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Abstract

Despite the widespread use of Knowledge
Graph Embeddings (KGE), little is known
about the security vulnerabilities that might
disrupt their intended behaviour. We study
data poisoning attacks against KGE models for
link prediction. These attacks craft adversar-
ial additions or deletions at training time to
cause model failure at test time. To select
adversarial deletions, we propose to use the
model-agnostic instance attribution methods
from Interpretable Machine Learning, which
identify the training instances that are most
influential to a neural model’s predictions on
test instances. We use these influential triples
as adversarial deletions. We further propose
a heuristic method to replace one of the two
entities in each influential triple to generate ad-
versarial additions. Our experiments show that
the proposed strategies outperform the state-of-
art data poisoning attacks on KGE models and
improve the MRR degradation due to the at-
tacks by up to 62% over the baselines.

1 Introduction

Knowledge Graph Embeddings (KGE) are the state-
of-art models for relational learning on large scale
Knowledge Graphs (KG). They drive enterprise
products ranging from search engines to social net-
works to e-commerce (Noy et al., 2019). However,
the analysis of their security vulnerabilities has re-
ceived little attention. Identifying these vulnerabil-
ities is especially important for high-stake domains
like healthcare and finance that employ KGE mod-
els to make critical decisions (Hogan et al., 2020;
Bendtsen and Petrovski, 2019). We study the se-
curity vulnerabilities of KGE models through data
poisoning attacks (Biggio and Roli, 2018; Joseph
et al., 2019) that aim to degrade the predictive per-
formance of learned KGE models by adding or
removing triples to the input training graph.
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Figure 1: Adversarial attacks against KGE models for fraud
detection. The knowledge graph consists of two types of
entities - Person and BankAccount. The missing target triple to
predict is (Sam, allied_with, Joe). Original KGE model
predicts this triple as True. But a malicious attacker uses the
instance attribution methods to either (a) delete an adversarial
triple or (b) add an adversarial triple. Now, the KGE model
predicts the missing target triple as False.

Designing data poisoning attacks against KGE
models poses two main challenges. First, to se-
lect adversarial deletions or additions, we need to
measure the impact of a candidate perturbation on
the model’s predictions. But the naive approach
of re-training a new KGE model for each candi-
date perturbation is computationally prohibitive.
Second, while the search space for adversarial dele-
tions is limited to existing triples in the KG, it is
computationally intractable to enumerate through
all candidate adversarial additions. Furthermore,
attack strategies proposed against models for other
graph modalities (Xu et al., 2020) do not scale to
KGE models; as they would require gradients with
respect to a dense adjacency tensor of the KG.

In this work, we propose to use the model-
agnostic instance attribution methods from Inter-
pretable Machine Learning (Molnar, 2019) to se-
lect adversarial deletions and additions against
KGE models. Instance attribution methods iden-
tify the training instances that are influential to
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model predictions, that is, deleting the instances
from the training data would considerably change
the model parameters or predictions. These meth-
ods are widely used to generate post-hoc example-
based explanations for deep neural networks on
images (Koh and Liang, 2017; Hanawa et al., 2021;
Charpiat et al., 2019) and text (Han et al., 2020;
Han and Tsvetkov, 2020; Pezeshkpour et al., 2021).
Since the KGE models have relatively shallow neu-
ral architectures and the instance attribution metrics
are independent of the black-box models and the
input domain, they are a promising approach to es-
timate the influence of training triples on the KGE
model predictions. Yet, despite their promise, they
have not been used on KGE models so far. We
use the instance attribution methods to address the
challenge of measuring the impact of a candidate
adversarial deletion on the model predictions.

We focus on the adversarial goal of degrading
the KGE model prediction on a given target triple.
To achieve this goal, we use three types of instance
attribution methods - Instance Similarity that com-
pares the feature representations of target and train-
ing triples (Hanawa et al., 2021; Charpiat et al.,
2019); Gradient Similarity that compares the gra-
dients of model’s loss function due to target and
training triples (Hanawa et al., 2021; Charpiat et al.,
2019); and Influence Function (Koh and Liang,
2017) which is a principled approach from the ro-
bust statistics to estimate the effect of removing a
training triple on the KGE model’s predictions.

Using these metrics, we select the most influen-
tial training triple for adversarial deletion. Using
the influential triple, we further select adversarial
addition by replacing one of the two entities of the
influential triple with the most dissimilar entity in
the embedding space. The intuition behind this step
is to add a triple that would reduce the influence of
the influential triple. This solution also overcomes
the scalability challenge for adversarial additions
by comparing only the entity embeddings to select
the replacement. Figure 1 shows an example of
the proposed adversarial deletions and additions
against KGE models for fraud detection.

We evaluate the proposed attacks for four KGE
models - DistMult, ComplEx, ConvE and TransE
on two benchmark datasets - WN18RR and FB15k-
237. Our results show that instance attribution
metrics achieve significantly better performance
than all state-of-art attacks for both adversarial ad-
ditions and deletions on three out of four models;

and better or equivalent performance on one model.
We find that even simple metrics based on instance
similarity outperform the state-of-the-art poisoning
attacks and are as effective as the computationally
expensive Influence Function.

Thus, the main contribution of our research is
a collection of effective adversarial deletion and
addition strategies based on instance attribution
methods against KGE models.

2 Knowledge Graph Embeddings

A Knowledge Graph (KG), is a set of triples
T ⊆ E × R × E where each triple encodes the
relationship r as a typed link between the subject
entity s and the object entity o, i.e. T := {t :=
(s, r, o) | s, o ∈ E and r ∈ R}. Here, E is the set
of entities andR is the set of relations in the knowl-
edge graph. Large scale KGs are often curated
automatically from the user content or from the
Web and thus are incomplete in practice. To predict
the missing links in a KG, the state-of-art method is
to learn low dimensional feature vectors for entities
and relations in the graph and use them to score
the links. These feature vectors are called Knowl-
edge Graph Embeddings (KGE) and denoted as
θ := {E,R} whereE ∈ Rk is the embedding ma-
trix for entities, R ∈ Rk is the embedding matrix
for relations and k is the embedding dimension.

Scoring Functions: KGE models differ from
each other by their scoring functions f : T → R
which combine the subject, relation and object
embeddings to assign a score to the triple, i.e.
ft := f(es, er, eo) where es, eo ∈ E and er ∈ R.
Table 1 shows the different scoring functions of
KGE models used in this research.

