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Abstract

The Uniform Information Density principle
states that speakers plan their utterances to re-
duce fluctuations in the density of the informa-
tion transmitted. In this paper, we test whether,
and within which contextual units this princi-
ple holds in task-oriented dialogues. We show
that there is evidence supporting the principle
in written dialogues where participants play
a cooperative reference game as well as in
spoken dialogues involving instruction giving
and following. Our study underlines the im-
portance of identifying the relevant contextual
components, showing that information content
increases particularly within topically and ref-
erentially related contextual units.

1 Introduction

Due to production and perception errors, differ-
ences between individuals, and other sources of
uncertainty, language use for information transmis-
sion can be thought to happen through a noisy chan-
nel. Effective and efficient information exchange
under such conditions can be modelled using the
tools of Information Theory (Shannon, 1948). In-
deed, information-theoretic models have success-
fully accounted for surprisal in speech perception
(Jelinek et al., 1975; Clayards et al., 2008), read-
ing (Keller, 2004; Demberg and Keller, 2008; Levy
et al., 2009), and sentence interpretation (Levy,
2008; Gibson et al., 2013), providing psycholin-
guistic evidence that the information content of
linguistic signals is related to comprehension pro-
cessing effort.

Speakers, too, are sensitive to the properties of
the communication channel. They are thought to si-
multaneously minimise their own production effort
and the addressee’s processing effort (Clark and
Wilkes-Gibbs, 1986; Clark and Schaefer, 1989).
The most efficient way of dealing with both pres-
sures, according to Information Theory, is to trans-
mit information at a constant rate (Genzel and Char-
niak, 2002), making linguistic choices that reduce

fluctuations in the density of the information trans-
mitted. Evidence for the principle of uniform in-
formation density (UID; Jaeger and Levy, 2007;
Jaeger, 2010) has been found at many levels of
language production: speakers tend to reduce the
duration of more predictable sounds (Aylett and
Turk, 2004, 2006; Bell et al., 2003; Demberg et al.,
2012); they tend to drop sentential material within
more predictable scenarios (Jaeger and Levy, 2007;
Jaeger, 2010; Frank and Jaeger, 2008); in spoken
dialogue they are more likely to overlap at turn tran-
sitions when information density is low (Dethlefs
et al., 2016); and the rate at which they transmit in-
formation in texts is uniform (Genzel and Charniak,
2002, 2003; Qian and Jaeger, 2011). Empirically,
it is as yet unclear whether information density re-
mains uniform throughout conversations (Vega and
Ward, 2009; Doyle and Frank, 2015a,b; Xu and
Reitter, 2018).

That information density is not always uniform
in dialogue may be due to the complex structure of
conversational context (Clark and Brennan, 1991),
which not only includes previous utterances and
world knowledge, but can also comprise preceding
interactions between the interlocutors, their percep-
tual input, and their goals. This paper tests the UID
principle on the previously unexplored setting of
task-oriented dialogue, with its well-defined struc-
tural units and more constrained context than in
open domain dialogues. To estimate information
density, we use a pre-trained Transformer-based
language model, which provides more robust mea-
surements than the n-gram models used in prior
work. We study whether, and within which struc-
tural units the UID principle holds, finding new
evidence in support of it in certain structural units
of both written cooperative reference games and
spoken map navigation dialogues.! Our study high-
lights the importance of identifying relevant con-

!Code and statistical analysis are available at https: //
github.com/dmg-illc/uid-dialogue.
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textual structures, showing that topically and refer-
entially related contextual units correspond to more
uniform information transmission profiles.

2 Measuring Information Content

To investigate whether information density is uni-
form throughout a discourse, each lexical choice
can be modelled as a random variable Y; and its
information density estimated as the Shannon in-
formation content H (Y;). For the UID principle to
hold, the amount of information transmitted with
every new word H (Y;) must remain constant. We
can rewrite H(Y;) as H(X;|L;,C;), where C; is
the entire relevant context and L; is the local con-
text, both influencing lexical choice X;. Typically,
H(X;|C;, L;) is not estimated directly. The term
is further decomposed into H(X;|L;), the infor-
mation content of X; given the local context, and
I(X;; Ci|L;), the locally conditioned mutual infor-
mation between X; and the entire relevant context:

As the relevant context is built up, I(X;; Ci|L;)
is assumed to increase: next word prediction be-
comes easier when more contextual cues are avail-
able (Genzel and Charniak, 2002). So for the UID
principle to hold—i.e., for H (X;|C;, L;) to remain
constant in Eq. 1—the locally conditioned infor-
mation content H(X;|L;) must increase, too, as
relevant context accumulates.

