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Abstract

Entity Alignment (EA) aims to match equival-
ent entities across different Knowledge Graphs
(KGs) and is an essential step of KG fu-
sion. Current mainstream methods – neural
EA models – rely on training with seed align-
ment, i.e., a set of pre-aligned entity pairs
which are very costly to annotate. In this paper,
we devise a novel Active Learning (AL) frame-
work for neural EA, aiming to create highly
informative seed alignment to obtain more ef-
fective EA models with less annotation cost.
Our framework tackles two main challenges
encountered when applying AL to EA:

(1) How to exploit dependencies between entit-
ies within the AL strategy. Most AL strategies
assume that the data instances to sample are
independent and identically distributed. How-
ever, entities in KGs are related. To address
this challenge, we propose a structure-aware
uncertainty sampling strategy that can measure
the uncertainty of each entity as well as its im-
pact on its neighbour entities in the KG.

(2) How to recognise entities that appear in
one KG but not in the other KG (i.e., bachel-
ors). Identifying bachelors would likely save
annotation budget. To address this challenge,
we devise a bachelor recognizer paying atten-
tion to alleviate the effect of sampling bias.

Empirical results show that our proposed AL
strategy can significantly improve sampling
quality with good generality across different
datasets, EA models and amount of bachelors.

1 Introduction

Knowledge Graphs (KGs) store entities and their
relationships with a graph structure and are used as
knowledge drivers in many applications (Ji et al.,
2020). Existing KGs are often incomplete but com-
plementary to each other. A popular approach used
to tackle this problem is KG fusion, which attempts
to combine several KGs into a single, comprehens-
ive one. Entity Alignment (EA) is an essential
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Figure 1: An example of Entity Alignment.

step for KG fusion: it identifies equivalent entities
across different KGs, supporting the unification of
their complementary knowledge. For example, in
Fig. 1 Donald Trump and US in the first KG cor-
respond to D.J. Trump and America respectively in
the second KG. By aligning them, the political and
business knowledge about Donald Trump can be
integrated within one KG.

Neural models (Chen et al., 2017, 2018; Wang
et al., 2018; Cao et al., 2019) are the current state-
of-the-art in EA and are capable of matching en-
tities in an end-to-end manner. Typically, these
neural EA models rely on a seed alignment as train-
ing data which is very labour-intensive to annotate.
However, previous EA research has assumed the
availability of such seed alignment and ignored the
cost involved with their annotation. In this paper,
we seek to reduce the cost of annotating seed align-
ment data, by investigating methods capable of
selecting the most informative entities for labelling
so as to obtain the best EA model with the least
annotation cost: we do so using Active Learning.
Active Learning (AL) (Aggarwal et al., 2014) is a
Machine Learning (ML) paradigm where the an-
notation of data and the training of a model are per-
formed iteratively so that the sampled data is highly
informative for training the model. Though many
general AL strategies have been proposed (Settles,
2012; Ren et al., 2020), there are some unique chal-
lenges in applying AL to EA.
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The first challenge is how to exploit the de-
pendencies between entities. In the EA task,
neighbouring entities (context) in the KGs natur-
ally affect each other. For example, in the two
KGs of Fig. 1, we can infer US corresponds to
America if we already know that Donald Trump
and D.J. Trump refer to the same person: this is
because a single person can only be the presid-
ent of one country. Therefore, when we estimate
the value of annotating an entity, we should con-
sider its impact on its context in the KG. Most AL
strategies assume data instances are independent,
identically distributed and cannot capture depend-
encies between entities (Aggarwal et al., 2014). In
addition, neural EA models exploit the structure
of KGs in different and implicit ways (Sun et al.,
2020b). It is not easy to find a general way of
measuring the effect of entities on others.