These scoring functions are used to categorize
the models as additive or multiplicative (Chan-
drahas et al., 2018). Additive models apply
relation-specific translation from the subject em-
bedding to the object embedding. The scor-
ing function for such models is expressed as
ft = −

∥∥M1
r (es) + er −M2

r (eo)
∥∥ whereMr ∈

Rk×k is a projection matrix from entity space to
relation space. An example of additive models is
TransE whereM1

r =M2
r = I .

On the other hand, multiplicative models score
triples through multiplicative interactions between
the subject, relation and object embeddings. The
scoring function for these models is expressed as
ft = e>r F(es, eo) where the function F mea-
sures the compatibility between the subject and
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Model Scoring Function Feature Vectors

DistMult 〈es, er, eo〉 es ◦ er ◦ eo

ComplEx <(〈es, er, eo〉) <(es ◦ er ◦ eo)

ConvE 〈(es ∗ er), eo〉 (es ∗ er) ◦ eo

TransE −‖es + er − eo‖p −(es + er − eo)

Table 1: Scoring functions fsro and the proposed Triple
Feature Vectors fsro of the KGE models used in this
research. For ComplEx, es, er, eo ∈ Ck; for the re-
maining models es, er, eo ∈ Rk. Here, 〈·〉 denotes
the tri-linear dot product; ◦ denotes the element-wise
Hadamard product; · denotes conjugate for complex
vectors; ‖·‖p denotes l-p norm; ∗ is the neural architec-
ture in ConvE, i.e. es∗er := σ(vec(σ([er, es]∗Ω))W )
where σ denotes sigmoid activation, ∗ denotes 2D con-
volution; · denotes 2D reshaping of real vectors.

object embeddings and varies across different mod-
els within this family. DistMult, ComplEx and
ConvE are examples of multiplicative models.

Training: Since the KGs only contain positive
triples; to train the KGE model, synthetic neg-
ative samples t′ ∈ T ′ are generated by replac-
ing the subject or object in the positive triples
with other entities in E . That is, for each posi-
tive triple t := (s, r, o), the set of negative sam-
ples is t′ := {(s′, r, o) ∪ (s, r, o′)}. The train-
ing objective is to learn the embeddings that score
positive triples existing in the KG higher than
the negative triples generated synthetically. To
achieve this, a triple-wise loss function L(t,θ) :=
`(t,θ) +

∑
t′∈T ′ `(t

′,θ) is minimized. Thus, the
optimal parameters θ̂ learned by the model are de-
fined by θ̂ := argminθ

∑
t∈T L(t,θ). Further de-

tails on KGE loss functions and negative sampling
strategies are available in Ruffinelli et al. (2020).

Missing Link Prediction: Given the learned em-
beddings θ, missing triples in the knowledge graph
are predicted by an entity ranking evaluation pro-
tocol. Similar to the training process, subject-side
negatives t′s = (s′, r, o) and object-side negatives
t′o = (s, r, o′) are sampled for each test triple
t = (s, r, o) to be predicted. Of these negatives,
the triples already existing in the training, valida-
tion or test set are filtered out (Bordes et al., 2013).
The test triple is then ranked against the remaining
negatives based on the scores predicted by the KGE
model. The state-of-art evaluation metrics reported
over the entire set are (i) MR: mean of the ranks,
(ii) MRR: mean of the reciprocals of ranks and (iii)
Hits@n: number of triples ranked in top-n.

3 Poisoning Knowledge Graph
Embeddings via Instance Attribution

We consider an adversarial attacker that aims to
degrade the KGE model’s predictive performance
on a set of missing triples that have been ranked
highly plausible by the model. We denote these tar-
get triples as Z := {z := (zs, zr, zo)}. Since the
predicted ranks are based on the predicted scores;
to reduce the predicted rank of a target triple, we
craft perturbations to the training data that aim to
reduce the predicted score of the target triple.

Threat Model: We use the same threat model as
the state-of-art poisoning attacks on KGE models
(Pezeshkpour et al., 2019; Zhang et al., 2019a). We
focus on the white-box attack setting where the
attacker has full knowledge of the victim model
architecture and access to the learned embeddings.
However, they cannot perturb the architecture or
the embeddings directly; but only through perturba-
tions in the training data. We study both adversar-
ial additions and adversarial deletions. In both set-
tings, the attacker is restricted to making only one
edit in the neighbourhood of the target triple. The
neighbourhood of the target triple z := (zs, zr, zo)
is the set of triples that have the same subject or the
same object as the target triple, i.e. X := {x :=
(xs, xr, xo) |xs ∈ {zs, zo} ∨ xo ∈ {zs, zo}}.

3.1 Instance Attribution Methods

For adversarial deletions, we want to identify
the training triples that have influenced the KGE
model’s prediction on the target triple. Delet-
ing these influential triples from the training set
will likely degrade the prediction on the target
triple. Thus, we define an influence score φ(z, x) :
T ×T → R for the pairs of triples (z, x) ∈ T ×T
which indicates the influence of training triple x
on the prediction of target triple z. Larger values
of the influence score φ(z, x) indicate that remov-
ing x from the training data would cause larger
reduction in the predicted score on z.

Trivially, we can compute the influence score
for a training triple by removing the triple and re-
training the KGE model. However, this is a pro-
hibitively expensive step that requires re-training
a new KGE model for every candidate influen-
tial triple. Thus, we use the following instance-
attribution methods from Interpretable Machine
Learning (Molnar, 2019) to estimate the influence
score φ(z, x) without re-training the model.
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3.1.1 Instance Similarity

We estimate the influence of training triple x on the
prediction of target triple z based on the similarity
of their feature representations. The intuition be-
hind these metrics is to identify the training triples
that a KGE model has learnt to be similar to the
target triple and thus (might) have influenced the
model’s prediction on the target triple.

Computing this similarity between triples re-
quires feature vector representations for the triples.
We note that while the standard KGE scoring func-
tions assign a scalar score to the triples, this scalar
value is obtained by reducing over the embedding
dimension. For example, in the tri-linear dot prod-
uct for DistMult, the embeddings of subject, rela-
tion and object are multiplied element-wise and
then the scalar score for the triple is obtained
by summing over the embedding dimension, i.e.
ft := 〈es, er, eo〉 :=

∑k
i=1 esierieoi where k is

the embedding dimension.
Thus, to obtain feature vector representations for

the triples ft : E ×R× E → Rk, we use the state-
of-art KGE scoring functions without reduction
over the embedding dimension. For the DistMult
model, the triple feature vector is f := es ◦ er ◦ eo
where ◦ is the Hadamard (element-wise) product.
Table 1 shows the feature vector scores for different
KGE models used in this research.