The local context of a word choice is typically
taken to be the utterance or sentence, and these are
also considered as the units of information trans-
mission (Genzel and Charniak, 2002, 2003; Doyle
and Frank, 2015a,b; Qian and Jaeger, 2011; Xu
and Reitter, 2018). The information content of an
utterance is computed by averaging over the nega-
tive logarithms of all locally contextualised word
probabilities:

H(X|L)= ZlogZP(xi]ml, o Tiz1) (2]

1
|X’ zr,€X
To remove the confounding effect of utterance
length on information content (Keller, 2004), we
use Xu and Reitter’s (2018) normalised metric of

utterance information content:

L(n)|
>serm) H(S)
where L(n) is the set of all utterances of length

n and X € L(n); for simplicity, we leave out the
conditioning variable.

H'(X)=H(X) 3]

3 Data and Hypotheses

The UID principle is assumed to hold within a
structural unit that determines the type and size
of the overall relevant context C; as used in Eq. 1.
Genzel and Charniak (2002, 2003) show that, in
texts, part of the relevant context is lexical (writers
tend to reuse words that have already appeared in
the discourse) and topically determined, as given
by the paragraph structure of texts. In dialogue,
defining a topically relevant contextual unit is not
straightforward. Xu and Reitter (2018) use a topic
segmentation algorithm to identify relevant units
in unconstrained dialogues and show that informa-
tion density is influenced by topic shift. Here we
exploit the inherent (task-related) structure of task-
oriented dialogues to test the UID principle within
contextual units of different type and size. We anal-
yse two corpora of task-oriented English dialogues:
MapTask (MT, Anderson et al., 1991)? and Photo-
Book (PB, Haber et al., 2019)3. Dialogue excerpts
from both corpora can be found in Appendix A.

MT contains 128 transcribed spoken dialogues
consisting of an instruction giver directing an in-
struction follower to navigate to a point on a map.
The participants cannot see the other’s map and
their respective maps may contain slightly different
landmarks. We consider two types of contextual
unit: a) the overall dialogue: a series of landmarks
are described in succession to help the instruction
follower draw a path towards a goal location; b) a
dialogue transaction: a dialogue excerpt related to
reaching a certain landmark, manually annotated
as part of the corpus. For both types of contex-
tual unit, we also construct versions where we use
the MT dialogue act annotation to filter out turns
exclusively consisting of backchannels and other
grounding acts (‘okay’, ‘mmhmm’) common in spo-
ken language.* This results in contextual units that
focus on information-transmission dialogue acts
and are more referentially coherent.

PB contains 2,500 dialogues where two partic-
ipants without specified roles communicate via
written chat. Each dialogue consists of 5 rounds:
in each round, each participant sees a set of pho-
tographs which partially overlap with the set of
images seen by their dialogue partner. The goal
is to find out which images they have in common.

http://groups.inf.ed.ac.uk/maptask

Shttps://dmg-photobook.github.io

*We exclude acknowledgements, attention and agreement
checks, and pre-initiating moves.
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The images available to each participant change
in each round, but a subset reappears, thus trigger-
ing subsequent references to previously described
photographs. This task design allows us to inves-
tigate the following types of contextual unit: a)
the overall dialogue: throughout a game, all the
photographs are about a certain domain (e.g., food
or dogs); b) a dialogue round: different images
are described in succession as participants try to
figure out which ones they share in a given round;
¢) an image reference chain: the (non-adjacent) ut-
terances that refer to a certain image across rounds
(we use the automatic annotation of referring utter-
ance chains by Takmaz et al., 2020).

We hypothesise that, in MT, the UID principle
will be more visible at the transaction level, where
the context is more topically coherent, than at the
dialogue level, where a dozen different landmarks
are brought up in succession—in particular when
only information-transmission dialogue acts are
taken into account. In PB, we expect the strongest
effect to be present at the level of reference chains.
Chains are determined both topically, by the target
image, and lexically, by the conceptual pacts estab-
lished in previous mentions of a target (Brennan
and Clark, 1996). In rounds and dialogues, where
several different images are described, topic and
lexical choices are constrained by the image do-
main but the vocabulary used in previous turns is
more varied. We thus expect the effect to be less
pronounced at these two levels.