The second challenge is how to recognize the
entities in a KG that do not have a counterpart
in the other KG (i.e., bachelors). In the first KG
of Fig. 1, Donald Trump and US are matchable
entities while New York City and Republican Party
are bachelors. Selecting bachelors to annotate will
not lead to any aligned entity pair. The impacts of
recognizing bachelors are twofold:

1. From the perspective of data annotation, recog-
nizing bachelors would automatically save an-
notation budget (because annotators will try to
seek a corresponding entity for some time be-
fore giving up) and allow annotators to put their
effort in labelling matchable entities. This is
particularly important for the existing neural EA
models, which only consider matchable entities
for training: thus selecting bachelors in these
cases is a waste of annotation budget.

2. From the perspective of EA, bachelor recogni-
tion remedies the limitation of existing EA mod-
els that assume all entities to align are match-
able, and would enable them to be better used
in practice (i.e., real-life KGs where bachelors
are popular).

To address these challenges, we propose a novel
AL framework for EA. Our framework follows the
typical AL process: entities are sampled iteratively,
and in each iteration a batch of entities with the
highest acquisition scores are selected. Our novel
acquisition function consists of two components:
a structure-aware uncertainty measurement mod-
ule and a bachelor recognizer. The structure-aware
uncertainty can reflect the uncertainty of a single

entity as well as the influence of that entity in the
context of the KG, i.e., how many uncertainties it
can help its neighbours eliminate. In addition, we
design a bachelor recognizer, based on Graph Con-
volutional Networks (GCNs). Because the bach-
elor recognizer is trained with the sampled data
and used to predict the remaining data, it may suf-
fer from bias (w.r.t. the preference of sampling
strategy) of these two groups of data. We apply
model ensembling to alleviate this problem.

Our major contributions in this paper are:
1. A novel AL framework for neural EA, which

can produce more informative data for training
EA models while reducing the labour cost in-
volved in annotation. To our knowledge, this is
the first AL framework for neural EA.

2. A structure-aware uncertainty sampling strategy,
which models uncertainty sampling and the re-
lation between entities in a single AL strategy.

3. An investigation of bachelor recognition, which
can reduce the cost of data annotation and rem-
edy the defect of existing EA models.

4. Extensive experimental results that show our
proposed AL strategy can significantly improve
the quality of data sampling and has good gener-
ality across different datasets, EA models, and
bachelor quantities.

2 Background
2.1 Entity Alignment

Entity alignment is typically performed between
two KGs G1 and G2, whose entity sets are denoted
as E1 and E2 respectively. The goal of EA is to
find the equivalent entity pairs A = {(e1, e2) ∈
E1×E2|e1 ∼ e2}, where∼ denotes an equivalence
relationship and is usually assumed to be a one-to-
one mapping. In supervised and semi-supervised
models, a subset of the alignment Aseed ⊂ A,
called seed alignment, are annotated manually be-
forehand and used as training data. The remaining
alignment form the test set Atest = A \ Aseed.
The core of an EA model F is a scoring function
F (e1, e2), which takes two entities as input and
returns a score for how likely they match. The
effectiveness of an EA model is essentially determ-
ined by Aseed and we thus denote it as m(Aseed).

2.2 Active Learning

An AL framework consists of two components: (1)
an oracle (annotation expert), which provides la-
bels for the queries (data instances to label), and
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Figure 2: Overview of ActiveEA.

(2) a query system, which selects the most inform-
ative data instances as queries. In pool-based scen-
ario, there is a pool of unlabelled data U . Given a
budget B, some instances Uπ,B are selected from
the pool following a strategy π and sent to the ex-
perts to annotate, who produce a training set Lπ,B .
We train the model on Lπ,B and the effectiveness
m(Lπ,B) of the obtained model reflects how good
the strategy π is. The goal is to design an optimal
strategy π∗ such that π∗ = argmaxπm(Lπ,B).

3 ActiveEA: Active Entity Alignment
3.1 Problem Definition

Given two KGs G1, G2 with entity sets E1, E2,
an EA model F , a budget B, the AL strategy π is
applied to select a set of entities Uπ,B so that the an-
notators label the counterpart entities to obtain the
labelled data Lπ,B . Lπ,B consists of annotations
of matchable entities L+π,B , which form the seed
alignment Aseedπ,B , and bachelors L−π,B . We measure
the effectiveness m(Aseedπ,B ) of the AL strategy π
by training the EA model on Aseedπ,B and then eval-
uating it with Atestπ,B = A \ Aseedπ,B . Our goal is to
design an optimal entity sampling strategy π∗ so
that π∗ = argmaxπm(Aseedπ,B ).