Given the feature vectors for target triples f(z)
and training triples f(x), we follow Hanawa et al.
(2021) and define the following metrics.

Dot Metric: This metric computes the sim-
ilarity between target and training instances as
the dot product of their feature vectors. That is,
φdot(z, x) := 〈f(z),f(x)〉
`2 Metric: This metric computes similarity as

the negative Euclidean distance between the feature
vectors of target instance and test instance. That is,
φ`2(z, x) := −‖f(z)− f(x)‖2

Cosine Metric: This metric computes similar-
ity as the dot product between `2 normalized fea-
ture vectors of target and test instance, i.e. it
ignores the magnitude of the vectors and only
relies on the angle between them. That is,
φcos(z, x) := cos (f(z),f(x))

Here, we denote the dot product for two vec-
tors a and b as 〈a, b〉 :=

∑p
i=1 aibi; the `2

norm of a vector as ‖a‖2 :=
√
〈a,a〉; and

the cos similarity between vectors a and b as
cos(a, b) := 〈a,b〉/‖a‖2‖b‖2.

3.1.2 Gradient Similarity
We represent the gradient of the loss for triple z
w.r.t. model parameters as g(z, θ̂) := ∇θL(z, θ̂).
Gradient similarity metrics compute similarity be-
tween the gradients due to target triple z and the
gradients due to training triple x. The intuition is
to assign higher influence to training triples that
have similar effect on the model’s parameters as the
target triple; and are therefore likely to impact the
prediction on target triple (Charpiat et al., 2019).
Thus, using the same similarity functions as In-
stance Similarity metrics, we define the following
three metrics for gradient similarity - Gradient Dot
(GD), Gradient `2 (GL) and Gradient Cosine (GC).

GD(dot): φGD(z, x) := 〈 g(z, θ̂) , g(x, θ̂) 〉

GL (`2): φGL(z, x) := −
∥∥∥g(z, θ̂)− g(x, θ̂)∥∥∥

2

GC(cos): φGC(z, x) := cos ( g(z, θ̂) , g(x, θ̂) )

3.1.3 Influence Functions
Influence Functions (IF) is a classic technique from
robust statistics and was introduced to explain the
predictions of black-box models in Koh and Liang
(2017). To estimate the effect of a training point
on a model’s predictions, it first approximates the
effect of removing the training point on the learned
model parameters. To do this, it performs a first
order Taylor expansion around the learned parame-
ters θ̂ at the optimality conditions.

Following the derivation in Koh and Liang
(2017), the the effect of removing the training
triple x on θ̂ is given by dθ̂/dεi = H−1

θ̂
g(x, θ̂).

Here,H
θ̂

denotes the Hessian of the loss function
H
θ̂
:= 1/n

∑
t∈T ∇2

θL(t, θ̂). Using the chain rule
then, we approximate the influence of removing x
on the model’s prediction at z as 〈g(z, θ̂) , dθ̂/dεi〉.
Thus, the influence score using IF is defined as:

IF: φIF(z, x) := 〈 g(z, θ̂) , H−1
θ̂
g(x, θ̂) 〉

Computing the IF for KGE models poses two
challenges - (i) storing and inverting the Hessian
matrix is computationally too expensive for a large
number of parameters; (ii) the Hessian is not guar-
anteed to be positive definite and thus, invertible
because KGE models are non-convex models. To
address both these challenges, we follow the guide-
lines in Koh and Liang (2017). Instead of com-
puting the exact Hessian matrix, we estimate the
Hessian-vector product (HVP) with target triple’s
gradient. That is, for every target triple z, we pre-
compute the value H−1

θ̂
g(z, θ̂). Then, for each
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neighbourhood triple x in the training set, we com-
pute φIF(z, x) using the pre-computed HVP. Fur-
thermore, we use the stochastic estimator LiSSA
(Agarwal et al., 2017) that computes the HVP in lin-
ear time using samples from training data. For the
second issue of non-convexity, we add a "damping"
term to the Hessian so that it is positive definite and
invertible. This term is a hyperparameter that is
tuned to ensure that all eigenvalues of the Hessian
matrix are positive, i.e. the Hessian matrix is pos-
itive definite. Further discussion on the validity
of Influence Functions for non-convex settings is
available in Koh and Liang (2017).

3.2 Adversarial Additions

In this attack setting, the adversarial attacker can
only add triples to the neighbourhood of tar-
get triple. Using the Instance Attribution met-
rics above, we select the training triple x :=
(xs, xr, xo) in the neighbourhood of the target
triple z := (zs, zr, zo) that is most influential to the
prediction of z. For brevity, lets assume xs = zs,
i.e. the influential and target triples have the same
subject. To generate adversarial addition using the
influential triple, we propose to replace xo with the
most dissimilar entity xo′ . Since the adversarial
triple x′ := (xs, xr, xo′) has the same subject and
relation as the influential triple but a different ob-
ject, it should reduce the influence of the influential
triple on the target triple’s prediction. This in turn
should degrade the model prediction on target triple.
For multiplicative models, we select the dissimilar
entity xo′ using the cosine similarity between xo
and the entities E . For additive models, we use the
`2 similarity between xo and the entities E .

4 Evaluation

We evaluate the effectiveness of the proposed at-
tack strategies in degrading the KGE model’s pre-
dictions on target triples at test time. We follow the
state-of-art protocol to evaluate poisoning attacks
(Xu et al., 2020) - we train a victim KGE model on
the original dataset; generate adversarial deletions
or additions using one of the attacks; perturb the
original dataset; and train a new KGE model on the
perturbed dataset. The hyperparameters for victim
and poisoned KGE models are same.

We evaluate our attacks on four state-of-art KGE
models - DistMult, ComplEx, ConvE and TransE
on two publicly available1 benchmark datasets -

1https://github.com/TimDettmers/ConvE

WN18RR and FB15k-237. To be able to evalu-
ate the effectiveness of attacks in degrading the
predictive performance, we select a subset of the
benchmark test triples that has been ranked high-
est (ranks=1) by the victim KGE model. From
this subset, we randomly sample 100 triples as the
target triples. This is to avoid the expensive Hes-
sian inverse estimation in the IF metric for a large
number of target triples (for each target triple, this
estimation requires one training epoch).