4 Modelling

To estimate the information content of an utterance
we compute the log probabilities in Eq. 2 using
GPT-2 (Radford et al., 2019), a pre-trained Trans-
former language model, which allows us to obtain
more accurate probability estimates than n-gram
models. We rely on HuggingFace’s implementa-
tion of GPT-2 with default tokenizers and default
parameters (Wolf et al., 2020). As GPT-2 was pre-
trained mainly on written text, it is less tuned to
the idiosyncrasies of dialogue data. We therefore
finetune it separately on a 70% split of each target
corpus.’ As shown in Table 1, finetuning yields
a substantial reduction in the model’s perplexity.
More information on model parameters and the
finetuning procedure can be found in Appendix B.

SWe tried to finetune the language models on a combina-
tion of PhotoBook, MapTask and Spoken British National
Corpus. The resulting model perplexities on PhotoBook and
MapTask were higher than with the current approach.

MapTask PhotoBook Penn Treebank

880.63 624.11 61.09
48.36 41.79 43.39

GPT-2 pre-trained
GPT-2 finetuned

Table 1: Word-level perplexity of the GPT-2 models on
30% held-out portions of the corpora.

We use the finetuned language models to esti-
mate the information content (Eq. 3) of the 30%
held-out portion of each corpus, and count turn
positions (i.e., the positions of utterances within a
dialogue—or a smaller structural unit) from the be-
ginning of the relevant structural unit. ¢ Following
Xu and Reitter (2018), to test whether utterance
information remains uniform we fit a linear mixed-
effect model using the logarithm of information
content as response variable and the logarithm of
turn position as predictor. We include a random
slope for the turn position and a random intercept
term grouped by distinct dialogues, which allows
us to model variation among individual speakers as
a function of their addressee.

We adopt Genzel and Charniak’s assumption that
the mutual information I(X;; C;|L;) between an
utterance and its context increases with turn posi-
tion (Genzel and Charniak, 2002, see Section 2);
so for H(S;|Cy, L;) to remain stable, utterance in-
formation content H (S;|L;), too, must increase.
Consequently, we consider the UID principle to
hold when turn position has a significant positive
effect on information content.

Validation To validate our estimates of utterance
information content, we replicate Genzel and Char-
niak’s (2002; 2003) and Keller’s (2004) study on
the Wall Street Journal articles of the Penn Tree-
bank (Mitchell et al., 1999)7 using GPT-2 finetuned
on this corpus (see Table 1). In the original studies,
the authors measure the correlation between the po-
sition of sentences within newspaper articles—as
well as within paragraphs—and the sentence in-
formation content, as measured using n-gram lan-
guage models. As mentioned above, these studies
assume that /(X;; C;|L;) increases as discourse
context is built up, and test whether the locally
conditioned information content H(X;|L;), too,
increases throughout articles and paragraphs.

In our validation study, we take both entire

SAll dialogues, annotated with information content esti-
mates, are provided in the supplementary material. Excerpts
can be found in Appendix A.

"https://catalog.ldc.upenn.edu/
LDC99T42; WSJ part of the corpus (sections 0-24).
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Figure 1: Information content (y axis) against turn position (z axis) in MapTask (MT)—with or without backchan-
nels (w/ bc and w/o be, respectively)—and PhotoBook (PB) dialogues. Position is cut off at mean + 1sd, except
for PB reference chains, where the median is 3 and the maximum position 4. Bootstrapped 95% confidence bands.

articles and paragraphs as structural units and
count sentence positions from the beginning of
the relevant unit. Our linear mixed-effect mod-
els show a significant positive effect of sentence
position on information content both within arti-
cles (6 = 1.65e—2,p < 0.001) and within para-
graphs (6 = 1.53e—2, p < 0.01). To reproduce the
original experimental setting, we further train an
n-gram language model with interpolated Kneser-
Ney smoothing using Keller’s (2004) data split and
select the configuration with the lowest perplexity
on the test set, a 3-gram model with a discount
value of 0.8. In line with previous work, we find a
positive Kendall’s rank-correlation® between sen-
tence position and information, as measured with
the n-gram model as well as with the Transformers.
The original results are therefore replicated.’

