance on cross-domain transfer learn-
ing for PLMs. However, it can not handle

tasks with different class label sets. We imple-
ment a variant named Meta-FT∗, which has a
separate prediction head for each task.

The results of Meta-DTL and the baselines on all
seven testing sets are shown in Table 2. Generally
speaking, the performance gains of Meta-DTL over
all three sets of tasks and seven datasets are con-
sistent. With the integration of Meta-DTL, the ac-
curacy of fine-tuned BERT boosts 2.2% for review
analysis, 1.2% for NLI and 1.1% for two lexical
semantic tasks. A similar conclusion holds for AL-
BERT. It shows that even the tasks are different in
domains and class label sets, Meta-DTL can make
PLMs learn from these distant tasks effectively. We
also conclude that simple multi-task training does
not have significant improvement. Hence, trivial
learners may easily suffer from negative transfer.
For example, the performance on SST-5 drops on
both BERT and ALBERT when the model is jointly
trained with Amazon and IMDb, since the learn-
ing objective of SST-5 is different from those of
Amazon and IMDb. Meta-FT∗ (Wang et al., 2020)
is the most competitive approach but is inferior to
Meta-DTL due to the lack of modeling the learn-
ing process across distant tasks and task-agnostic
designs. In summary, Meta-DTL’s distant transfer
learning ability is hence clearly confirmed.
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Task w/o.IMK w/o.WMER Full
SST-5 54.0 53.8 54.6
Amazon 90.6 90.8 91.8
IMDb 97.0 97.6 98.2
MNLI 84.0 84.1 84.2
SciTail 92.9 92.7 93.6
Shwartz 91.8 92.2 93.2
BLESS 93.5 93.8 94.8
Avg. 86.4 86.6 87.2

Table 3: The ablation study results of Meta-DTL on
seven testing sets in terms of accuracy. IMK stands for
“injecting meta-knowledge”.

Task αi,j βi,j mi,j

(w/o. class label)
SST-5 54.0 54.2 54.2
Amazon 91.1 90.6 91.5
IMDb 97.9 97.2 98.1
MNLI 83.8 83.2 84.0
SciTail 92.2 91.0 93.2
Shwartz 90.4 92.2 93.1
BLESS 93.1 93.2 94.8
Avg. 86.0 85.9 86.9

Table 4: Meta-DTL performance with different meta-
knowledge on seven testing sets in terms of accuracy.

4.3 Detailed Model Analysis

In this section, we analyze the algorithmic perfor-
mance of Meta-DTL in various aspects.
Ablation Study. In Meta-DTL, we employ two
important techniques to capture transferable knowl-
edge, namely injecting meta-knowledge and ap-
plying WMERs. In the ablation study, we disable
one technique from our full model each time. We
report the results on the testing sets of the seven
tasks, with BERT as the underlying PLM, shown
in Table 3. The results show that injecting meta-
knowledge is slightly more effective than applying
WMERs in five out of seven tasks. However, there
is no large difference between the two techniques.
Therefore, both techniques are proved important
for acquiring a good meta-learner.
Analysis of Meta-knowledge. We further ana-
lyze how different parts of the meta-knowledge
contribute to the overall performance, with results
shown in Table 4. Columns entitled αi,j and βi,j
refer to the adoption of one type of the scores only.
mi,j (w/o. class label) is a variant of Meta-DTL
without using the class label information for task

80

85

90

95

MNLI SciTail Shwartz BLESS Avg.