The source code implementation of our exper-
iments is available at https://github.com/
PeruBhardwaj/AttributionAttack.

Baselines: We evaluate our attacks against base-
line methods based on random edits and the state-
of-art poisoning attacks. Random_n adds or re-
moves a random triple from the neighbourhood
of the target triple. Random_g adds or removes a
random triple globally and is not restricted to the
target’s neighbourhood. Direct-Del and Direct-Add
are the adversarial deletion and addition attacks
proposed in Zhang et al. (2019a). CRIAGE is the
poisoning attack from Pezeshkpour et al. (2019)
and is a baseline for both deletions and additions.
GR (Gradient Rollback) (Lawrence et al., 2021)
uses influence estimation to provide post-hoc ex-
planations for KGE models and can also be used
to generate adversarial deletions. Thus, we include
this method as a baseline for adversarial deletions.

The attack evaluations in Zhang et al. (2019a);
Pezeshkpour et al. (2019); Lawrence et al. (2021)
differ with respect to the definition of their neigh-
bourhood. Thus, to ensure fair evaluation, we im-
plement all methods with the same neighbourhood -
triples that are linked to the subject or object of the
target triple (Section 3). We use the publicly avail-
able implementations for CRIAGE2 and Gradient
Rollback3 and implement Direct-Del and Direct-
Add ourselves. Further details on datasets, imple-
mentation of KGE models, baselines and comput-
ing resources is available in Appendix A and B.

Results: For WN18RR and FB15k-237 respec-
tively, Tables 2 and 3 show the degradation in MRR
and Hits@1 due to adversarial deletions; and Ta-
bles 4 and 5 due to adversarial additions for state-
of-art KGE models. Below we discuss different
patterns in these results. We also discuss runtime
efficiency of the attack methods in Appendix C.1.

2https://github.com/pouyapez/criage
3https://github.com/carolinlawrence/gradient-rollback

https://github.com/PeruBhardwaj/AttributionAttack
https://github.com/PeruBhardwaj/AttributionAttack
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DistMult ComplEx ConvE TransE

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline
Attacks

Random_n 0.87 (-13%) 0.82 0.85 (-15%) 0.80 0.82 (-18%) 0.79 0.82 (-18%) 0.70
Random_g 0.97 0.95 0.96 0.93 0.99 0.98 0.93 0.87
Direct-Del 0.88 0.77 0.86 (-14%) 0.77 0.71 (-29%) 0.64 0.54 (-46%) 0.37
CRIAGE 0.73 (-27%) 0.66 - - Er Er - -
GR 0.95 0.90 0.93 0.86 0.95 0.91 0.84 0.77

Proposed
Attacks

Dot Metric 0.89 0.82 0.85 0.79 0.84 (-16%) 0.80 0.77 0.60
`2 Metric 0.25 (-75%) 0.16 0.29 (-71%) 0.20 0.88 0.78 0.62 0.50
Cos Metric 0.25 (-75%) 0.16 0.29 (-71%) 0.20 0.87 0.76 0.56 (-44%) 0.40
GD (dot) 0.28 (-72%) 0.19 0.29 0.21 0.25 0.21 0.71 (-29%) 0.57
GL (`2) 0.30 0.20 0.28 (-72%) 0.19 0.17 (-83%) 0.12 0.72 0.60
GC (cos) 0.29 0.19 0.29 0.21 0.20 0.16 0.71 (-29%) 0.57
IF 0.28 (-72%) 0.19 0.29 (-71%) 0.20 0.22 (-78%) 0.17 0.71 (-29%) 0.57

Table 2: Reduction in MRR and Hits@1 due to adversarial deletions on target triples in WN18RR. Lower values indicate
better results; best results for each model are in bold. First block of rows are the baseline attacks with random edits; second block
is state-of-art attacks; remaining are the proposed attacks. For each block, we report the best reduction in percentage relative to
the original MRR; computed as (poisoned− original)/original ∗ 100.

4.1 Comparison with Baselines

We observe that the proposed strategies for adver-
sarial deletions and adversarial additions success-
fully degrade the predictive performance of KGE
models. On the other hand, the state-of-art attacks
are ineffective or only partially effective. Adver-
sarial deletions from Gradient Rollback perform
similar to random baselines; likely because this
method estimates the influence of a training triple
as the sum of its gradients over the training process.
In this way, it does not account for the target triple
in the influence estimation. The method is also
likely to be effective only for a KGE model that is
trained with a batch size of 1 because it needs to
track the gradient updates for each triple.

The CRIAGE baseline is only applicable to
DistMult and ConvE. But we found that the
method ran into numpy.linalg.LinAlgError:

Singular matrix error for ConvE; because the
Hessian matrix computed from the victim model
embeddings was non-invertible4. For adversarial
deletions on DistMult, the baseline works better
than random edits but not the proposed attacks 5. It
is also ineffective against adversarial additions.

We see that Direct-Del is effective on TransE,
but not on multiplicative models. This is likely

4This issue might be resolved by changing the hyperparam-
eters of the victim KGE model so that the Hessian matrix from
the victim embeddings is invertible. But there is no strategic
way to make such changes.

5Since the influence estimation in CRIAGE uses BCE loss,
we also compare for DistMult trained with BCE in Appendix
C.2, but the results are similar.

because it estimates the influence of a candidate
triple as the difference in the triple’s score when
the neighbour entity embedding is perturbed. The
additive nature of this influence score might make
it more suitable for additive models. We also see
that Direct-Add works similar to random additions,
likely because it uses random down-sampling.

The proposed attacks based on instance attri-
bution methods consistently outperform random
baselines for adversarial additions and deletions.
One exception to this pattern are adversarial ad-
ditions against TransE on WN18RR. In this case,
no influence metric performs better than random
neighbourhood edits, though they are all effec-
tive for adversarial deletions. One possible rea-
son is that the TransE model is designed to learn
hierarchical relations like _has_part. We found
that the target triples ranked highest by the model
have such hierarchical relations; and the influential
triple for them has the same relation. That is, the
triple (s1, _has_part, s) is the influential triple
for (s, _has_part, o). Removing this influential
triple breaks the hierarchical link between s1 and
s; and degrades TransE predictions on the target.
But adding the triple (s2, _has_part, s) still pre-
serves the hierarchical structure which TransE can
use to score the target correctly. We provide more
examples of such relations in Appendix C.3.