5 Results

We test whether the UID principle holds in MT
and PB using the procedure presented in Section 4.
The full results of our statistical analysis can be
found in Appendix E (Tables 6 and 7). Recall that
for the principle to hold, the locally conditioned
information content H (X;|L;) must increase with
the position of X in the relevant context unit C;.
The local context L; is defined as a dialogue turn.

5.1 MapTask

When we take entire MT dialogues as the contex-
tual unit, we do not find a positive effect of turn po-
sition on information content, regardless of whether
we focus in information-transmission dialogue acts

80ur data consist of multiple measurements for each sen-
tence position (one for each document), thus causing a large
number of ties (i.e., multiple entries with the same sentence
position but different entropy estimates). We choose Kendall’s
test for all our experiments because it deals with ties better
than other correlation tests such as Spearman’s or Pearson’s.

%A detailed description of the experimental setup and the
full results can be found in Appendix D.

(see Figure 1a for the results with all dialogue acts).
In contrast, the types of dialogue act considered
affect our results on transactions. We fail to find an
effect in transactions with backchannels but the lin-
ear mixed-effect models show a positive effect of
turn position within transactions without backchan-
nels (8 = 2.38e—2, p < 0.001). We attribute these
findings to the nature of the task. Over the course
of a dialogue, speakers traverse a map naming dif-
ferent landscape features and therefore are unable
to establish more than a minimal level of linguistic
routine at the dialogue level. Transactions, on the
other hand, correspond to more referentially con-
strained subtasks; this becomes more evident when
information-transmission dialogue acts are isolated
from transmission-coordination acts. Analysing
the instruction giver and follower information-
transmission turns independently reveals that there
is no significant effect for instruction followers; the
overall positive effect is driven by the instruction
givers (8 = 3.46e—2,p < 0.001; see Figure 1b).
This reflects the asymmetric nature of information
transmission in MT dialogues.

5.2 PhotoBook

The effect of position on information content is pos-
itive within the PB dialogues (8 = 3.13e—2,p <
0.001); Figure 1c shows a consistently increas-
ing sawtooth pattern for information content, pro-
viding evidence that participants optimise their
information-transmission strategy throughout PB
games. Information content slightly decreases
within game rounds (6 = —0.74e—2, p < 0.005),
yet this effect is mainly due to the higher estimates
obtained for the first turns of these contextual units
(see Figure 3e in Appendix E), often used by partic-
ipants to coordinate on how to start the new round.
Because multiple images are discussed in a round,
this contextual unit seems not to capture the rel-
evant context of individual dialogue turns nor be
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large enough to display the participants’ overall
information transmission strategy that we observe
at the dialogue level.

Finally, as hypothesised, the effect of position
on information content is positive at the reference
chain level (8 = 1.27e—2,p < 0.001). As par-
ticipants re-refer to an image over the game, they
increase the density of their messages (as shown
in Figure 1d) and also decrease message length
(Kendall’s correlation between position in chain
and length is 7 = —0.268,p < 0.001). Thus, as
reference chains unfold, the reduction process ob-
served by Takmaz et al. (2020) is complemented
by information compression. The relatively low
magnitude of the fixed effect as well as that of the
correlation between utterance length and chain po-
sition, however, suggest that the process we see at
play is not only one of compression and reduction.
Figure 1d indeed shows that the fourth position in
a chain often comes with a decrease in information
content, perhaps indicating that once a conceptual
pact has been established between interlocutors,
referential expressions can be significantly simpli-
fied without losing referential power—as in the
following reference chain (information content es-
timates in parenthesis):

1. ‘Man eating slice of pizza’ (0.69)
2. ‘last one for me is guy with pizza’ (0.78)
3. ‘pizza eater’ (0.91)
4. ‘pizza’ (0.67)

6 Conclusion

We investigated to what extent the principle of
uniform information density holds in two corpora
of English task-oriented dialogues. We have re-
lated the properties of task-determined contextual
units to patterns of information transmission and
have hypothesised that the UID principle holds to
a stronger degree in more topically coherent and
reference-specific contextual units.