In our annotation setting, we select entities from
one KG and then let the annotators identify their
counterparts from the other KG. Under this set-
ting, we assume the pool of unlabelled entities
is initialized with U = E1. The labelled data
will be like L+π,B = {(e1 ∈ E1, e2 ∈ E2)} and
L−π,B = {(e1 ∈ E1, null)}.

3.2 Framework Overview

The whole annotation process, as shown in Fig. 2,
is carried out iteratively. In each iteration, the query
system selects N entities from U and sends them
to the annotators. The query system includes (1) a
structure-aware uncertainty measurement module
fsu, which combines uncertainty sampling with
the structure information of the KGs, and (2) a

bachelor recognizer f b, which helps avoid selecting
bachelor entities. The final acquisition fπ used
to select which entities to annotate is obtained by
combining the outputs of these two modules. After
the annotators assign the ground-truth counterparts
to the selected entities, the new annotations are
added to the labelled data L. With the updated L,
the query system updates the EA model and the
bachelor recognizer. This process repeats until no
budget remains. To simplify the presentation, we
omit the sampling iteration when explaining the
details.

3.3 Structure-aware Uncertainty Sampling
We define the influence of an entity on its con-
text as the amount of uncertainties it can help its
neighbours remove. As such, we formulate the
structure-aware uncertainty fsu as

f su(e1i ) = α
∑

e1i→e1j ,e1j∈N out
i

wijf
su(e1j )

+ (1− α) fu(e1i )∑
e1∈E1 f

u(e1)
,

(1)

where N out
i is the outbound neighbours of entity

e1i (i.e. the entities referred to by e1i ) and wij meas-
ures the extent to which e1i can help e1j eliminate
uncertainty. The parameter α controls the trade-
off between the impact of entity e1i on its context
(first term in the equation) and the normalized un-
certainty (second item). Function fu(e1) refers to
the margin-based uncertainty of an entity. For each
entity e1, the EA model can return the matching
scores F (e1, e2) with all unaligned entities e2 in
G2. Since these scores in existing works are not
probabilities, we exploit the margin-based uncer-
tainty measure for convenience, outlined in Eq. 2:

fu(e1) = −
(
F (e1, e2∗)− F (e1, e2∗∗)

)
(2)

where F (e1, e2∗) and F (e1, e2∗∗) are the highest and
second highest matching scores respectively. A
large margin represents a small uncertainty.

For each entity e1j , we assume its inbound neigh-
bours can help it clear all uncertainty. Then, we
have

∑
e1i→e1j ,e1i∈N in

j
wij = 1, whereN in

j is the in-

bound neighbour set of e1j . In this work, we assume
all inbound neighbours have the same impact on
e1j . In this case, wij = 1

degree(e1j )
, where degree(·)

returns the in-degree of an entity.
Using matrix notion, Eq. 1 can be rewritten as

f su = αWf su + (1− α) fu

|fu|
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where f su is the vector of structure-aware uncer-
tainties, fu is the vector of uncertainties, and W is
a matrix encoding influence between entities, i.e.,
wij > 0 if e1i is linked to e1j , otherwise 0.

As W is a stochastic matrix (Gagniuc, 2017), we
solve Eq. 1 iteratively, which can be viewed as the
power iteration method (Franceschet, 2011), sim-
ilar to Pagerank (Brin and Page, 1998). Specific-
ally, we initialize the structure-aware uncertainty
vector as f su0 = fu. Then we update f sut iteratively:

f sut = αWf sut−1 + (1− α) fu

|fu|
, t = 1, 2, 3, ...

The computation ends when |f sut − f sut−1| < ε.