4.2 Comparison across Influence Metrics

We see that the IF and Gradient Similarity metrics
show similar degradation in predictive performance.
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This indicates that the computationally expensive
Hessian inverse in the IF can be avoided and sim-
pler metrics can identify influential triples with
comparable effectiveness. Furthermore, cos and
`2 based Instance Similarity metrics outperform
all other methods for adversarial deletions on Dist-
Mult, ComplEx and TransE. This effectiveness of
naive metrics indicates the high vulnerability of
shallow KGE architectures to data poisoning at-
tacks in practice. In contrast to this, the Input Simi-
larity metrics are less effective in poisoning ConvE,
especially significantly on WN18RR. This is likely
because the triple feature vectors for ConvE are
based on the output from a deeper neural archi-
tecture than the Embedding layer alone. Within
Instance Similarity metrics, we see that the dot
metric is not as effective as others. This could be
because the dot product does not normalize the
triple feature vectors. Thus, training triples with
large norms are prioritized over relevant influential
triples (Hanawa et al., 2021).

4.3 Comparison of datasets

We note that the degradation in predictive perfor-
mance is more significant on WN18RR than on
FB15k-237. This is likely due to the sparser graph
structure of WN18RR, i.e. there are fewer neigh-
bours per target triple in WN18RR than in FB15k-
237 (Appendix C.4). Thus, the model learns its pre-
dictions from few influential triples in WN18RR;
and removing only one neighbour significantly de-
grades the model’s predictions on the target triple.

On the other hand, because of more neighbours
in FB15k-237, the model predictions are likely in-
fluenced by a group of training triples. Such group
effect of training instances on model parameters
has been studied in Koh et al. (2019); Basu et al.
(2020). We will investigate these methods for KGE
models on FB15k-237 in the future.

5 Related Work

Cai et al. (2018) and Nickel et al. (2015) provide a
comprehensive survey of KGE models. We use the
most popular models DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2016), ConvE (Dettmers
et al., 2018) and TransE (Bordes et al., 2013).

Our work is most closely related to CRIAGE
(Pezeshkpour et al., 2019) and Direct Attack
(Zhang et al., 2019a), that study both adversar-
ial additions and deletions against KGE models.
But CRIAGE is only applicable to multiplicative

models and our experiments (Section 4) show that
Direct Attack is effective (with respect to random
baselines) on additive models only. On the other
hand, our instance attribution methods work for all
KGE models. Recently, Lawrence et al. (2021) pro-
pose Gradient Rollback to estimate the influence
of training triples on the KGE model predictions.
The original study uses the influential triples for
post-hoc explanations, but they can also be used for
adversarial deletions. However, the attack stores
the model parameter updates for all training triples
which are in the order of millions for benchmark
datasets; and our experiments (Section 4) show that
it performs similar to random deletions. Whereas,
our influence estimation methods do not require
additional storage and are consistently better than
random baselines on all KGE models.

We also study data poisoning attacks against
KGE models in Bhardwaj et al. (2021). Here, we
exploit the inductive abilities of KGE models to
select adversarial additions that improve the pre-
dictive performance of the model on a set of decoy
triples; which in turn degrades the performance on
target triples. These inference patterns based at-
tacks cannot be used for adversarial deletions, but
we will perform detailed comparison for adversar-
ial additions in future. In parallel work, Banerjee
et al. (2021) study risk aware adversarial attacks
with the aim of reducing the exposure risk of an
adversarial attack instead of improving the attack
effectiveness. Also, previous studies by Minervini
et al. (2017) and Cai and Wang (2018) use adver-
sarial regularization on the training loss of KGE
models to improve predictive performance. But
these adversarial samples are not in the input do-
main and aim to improve instead of degrade model
performance. Poisoning attacks have also been
studied against models for undirected and single
relational graph data (Zügner et al., 2018; Dai
et al., 2018; Xu et al., 2020). But they cannot be ap-
plied directly to KGE models because they require
gradients of a dense adjacency matrix.

Other related work towards understanding KGE
models are Zhang et al. (2019b) and Nandwani et al.
(2020) that generate post-hoc explanations in the
form of sub-graphs. Also, Trouillon et al. (2019)
study the inductive abilities of KGE models as bi-
nary relation properties for controlled inference
tasks with synthetic datasets. Recently, Allen et al.
(2021) interpret the structure of KGE by drawing
comparison with word embeddings.
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DistMult ComplEx ConvE TransE

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline
Attacks

Random_n 0.66 (-34%) 0.52 0.65 (-35%) 0.51 0.62 (-38%) 0.46 0.71 (-29%) 0.56
Random_g 0.68 0.53 0.65 (-35%) 0.51 0.63 0.50 0.75 0.61
Direct-Del 0.59 (-41%) 0.42 0.62 (-38%) 0.47 0.57 (-43%) 0.41 0.62 (-38%) 0.45
CRIAGE 0.62 0.47 - - Er Er - -
GR 0.68 0.55 0.66 0.51 0.62 0.45 0.68 0.53

Proposed
Attacks

Dot Metric 0.63 0.47 0.64 0.49 0.60 0.44 0.74 0.62
`2 Metric 0.58 0.41 0.56 (-44%) 0.40 0.53 (-47%) 0.35 0.63 (-37%) 0.46
Cos Metric 0.56 (-44%) 0.39 0.57 0.40 0.55 0.38 0.63 (-37%) 0.45
GD (dot) 0.60 0.44 0.60 0.45 0.55 (-45%) 0.37 0.65 0.49
GL (`2) 0.62 0.45 0.60 0.45 0.56 0.41 0.70 0.58
GC (cos) 0.58 (-42%) 0.42 0.57 (-43%) 0.39 0.57 0.40 0.64 (-36%) 0.48
IF 0.60 (-40%) 0.44 0.60 (-40%) 0.45 0.58 (-42%) 0.43 0.66 (-34%) 0.52

Table 3: Reduction in MRR and Hits@1 due to adversarial deletions on target triples in FB15k-237. Lower values indicate
better results. First block of rows are the baseline attacks with random edits; second block is state-of-art attacks; remaining are
the proposed attacks. For each block, we report the best reduction in percentage relative to the original MRR.