Ac
cu

ra
cy

Number of Epochs in MMT

1 2 3

Figure 3: Tuning the number of epochs in MMT (%).

representation learning. From the results, we can
see that both αi,j and βi,j are effective for learning
the meta-knowledge. Comparing mi,j (w/o. class
label) to the full implementation, we can see that
injecting class label information is also useful.
Parameter Analysis. During MMT, the training
data in each batch is sampled from different tasks
based on p(Ti). The setting p(Ti) = 1

K leads to the
under-sampling of large datasets and over-sampling
of small ones. Hence, it is infeasible to compute the
number of epochs. In this work, we say MMT fin-
ishes one epoch when it runs

∑
i=1,··· ,K |Di|
|B| training

steps. We vary the number of epochs in MMT, keep
other parameters as default and report the perfor-
mance of downstream tasks over the development
sets. The results on NLI and lexical semantics tasks
are shown in Figure 3. The experiments show that
too many epochs may hurt the overall performance,
forcing the PLM to memorize too much informa-
tion from non-target tasks. We suggest that one or
two epochs of MMT are sufficient for most cases.
We also fix the number of epochs in MMT as 2
and tune the hyper-parameter λ from 0 to 0.5, with
the results illustrated in Figure 4. We can see that
a suitable choice for λ ranges from 0.1 to 0.2. A
larger value of λ can inject too much class label
noise in the training process, harming the perfor-
mance. We also tune the hyper-parameters during
TMF (i.e, the learning rate and epoch). We find
that when we apply Meta-DTL, we generally do
not need to change hyper-parameter settings com-
pared to the original fine-tuning approach (Devlin
et al., 2019). Due to space limitation, we do not
elaborate.

4.4 Learning with Small Data

One advantage of transfer learning across tasks
is to reduce the amount of labeled training data
for target tasks. As MNLI is the largest dataset
among all, we randomly sample only 1%, 2%, 5%,
10% and 20% of the original training data to train
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Score Task Review Text Label
High Amazon ...it is just one big failure and is to be avoided... negative

IMDb I can’t believe I waste my time watching this garbage!... negative
SST-5 The more you think about the movie, the more you will probably like it. 4 (weakly positive)
SST-5 No, I hate it. 1 (strongly negative)

Low Amazon Racism is not the problem with this book - sure...5 Chinese brothers... negative
SST-5 ... plays like a badly edited , 91-minute trailer (and) the director can’t... 1 (strongly negative)

Table 5: Cases of review texts in Amazon, SST-5 and IMDb with high and low meta-knowledge scores.
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Figure 4: Tuning the hyper-parameter λ in MMT (%).

PCT Single Meta-FT∗ Meta-DTL
1% 62.5 64.1 66.5 (+4.0%)
2% 67.5 68.2 69.8 (+2.3%)
5% 72.8 73.8 74.2 (+1.4%)
10% 75.8 76.2 77.6 (+1.8%)
20% 80.4 80.8 81.4 (+1.0%)

Table 6: Prediction accuracy on the testing set when
only part of the MNLI training set is employed (%).

the model. The full SciTail training set is used for
knowledge transfer. We list the results on the MNLI
testing set with and without Meta-DTL training in
Table 6. The results produced by Meta-FT∗ are
also compared. As seen, Meta-DTL improves the
performance regardless of the percentages of the
training sets. It has a larger increase in accuracy on
smaller training sets (a 4.0% increase on 1% of the
training set vs. a 1.0% increase on 20%).

4.5 Case Studies

We further present some cases for a better under-
standing of what the meta-knowledge is across
tasks. In Table 5, review texts from Amazon, SST-5
and IMDb with high and low mi,j scores are illus-
trated, together with their class labels. As seen,
although there exist some domain and class label
differences, our algorithm is able to find review
texts that express general polarities and should be
transferable across the three tasks. For instance,
the expressions with high scores such as “one big
failure” and “garbage” give strong indications of

their polarities, no matter what the class label set is
concerned. In contrast, low-score texts “5 Chinese
brothers” and “91-minute trailer” describe specific
details about certain subjects, and are not much
useful for knowledge transfer. Hence, the learned
meta-knowledge is truly insightful.

5 Conclusion and Future Work

In this paper, we propose the Meta-DTL framework
for PLMs, to capture knowledge from tasks with
distant domains and class labels. Extensive experi-
ments confirm the effectiveness of Meta-DTL from
various aspects. Future work includes: i) applying
Meta-DTL to other PLMs and NLP tasks, and ii)
exploring how it can benefit other NLP models.
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