3.4 Bachelor Recognizer

The bachelor recognizer is formulated as a binary
classifier, which is trained with the labelled data
and used to predict the unlabelled data. One chal-
lenge faced here is the bias between the labelled
data and the unlabelled data caused by the sampling
strategy (since it is not random sampling). We alle-
viate this issue with a model ensemble.

3.4.1 Model Structure
We apply two GCNs (Kipf and Welling, 2017;
Hamilton et al., 2017) as the encoders to get the
entity embeddings H1 = GCN1(G1),H2 =
GCN2(G2), where each row in H1 or H2 cor-
responds to a vector representation of a particular
entity. The two GCN encoders share the same struc-
ture but have separate parameters. With each GCN
encoder, each entity ei is first assigned a vector
representation h

(0)
i . Then contextual features of

each entity are extracted:

h
(l)
i = norm(σ(

∑
j∈Ni∪{i}

V(l)h
(l−1)
j + b(l))),

where l is the layer index, Ni is the neighbouring
entities of entity ei, and σ is the activation function,
norm(·) is a normalization function, and V(l),b(l)

are the parameters in the l-th layer. The repres-
entations of each entity ei obtained in all GCN
layers are concatenated into a single representation:
hi = concat(h

(0)
i ,h

(1)
i , ...,h

(L)
i ), where L is the

number of GCN layers.
After getting the representations of entities, we

compute the similarities of each entity in E1 with
all entities in E2 (S = H1 · H2T ) and obtain
its corresponding maximum matching score as in

fs(e1i ) = max(Si,:). The entity e1i whose max-
imum matching score is greater than a threshold
γ is considered to be a matchable entity as in
f b(e1i ) = 1fs(e1i )>γ

, otherwise a bachelor.

3.4.2 Learning
In each sampling iteration, we train the bachelor re-
cognizer with existing annotated data L containing
matchable entities L+ and bachelors L−. Further-
more, L is divided into a training set Lt and a
validation set Lv.

We optimize the parameters, including
{V(l),b(l)}1≤l≤L of each GCN encoder and the
threshold γ, in two phases, sharing similar idea
with supervised contrastive learning (Khosla et al.,
2020). In the first phase, we optimize the scoring
function fs by minimizing the constrastive loss
shown in Eq. 3.

loss =
∑

(e1i ,e
2
j )∈Lt,+

‖ h1
i − h2

j ‖

+ β
∑

(e1
i′ ,e

2
j′ )∈L

t,neg

[λ− ‖ h1
i′ − h2

j′ ‖]+
(3)

Here, β is a balance factor, and [·]+ is max(0, ·),
and Lt,neg is the set of negative samples gener-
ated by negative sampling (Sun et al., 2018). For
a given pre-aligned entity pair in L+, each entity
of it is substituted for Nneg times. The distance
of negative samples is expected to be larger than
the margin λ. In the second phase, we freeze the
trained fs and optimize γ for f b. It is easy to op-
timize γ, e.g. by simple grid search, so that f b can
achieve the highest performance on Lv (denoted as
q(fs, γ,Lv)) using:

γ∗ = argmaxγq(f
s, γ,Lv).

3.4.3 Model Ensemble for Sampling Bias
The sampled data may be biased, since they have
been preferred by the sampling strategy rather than
selected randomly. As a result, even if the bach-
elor recognizer is well trained with the sampled
data it may perform poorly on data yet to sample.
We apply a model ensemble to alleviate this prob-
lem. Specifically, we divide the L into K subsets
evenly. Then we apply K-fold cross-validation to
train K scoring functions {f s1 , ..., f sK}, each time
using K − 1 subsets as the training set and the left
out portion as validation set. Afterwards, we search
for an effective γ threshold:

γ∗ = argmaxγ
1

K

∑
1≤k≤K

q(fsk , γ,Lvk)



3368

At inference, we ensemble by averaging the K
scoring functions fsk to form the final scoring func-
tion fs as in Eq. 4 and base f b on it.

fs(e1i ) =
1

K

∑
1≤k≤K

fsk(e
1
i ) (4)