Our hypotheses are confirmed in PhotoBook,
where we find evidence that dialogue participants
use rational strategies of information transmission
over an entire dialogue. We do not observe unifor-
mity of information in the MapTask dialogues and
transactions as a whole, similarly to other negative
results in interactive settings (e.g., Vega and Ward,
2009; Doyle and Frank, 2015b). Yet the effect
is present within MapTask transactions when we
restrict our analysis to information-transmission
dialogue acts: these make for a more topically

and referentially coherent contextual unit. Indeed,
the organisation of context can be complex in di-
alogues. We have shown that theoretically moti-
vated contextual units such as reference chains in
PhotoBook and information-transmission acts in
MapTask transactions are good candidates to char-
acterise the relevant context over which participants
deploy strategies of information compression.

We are aware that the assumptions used to test
the UID principle, which we have adopted from
Genzel and Charniak’s seminal work (2002)—i.e.,
that context informativeness increases as strongly
as sentence entropy as discourse is built up—can
be controversial. Nevertheless, in this paper we
have followed this line of reasoning, used in previ-
ous work (Genzel and Charniak, 2003; Vega and
Ward, 2009; Qian and Jaeger, 2011; Doyle and
Frank, 2015b; Xu and Reitter, 2018), and applied
it to novel data and contextual units. In Giulianelli
and Ferndndez (2021), we go one step further and
empirically test these assumptions for the first time,
using direct estimates of the contextualised entropy
H(S;|C;, L;) of an utterance and thus of the infor-
mativity of its linguistic context I(.S;; Cj, L;).

The study presented in this paper provides new
empirical evidence on language production in dia-
logue which we believe can directly inform the de-
velopment of natural language generation models.
Our findings suggest that models that take relevant
contextual units into account (Takmaz et al., 2020;
Hawkins et al., 2020) are better suited for repro-
ducing human patterns of information transmission,
and confirm that the use of training objectives that
enforce a uniform organisation of information den-
sity (Meister et al., 2020; Wei et al., 2021) is a
promising avenue for training language models.
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Appendix
A Dialogue Excerpts

Tables 2 and 3 show excerpts of MapTask and
PhotoBook dialogues. The dialogues are anno-
tated with turn positions (within different contex-
tual units), speaker identifier, and information con-
tent estimates. The speaker identifiers in MapTask
refer to the speaker roles of instruction givers (G)
and followers (F).

B Transformer Language Models

We experiment with GPT-2 (Radford et al., 2019),
an autoregressive Transformer-based (Vaswani
et al., 2017) language model, relying on Hugging-
Face’s implementation with default tokenizers and
default parameters (Wolf et al., 2020).!9 The maxi-
mum sequence length is set equal to the maximum
utterance length in the corpus: 320 for Penn Tree-
bank, 150 for MapTask, and 40 for PhotoBook.
As the pre-trained model yields high perplexity on
the dialogue corpora (Table 1), we finetune'! it
on 70% of each target corpus and leave out 30%
of the dataset to compute the model’s evaluation
perplexity and to conduct our statistical analysis.
The training and held-out portions of PhotoBook

19The pre-trained model is named gpt 2 in HuggingFace.

we use HuggingFace’s finetuning script
https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/language-modeling/run_clm.py.
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Dialogue Transact. Transact.

Information

position  position number Speaker Utterance content
have you got the missionary camp at
! ! ! G the right-hand side 0.68
2 2 1 F yeah uh-huh 0.70
3 3 1 G okay 0.68
4 4 1 G have you got the start 0.83
5 5 1 F yeah i’ve got the start 0.87
6 6 1 G is it at the top of it 0.75
7 7 1 F uh-huh 0.50
8 8 1 G right okay 0.89
go to the right i think it is yeah right
9 9 1 G go to the right about two centi— about 0.93
two three centimetres
10 10 1 F right 0.87
11 1 2 G go down two three centimetres 1.08
12 2 2 F down 1.46
13 3 2 F towards the missionary camp 0.73
14 4 2 G uh-huh 0.50
15 5 2 G you’re at the top and that 0.89
16 6 2 F uh-huh 0.50
17 | 3 G go right about two go right three cen- 191
timetres yeah
18 2 3 F uh-huh 0.50
19 3 3 F past the missionary camp 1.49
20 4 3 G past missionary camp 2.24

Table 2: The first three transactions of a MapTask dialogue (dialogue id: q6nc5).
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Dialogue  Round Round Information
o . Speaker Utterance
position  position number content

1 1 1 B dog in hot dog costume 0.79

2 2 1 A dont have that 0.65

3 3 1 B pug looking at cow 1.19

4 4 1 B out a window 1.86

5 5 1 A 1 have the pug 0.82
dog on persons lap, person watching

6 6 1 B tv, dog looking at camera. yellow 1.39
walls.