DistMult ComplEx ConvE TransE

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline
Attacks

Random_n 0.99 (-1%) 0.98 0.97 (-3%) 0.94 0.99 (-1%) 0.98 0.76 (-24%) 0.57
Random_g 0.99 (-1%) 0.97 0.97 (-3%) 0.95 0.99 (-1%) 0.98 0.93 0.87
Direct-Add 0.98 (-2%) 0.96 0.95 (-5%) 0.92 0.99 (-1%) 0.98 0.81 (-19%) 0.67
CRIAGE 0.98 (-2%) 0.97 - - Er Er - -

Proposed
Attacks

Dot Metric 0.97 0.93 0.95 0.90 0.95 (-5%) 0.91 0.95 0.90
`2 Metric 0.89 (-11%) 0.78 0.88 0.77 0.98 0.96 0.87 (-13%) 0.83
Cos Metric 0.89 (-11%) 0.78 0.87 (-13%) 0.77 0.99 0.98 0.87 (-13%) 0.83
GD (dot) 0.90 0.79 0.89 0.79 0.92 0.85 0.80 (-20%) 0.73
GL (`2) 0.89 (-11%) 0.79 0.86 (-14%) 0.73 0.88 (-12%) 0.77 0.89 0.83
GC (cos) 0.90 0.80 0.87 0.76 0.91 0.82 0.80 (-20%) 0.73
IF 0.90 (-10%) 0.79 0.89 (-11%) 0.79 0.91 (-8.9%) 0.82 0.77 (-23%) 0.67

Table 4: Reduction in MRR and Hits@1 due to adversarial additions on target triples in WN18RR. Lower values indicate
better results. First block of rows are the baseline attacks with random edits; second block is state-of-art attacks; remaining are
the proposed attacks. For each block, we report the best reduction in percentage relative to the original MRR.

DistMult ComplEx ConvE TransE

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline
Attacks

Random_n 0.65 (-34%) 0.50 0.69 0.57 0.61 (-39%) 0.46 0.74 0.62
Random_g 0.66 0.52 0.66 (-34%) 0.52 0.63 0.50 0.73 (-27%) 0.61
Direct-Add 0.64 (-36%) 0.48 0.66 (-34%) 0.52 0.60 (-40%) 0.45 0.72 (-28%) 0.59
CRIAGE 0.66 0.50 - - Er Er - -

Proposed
Attacks

Dot Metric 0.67 0.54 0.65 0.50 0.61 0.46 0.74 (-26%) 0.62
`2 Metric 0.64 0.50 0.66 0.52 0.59 (-41%) 0.43 0.74 (-26%) 0.62
Cos Metric 0.63 (-37%) 0.49 0.63 (-37%) 0.47 0.60 0.43 0.74 (-26%) 0.61
GD (dot) 0.61 (-39%) 0.45 0.65 0.50 0.62 0.46 0.71 (-29%) 0.58
GL (`2) 0.63 0.48 0.67 0.53 0.61 (-39%) 0.45 0.74 0.60
GC (cos) 0.62 0.46 0.64 (-36%) 0.49 0.61 (-39%) 0.45 0.71 (-29%) 0.56
IF 0.61 (-39%) 0.45 0.65 (-35%) 0.50 0.58 (-42%) 0.42 0.71 (-29%) 0.58

Table 5: Reduction in MRR and Hits@1 due to adversarial additions on target triples in FB15k-237. Lower values indicate
better results; best results for each model are in bold. First block of rows are the baseline attacks with random edits; second block
is state-of-art attacks; remaining are the proposed attacks. For each block, we report the best reduction in percentage relative to
the original MRR; computed as (poisoned− original)/original ∗ 100.
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The instance attribution methods we use are also
used for post-hoc example-based explanations of
black-box models (Molnar, 2019). Hanawa et al.
(2021); Charpiat et al. (2019); Pruthi et al. (2020)
use Instance or Gradient Similarity on image data.
Similar to us, Han et al. (2020); Han and Tsvetkov
(2020); Pezeshkpour et al. (2021) use different in-
stance attribution methods, but to provide post-hoc
explanations on natural language.

6 Conclusion

We propose data poisoning attacks against KGE
models using instance attribution methods and
demonstrate that the proposed attacks outperform
the state-of-art attacks. We observe that the attacks
are particularly effective when the KGE model re-
lies on few training instances to make predictions,
i.e. when the input graph is sparse.

We also observe that shallow neural architec-
tures like DistMult, ComplEx and TransE are vul-
nerable to naive attacks based on Instance Similar-
ity. These models have shown competitive predic-
tive performance by proper hyperparameter tuning
(Ruffinelli et al., 2020; Kadlec et al., 2017), making
them promising candidates for use in production
pipelines. But our research shows that these perfor-
mance gains can be brittle. This calls for improved
KGE model evaluation that accounts for adversarial
robustness in addition to predictive performance.

Additionally, as in Bhardwaj (2020); Bhardwaj
et al. (2021), we call for future proposals to de-
fend against the security vulnerabilities of KGE
models. Some promising directions might be to
use adversarial training techniques or train ensem-
bles of models over subsets of training data to pre-
vent the model predictions being influenced by a
few triples only. Specification of the model failure
modes through adversarial robustness certificates
will also improve the usability of KGE models in
high-stake domains like healthcare and finance.
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Broader Impact

We study the problem of generating data poisoning
attacks against KGE models. These models drive
many enterprise products ranging from search en-
gines (Google, Microsoft) to social networks (Face-
book) to e-commerce (eBay) (Noy et al., 2019),
and are increasingly used in domains with high
stakes like healthcare and finance (Hogan et al.,
2020; Bendtsen and Petrovski, 2019). Thus, it is
important to identify the security vulnerabilities of
these models that might be exploited by malicious
actors to manipulate the predictions of the model
and cause system failure. By highlighting these se-
curity vulnerabilities of KGE models, we provide
an opportunity to fix them and protect stakeholders
from harm. This honours the ACM Code of Ethics
to contribute to societal well-being and avoid harm
due to computing systems.