7 7 1 A dont have that 0.65

8 1 2 B hot dog 1.13

9 2 2 A got it 1.09

10 3 2 A pug looking out the window 1.15

11 4 2 B do not have 0.83
dog on persons lap, person watching

12 5 2 B tv, dog looking at camera. yellow 1.55
walls.

13 6 2 A got that 1.19

14 7 ’ B wait sorry i don’t have that as a main 153
one my bad lol

15 8 2 B pug on plaid pants lap 1.66

16 9 2 A dont have that 0.65

17 10 ) A i already submitted the yellow one 153
though

13 1 ) B two guys chain link fence behind 1.99
them two dogs on chess table

19 12 2 nope 0.62

20 13 ) B 1 do have it just not as a main so ur 178

good

Table 3: The first two rounds of a PhotoBook dialogue (dialogue id: 1770).
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consist of games 0-1751 and 1752-2501 respec-
tively; the training and held-out set of MapTask
comprise dialogues glecl-qgbnc2 and gbnc3-g8ncs.
One version of GPT-2 is finetuned for 30 epochs
on PhotoBook dialogues with a learning rate of
5e — 05 and batches of size 64; a second version is
finetuned for 60 epochs on MapTask dialogues with
a learning rate of 1e — 05 and batches of size 16;
the last version is finetuned for 30 epochs on Penn
Treebank articles with a learning rate of 5e—05 and
batches of size 8. The other finetuning parameters
are set to their default values.

Utterance beginning and end are used as con-
text cues but their information content is not com-
puted. Furthermore, for the dialogue corpora, we
try prepending input utterances with dialogue turn
cues ("A: ", "B: ") as a hint to the language mod-
els that the data is conversational; the informa-
tion content of these speaker identifying tokens is
never computed. This modification of the input text
does not consistently reduce the models’ perplexity
scores. The perplexity of the pre-trained and fine-
tuned models on the target corpora is reported in
the main paper.

C Effects of Finetuning

The following are the main effects of finetuning
GPT-2 on MapTask dialogues:

o GPT-2 finetuned on MapTask assigns lower
perplexity to disfluencies. While the pre-
trained model assigns high information con-
tent to utterances that contain disfluencies, this
is not the case for the finetuned model.

e Backchannels also become less surprising
with finetuning: the information content of,
e.g., okay, mmhmm, well, right, erm, yeah, no,
aye decreases by 25% to 75

e With finetuning, GPT-2 doesn’t only get used
to features of transcribed speech: expressions
that refer to MapTask landmarks also become
more likely (e.g., the rapids, a rope bridge,
the gold mine)

e Simple spatial indications (tfowards the bot-
tom left-hand corner, on the left-hand side)
are among the utterances with the lowest sur-
prisal.

These are the main effects of finetuning GPT-2 on
PhotoBook dialogues:

o The finetuned model is less surprised by ut-
terances types that are frequent in the corpus;
the least surprising expressions are I have, [
don’t have that one, I don’t have that, No, 1
don’t have that one. For the pre-trained model,
on the other hand, the least surprising expres-
sions are more generic: No, I don’t think so,
I’m not sure, I don’t, What do you think?.

e Among the most surprising utterances for the
pre-trained model are some that are specific
to PhotoBook games: submit bye, loading
may be frozen. For these two utterances, e.g.,
surprisal decreases by 1/4 and 1/3 respectively
after finetuning.

e Written chat language becomes less surpris-
ing: e.g., the surprisal for kk done decreases
by one third.

e Utterances at first dialogue positions become
in general less surprising (cf. initial drop in
the PhotoBook dialogue graph) but the de-
crease in surprisal for greetings is not always
very substantial: e.g., the surprisal for i and
hey there decrease by one third and one sev-
enth respectively.

D Penn Treebank Replication Study

We use the Wall Street Journal part of the Penn
Treebank, divided into a training set (section 0-20)
and a test set (sections 21-24). The training set
contains 41,128 sentences (Keller (2004) reports
42,075 sentences), the test set 8,594 (Keller (2004)
reports 7,133). Each article is treated as a separate
text and sentence positions are computed by count-
ing sentences from the beginning of the article. The
sentence positions in the test set varied between
1 and 118 (Keller (2004) reports 1-149). The n-
gram probabilities were computed by Keller (2004)
using a language model with smoothing by abso-
lute discounting, whereas Genzel and Charniak
(2002) do not report the specifics of their language
model. We rely on NLTK’s implementation of an
n-gram language model with interpolated Kneser-
Ney smoothing (Bird et al., 2009). Sentence be-
ginning and sentence end are used as context cues
but their information content never computed. We
train language models with n € (2,3,4,5) and
with discount values n € (0.1,0.2,...,0.9) on the
training set and select the language model with the
lowest perplexity on the test set. We do not split
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| Cut-off =25 | Cut-off =76 | Cut-off = oo

Raw data T T T
3-gram (Keller, 2004) 0.060** 0.081** 0.071**
3-gram (ours) 0.076"* 0.081** 0.079**
GPT-2 pre-trained 0.032** 0.055** 0.054**
GPT-2 finetuned 0.070™* 0.080™" 0.080*"
Binned data T T T
3-gram (Keller, 2004) 0.639** 0.243** 0.135
3-gram (ours) 0.733** 0.109 0.118
GPT-2 pre-trained 0.533** 0.512** 0.077
GPT-2 finetuned 0.693** 0.387** 0.119

Table 4: Kendall’s rank-correlation between sentence information and sentence position for the Penn Treebank test
set. Significance: ‘**’ p < 0.001, “*’ p < 0.01,  p > 0.05.

| Cut-off =25 | Cut-off=76 | Cut-off = oo |

Raw data T T T
3-gram (Keller, 2004) 0.078** 0.093** 0.081**
3-gram (ours) 0.082** 0.087** 0.087**
GPT-2 pre-trained 0.034** 0.054** 0.054™*
GPT-2 finetuned 0.077** 0.084™* 0.084**
Binned data T T T
3-gram (Keller, 2004) 0.671** 0.147 0.170**
3-gram (ours) 0.740™" 0.099 0.097
GPT-2 pre-trained 0.453* 0.448* 0.101
GPT-2 finetuned 0.680™" 0.347** 0.104

Table 5: Kendall’s rank-correlation between sentence information and sentence position, with sentence length
partialled out, for the Penn Treebank test set. Significance: ‘“**’ p < 0.001, “*’ p < 0.01, ©* p > 0.05.

n-gram
1000 2
3
! o 4
2 800 e 5
x
o
=
[
S 600 $
l [ ]
L]
400 o i
[ ]
o
L ]
¢ e ) °

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
discount

Figure 2: Perplexity on Penn Treebank test set obtained
by n-gram language models with Kneser-Ney smooth-
ing and interpolation.

the data into multiple test tests (Genzel and Char-
niak, 2002, 2003) as this was shown not to alter
the sentence information estimates (Keller, 2004
Xu and Reitter, 2018). The best language model
is the 3-gram model with a discount value of 0.8,
which achieves a perplexity of 335.80 on the test
set. The perplexity obtained using NLTK’s evalua-
tion script is 221.57 (Figure 2) as it is calculated by
taking into account beginning and end of sentence
symbols.

We use the n-gram language model as well as

the GPT-2 language model (as described in Section
B) to estimate the information content of all sen-
tences in the test set and measure the correlation
with sentence position. In Genzel and Charniak’s
(2002) original work, the correlation between sen-
tence position and sentence information is com-
puted by binning the sentence information data
points based on their sentence position. Correlation
is measured between sentence position indices 1-
25 and the average sentence information estimated
for the respective sentence position. Keller (2004)
also measures the raw correlation between all sen-
tence position-information pairs, without binning.
Neither work reports the correlation measure used.
We use Kendall’s rank-correlation as it is less sen-
sitive than Spearman’s rank-correlation to the large
amount of ties (position-information pairs with
the same position index) in our data. Moreover,
whereas Genzel and Charniak (2002) select a sin-
gle sentence position cut-off (¢ = 25), in Keller’s
(2004) study three variants of the cut-off are used
(c = 25, ¢ = 76, and no cut-off). We also compute
correlation at these three levels. Finally, following
Keller (2004), we compute the partial correlation
between sentence position and sentence informa-
tion, excluding the effect of sentence length. The
results are reported in Tables 4 and 5.
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E Experimental Results

Tables 6 and 7 summarise the results of our statis-
tical analysis, as introduced in Section 4. In both
tables, the logarithm of information content is the
response variable and the logarithm of turn position
is the fixed effect. We include a random intercept
grouped by distinct dialogues and a random slope
for the turn position. Fixed effects with significant
coefficient estimates are marked in bold. The Ran-
dom effects columns show the standard deviation
of the random effects (Coeff.) and the residual stan-
dard deviation. The UID principle is considered to
hold when turn position has a significant positive
effect on information content.