Furthermore, to study data poisoning attacks
against KGE models, we use the Instance Attri-
bution Methods from Interpretable Machine Learn-
ing. These methods can also be used to provide
post-hoc explanations for KGE models and thus,
improve our understanding of the predictions made
by the models. In addition to understanding model
predictions, instance based attribution methods can
help guide design decisions during KGE model
training. There are a vast number of KGE model
architectures, training strategies and loss functions,
and empirically quantifying the impact of the de-
sign choices is often challenging (Ruffinelli et al.,
2020). Thus, we would encourage further research
on exploring the use of instance attribution meth-
ods to understand the impact of these choices on
the KGE model predictions. By tracing back the
model predictions to the input knowledge graph,
we can gain a better understanding of the success
or failure of different design choices.
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Appendix

A Dataset Details

We evaluate the proposed attacks on four state-
of-art KGE models - DistMult, ComplEx, ConvE
and TransE; on two publicly available benchmark
datasets for link prediction6- WN18RR and FB15k-
237. For the KGE model evaluation protocol, we
filter out triples from the validation and test set that
contain unseen entities.

To assess the attack effectiveness in degrading
performance on triples predicted as True, we need
to select a set of triples that are predicted as True by
the victim model. Thus, we select a subset of the
benchmark test set that has been ranked the best (i.e.
ranks=1) by the victim KGE model. If this subset
has more than 100 triples, we randomly sample 100
triples as the target triples; otherwise we use all
triples as target triples. We do this pre-processing
step to avoid the expensive Hessian inverse com-
putation in the Influence Functions (IF) for a large
number of target triples - for each target triple, esti-
mating the Hessian inverse (as an HVP) using the
LissA algorithm requires one training epoch.

WN18RR FB15k-237

Entities 40,559 14,505
Relations 11 237
Training 86,835 272,115
Validation 2,824 17,526
Test 2,924 20,438

Subset
with
Best Ranks

DistMult 1,109 1,183
ComplEx 1,198 1,238
ConvE 1,106 901
TransE 15 1223

Table 6: Statistics for WN18RR and FB15k-237. We
removed triples from the validation and test set that
contained unseen entities to ensure that we do not add
new entities as adversarial edits. The numbers above
(including the number of entities) reflect this filtering.

Table 6 shows the dataset statistics and the num-
ber of triples which are ranked best by the different
KGE models.

B Training Details

B.1 Training KGE models
We implement four KGE models - DistMult, Com-
plEx, ConvE and TransE. We use the 1-N train-
ing strategy proposed in Lacroix et al. (2018) but
we do not add the reciprocal relations. Thus, for

6https://github.com/TimDettmers/ConvE

WN18RR FB15k-237

MRR Hits@1 MRR Hits@1

DistMult 0.48 0.44 0.34 0.24
ComplEx 0.51 0.47 0.34 0.25

ConvE 0.44 0.41 0.32 0.23
TransE 0.21 0.02 0.33 0.24

Table 7: MRR and Hits@1 results for original KGE
models on WN18RR and FB15k-237

each triple, we generate scores for (s, r)→ o and
(o, r)→ s.

For TransE scoring function, we use the L2 norm.
The loss function used for all models is Pytorch’s
CrossEntropyLoss. For regularization, we use
N3 regularization and input dropout on DistMult
and ComplEx; input dropout, hidden dropout and
feature dropout on ConvE; and L2 regularization
(Bordes et al., 2013) and input dropout for TransE.

We do not use early stopping to ensure same
hyperparameters for original and poisoned KGE
models. We use an embedding size of 200 for all
models on both datasets. An exception is TransE
model for WN18RR, where we used embedding
dim = 100 due to the expensive time and space
complexity of 1-N training for TransE. We man-
ually tuned the hyperparameters for KGE models
based on suggestions from state-of-art implementa-
tions (Ruffinelli et al., 2020; Dettmers et al., 2018;
Lacroix et al., 2018; Costabello et al., 2019).

Table 7 shows the MRR and Hits@1 for the
original KGE models on WN18RR and FB15k-237.
To re-train the KGE model on poisoned dataset, we
use the same hyperparameters as the original model.
We run all model training, adversarial attacks and
evaluation on a shared HPC cluster with Nvidia
RTX 2080ti, Tesla K40 and V100 GPUs.

To ensure reproducibility, our source
code is publicly available on GitHub at
https://github.com/PeruBhardwaj/
AttributionAttack. The results in Section
4 can be reproduced by passing the argument
reproduce− results to the attack scripts.
Example commands for this are available in the
bash scripts in our codebase. The hyperparameter
used to generate the results can be inspected
in the set_hyperparams() function in the file
utils.py or in the log files.

For the LissA algorithm used to estimate the
Hessian inverse in Influence Functions, we select
the hyperparameter values using suggestions from
Koh and Liang (2017). The values are selected

https://github.com/PeruBhardwaj/AttributionAttack
https://github.com/PeruBhardwaj/AttributionAttack
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to ensure that the Taylor expansion in the esti-
mator converges. These hyperparameter values
for our experiments are available in the function
set_if_params() in the file utils.py of the ac-
companying codebase.

B.2 Baseline Implementation Details

One of the baselines in Section 4 of the main pa-
per is the Direct-Del and Direct-Add attack from
(Zhang et al., 2019a). The original study evaluated
the method for the neighbourhood of subject of
the target triple. We extend it for both subject and
object to ensure fair comparison with other attacks.
Since no public implementation is available, we
implement our own.

WN18RR

Original High Low

DistMult 1.00 0.98 0.98
ComplEx 1.00 0.96 0.95

ConvE 1.00 0.99 0.99
TransE 1.00 0.81 0.86

FB15k-237

Original High Low

DistMult 1.00 0.64 0.64
ComplEx 1.00 0.67 0.66

ConvE 1.00 0.62 0.60
TransE 1.00 0.72 0.73

Table 8: MRR of KGE models trained on original
datasets and poisoned datasets from the Direct-Add
baseline attack in Zhang et al. (2019a). High, Low in-
dicate the high (20%) and low percentage (5%) of can-
didates selected from random down-sampling.

The Direct-Add attack is based on computing
a perturbation score for all possible candidate ad-
ditions. Since the search space for candidate ad-
ditions is of the order E × R (where E and R are
the set of entities and relations), it uses random
down sampling to filter out the candidates. The
percent of triples down sampled are not reported
in the original paper and a public implementation
is not available. So, in this paper, we pick a high
and a low value for the percentage of triples to be
down-sampled and generate adversarial additions
for both fractions. We arbitrarily choose 20% of all
candidate additions for high; and 5% of all candi-
date additions as low.