Figure 3 shows the patterns of information con-
tent against turn position for the contextual units
whose patterns are not displayed in Section 5.

F Computing Infrastructure

The models were trained and evaluated on a com-
puter cluster with Debian Linux OS. Parallelization
over four GPUs was implemented for the finetuning
of GPT-2. All information content computations
were executed using used a single GPU. The GPU
nodes are GPU GeForce 1080Ti, 11GB GDDR5X,
with NVIDIA driver version 418.56 and CUDA
version 10.1.

8282



’ 1.1
1.2
1.0 1o =
— Giver
0.8 0.9 Follower
0 50 100 150 200 0 5 10 15 20
(a) MT dialogues w/o bc (b) MT transactions w/ bc
1.15 1.15
1.10 1.2
1.10
1.05
1.1
1.00 1.05
1.0
0.95 1.00
0 5 10 15 20 0 5 10 15 20 0 3 6 9 12
(c) MT transactions w/ bc (d) MT transactions w/o bc (e) PB rounds

Figure 3: Information content (y axis) against turn position (x axis) in MapTask (MT) dialogues and transactions—
with or without backchannels (w/ bc and w/o bc, respectively)—and PhotoBook (PB) dialogue rounds. Position is
cut off at mean + 1sd. Bootstrapped 95% confidence bands.

Fixed effects \ Random effects (Std. Dev.)
Estimate | Std. Error | Pr(>ltl) Coeff. Residual
. Intercept 0.07e—2 2.40e—2 0.98 11.44e—2
MT dialogues w/be  poition —0.70e~2 | 0.37e—2 | 006 | 080e—2 | 5005672
. Intercept 3.37e—2 3.20e—-2 0.30 15.05e—2
MT dialogues w/obe  pGivion 0.03e—2 | 0.57e—2 | 096 | 198e—2 | 20-83¢72
Intercept —2.95e—2 1.50e—2 0.06 7.90e—2 30.07e—2
Position 0.03e—2 0.37e—2 0.93 0.34e—2 '
. Intercept (givers) —2.20e—2 1.49e—2 0.15 7.38e—2 _
MT transactions w/be i (aivers) 0.92e—2 | 0.46e—2 | 006 | 0.90e—2 | 2840e=2
Intercept (followers) —5.01le—2 2.30e—2 0.04 10.88e—2 31.400—2
Position (followers) 0.60e—2 0.71le—2 0.41 1.50e—2 ’
Intercept —0.93e—-2 1.61e—2 0.57 7.98e—2 26.800—2
Position 2.38e—2 0.49e—2 < 0.01 0.96e—2 ’
. Intercept (givers) —3.78e—2 1.70e—2 0.03 8.20e—2 .
MT transactions wiobe  p,iiion (givers) 346e-2 | 0.53e—2 | <001 | 0.19e—2 | 204772
Intercept (followers) 9.04e—2 3.10e—2 < 0.01 | 13.10e—2 98.270—2
Position (followers)  —1.30e—2 1.38e—2 0.36 5.50e—2 ’
Table 6: Results of linear mixed-effect models on the MapTask data.
Fixed effects \ Random effects (Std. Dev.)
Estimate  Std. Error | Pr(>Itl) |  Coeff. Residual
. Intercept —12.21e—2 0.90e—2 < 0.01 | 17.52e—2
PB dialogues  pogition 3.13e—2 ‘ 0.24¢—2 ‘ <0.01 ‘ 3.77e—2 ‘ 37.66e—2
Intercept —0.99e—2 0.70e—2 0.16 15.14e—2
PBrounds  poGtion  —0.73e—2 ‘ 0.26e—2 ‘ <0.01 ‘ 3.460—2 ‘ 378202
PB chains Intercept —5.92e—2 0.36e—2 <0.01 14.86e—2 98.950—2
Position 1.27e—2 | 0.27e—2 | <001 | 4.70e—2 e

Table 7: Results of linear mixed-effect models on the PhotoBook data.
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