Thus, we generate two poisoned datasets from
the attack - one that used a high number of candi-
dates and another that used a low number of can-
didates. We train two separate KGE models on

these datasets to assess the baseline performance.
Table 8 shows the MRR of the original model; and
poisoned KGE models from attack with high and
low down-sampling percents. The results reported
for Direct-Add in Section 4 of the main paper are
the better of the two results (which show more
degradation in performance) for each combination.

C Further Analysis of Proposed Attacks

C.1 Runtime Analysis

We analyze the runtime efficiency of baseline and
proposed attack methods for adversarial deletions.
For brevity, we consider the attacks on DistMult
model, but the results on other models show sim-
ilar time scales. Table 9 shows the time taken in
seconds to select the influential triples for DistMult
model on WN18RR and FB15k-237.

WN18RR FB15k-237

Baseline
Attacks

Random_n 0.024 0.057
Random_g 0.002 0.002
Direct-Del 0.407 0.272
CRIAGE 2.235 75.117
GR 29.919 174.191

Proposed
Attacks

Dot Metric 0.288 0.342
`2 Metric 0.057 0.067
Cos Metric 0.067 0.148
GD (dot) 7.354 109.015
GL (`2) 8.100 120.659
GC (cos) 9.478 141.276
IF 4751.987 4750.404

Table 9: Time taken in seconds for baseline and pro-
posed attacks to generate influential triples for Dist-
Mult on WN18RR and FB15k-237

We see that the Instance Similarity metrics (dot
metric, `2 metric, cos metric) are more efficient
than the state-of-art attacks (Direct-Del, CRIAGE
and GR). Furthermore, the `2 metric is almost as
quick as random triple selection. The efficiency of
Gradient Similarity metrics is also better than or
equivalent to CRIAGE and GR.

Only the attack method based on IF is much
slower than any other method. This is because
estimating the Hessian inverse in IF requires one
training epoch for every target triple, that is, we
run 100 training epochs to get the influential triples
for 100 target triples. However, our results in Sec-
tion 4.2 of the main paper show that this expensive
computation does not provide improved adversarial
deletions, and thus, might be unnecessary to select
influential triples for KGE models.
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Target Relation Influential Relation
_has_part _has_part
_synset_domain_topic_of _synset_domain_topic_of
_has_part _has_part
_synset_domain_topic_of _synset_domain_topic_of
_synset_domain_topic_of _synset_domain_topic_of
_synset_domain_topic_of _synset_domain_topic_of
_instance_hypernym _instance_hypernym
_synset_domain_topic_of _synset_domain_topic_of
_instance_hypernym _synset_domain_topic_of
_synset_domain_topic_of _synset_domain_topic_of
_member_meronym _derivationally_related_form
_synset_domain_topic_of _synset_domain_topic_of
_has_part _has_part
_member_meronym _member_meronym
_synset_domain_topic_of _synset_domain_topic_of

Table 10: Relations from the target triples and influential triples (adversarial deletions) for the cos metric on
WN18RR-TransE. This combination has 15 target triples and the table shows the relations for all of them.

C.2 Additional Comparison with CRIAGE
The baseline attack method CRIAGE estimates the
influence of a training triple using the BCE loss and
is thus likely to be effective only for KGE models
that are trained with BCE loss. In Section 4.1, we
found that the proposed attacks are more effective
than the baseline attack.

But since our original models are trained with
cross-entropy loss, we perform an additional anal-
ysis of the Instance Similarity attacks against
CRIAGE for the DistMult model trained with BCE
loss. Table 11 shows the reduction in MRR and
Hits@1 due to adversarial deletions in this training
setting. We find that the Instance Similarity attacks
outperform the baseline for this setting as well.

WN18RR FB15k-237

MRR Hits@1 MRR Hits@1

Original 1.00 1.00 1.00 1.00
CRIAGE 0.67 0.63 0.63 0.46

Dot Metric 0.86 0.81 0.61 0.44
`2 Metric 0.12 0.06 0.60 0.43

Cos Metric 0.12 0.06 0.58 0.38

Table 11: Reduction MRR and Hits@1 due to adversar-
ial deletions for DistMult (trained with BCE loss) on
WN18RR and FB15k-237

C.3 Analysis of Instance Attribution
Methods on WN18RR-TransE

For the TransE model on WN18RR, we found
that the instance attribution methods lead to effec-
tive adversarial deletions with respect to random
baselines, but not adversarial additions (Section
4.1 of main paper). A possible reason is based
on the ability of TransE model hierarchical rela-
tions, i.e. the relations that represent a hierarchy
between the subject and object entities. For exam-
ple, (s, _has_part, o) indicates that s is the parent
node for o in a hierarchy.

We select the Instance Similarity method cos
metric for further analysis. It performs the best
of all instance attribution methods for adversarial
deletions, but performs worse than random neigh-
bourhood edits for adversarial additions. Table 10
shows the relations in the target triples and the in-
fluential triples (i.e. adversarial deletions) selected
by cos metric.

We see that the target triples con-
tain mostly hierarchical relations like
_synset_domain_topic_of and _has_part.
Also the cos metric identifies influential triples
with same relations. And since our adversarial
additions are only based on modifying the entity
in the influential triple, these edits improve the
hierarchy structure of the graph instead of breaking
it. Thus, these edits perform well for adversarial
deletions, but not for additions.
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C.4 Neighbourhood Sparsity Comparison on
WN18RR and FB15k-237

In Section 4.3 of the main paper, we found that the
proposed attacks are significantly more effective
for WN18RR than for FB15k-237. This is likely be-
cause there are fewer triples in the neighbourhood
of target triples for WN18RR than for FB15k-237.
The graph in Figure 2 shows the median number of
neighbours of the target triples for WN18RR and
FB15k-237. We report median (instead of mean)
because of large standard deviation in the number
of target triple neighbours for FB15k-237.

We see that the target triple’s neighbourhood for
WN18RR is significantly sparser than the neigh-
bourhood for FB15k-237. Thus, since the KGE
model predictions are learned from fewer triples
for WN18RR, it is also easier to perturb these re-
sults with fewer adversarial edits.

Figure 2: Comparison of the median number of neighbouring
triples of target triples from WN18RR and FB15k-237 for
DistMult, ComplEx, ConvE and TransE.