3.5 Final Acquisition Function

We combine our structure-aware uncertainty
sampling with the bachelor recognizer to form the
final acquisition function:

fπ(e1i ) = fsu(e1i )f
b(e1i )

4 Experimental Setup

4.1 Sampling Strategies

We construct several baselines for comparison:
rand random sampling used by existing EA works.
degree selects entities with high degrees.
pagerank (Brin and Page, 1998) measures the
centrality of entities by considering their degrees
as well as the importance of its neighbours.
betweenness (Freeman, 1977) refers to the num-
ber of shortest paths passing through an entity.
uncertainty sampling selects entities that the cur-
rent EA model cannot predict with confidence.
Note that in this work we measure uncertainty us-
ing Eq. 2 for fair comparison.

degree, pagerank and betweenness are purely
topology-based and do not consider the current EA
model. On the contrary, uncertainty is fully based
on the current EA model without being able to
capture the structure information of KG. We com-
pare both our structure-aware uncertainty sampling
(struct_uncert) and the full framework ActiveEA
with the baselines listed above. We also exam-
ine the effect of Bayesian Transformation, which
aims to make deep neural models represent uncer-
tainty more accurately (Gal et al., 2017).

4.2 EA Models

We apply our ActiveEA framework to three differ-
ent EA models, which are a representative spread
of neural EA models and varied in KG encoding,
considered information and training method (Liu
et al., 2020; Sun et al., 2018):
BootEA (Sun et al., 2018) encodes the KGs with
the translation model (Bordes et al., 2013), exploits
the structure of KGs, and uses self-training.
Alinet (Sun et al., 2020a) also exploits the struc-
ture of KGs but with a GCN-based KG encoder,
and is trained in a supervised manner.

RDGCN (Wu et al., 2019) trains a GCN in a su-
pervised manner, as Alinet, but it can incorporate
entities’ attributes.
Our implementations and parameter settings of the
models rely on OpenEA1 (Sun et al., 2020b).

4.3 Datasets

We use three different datasets: D-W-15K V1
(DW), EN-DE-15K V1 (ENDE), and EN-FR-100K
V1 (ENFR), obtained from OpenEA (Sun et al.,
2020b). Each dataset contains two KGs and equi-
valent entity pairs. The KGs used in these data-
sets were sampled from real KGs, i.e. DBpe-
dia (Lehmann et al., 2015), Wikidata (Vrandecic
and Krötzsch, 2014), and YAGO (Rebele et al.,
2016), which are widely used in EA community.
These datasets differ in terms of KG sources, lan-
guages, sizes, etc. We refer the reader to Sun et al.
(2020b) for more details.

Existing work on EA assumes all entities in
the KGs are matchable, thus only sampling entit-
ies with counterparts when producing the datasets.
For investigating the influence of bachelors on AL
strategies, we synthetically modify the datasets by
excluding a portion of entities from the second KG.

4.4 Evaluation Metrics

We use Hit@1 as the primary evaluation measure
of the EA models. To get an overall evaluation of
one AL strategy across different sized budgets, we
plot the curve of a EA model’s effectiveness with
respect to the proportion of annotated entities, and
calculate the Area Under the Curve (AUC).

4.5 Parameter Settings

We set α = 0.1, ε = 1e−6 for the structure-aware
uncertainty. We use L = 1 GCN layer for our
bachelor recognizer with 500 input and 400 output
dimensions. We set K = 5 for its model ensemble
and λ = 1.5, β = 0.1, Nneg = 10 for its training.
The sampling batch size is set to N = 100 for 15K
data and N = 1000 for 100K data.

4.6 Reproducibility Details

Our experiments are run on a GPU cluster. We
allocate 50G memory and one 32GB nVidia Tesla
V100 GPU for each job on 15K data, and 100G
memory for each job on 100K data. The training
and evaluation of ActiveEA take approximately 3h
with Alinet on 15K data, 10h with BootEA on 15K

1https://github.com/nju-websoft/OpenEA

https://github.com/nju-websoft/OpenEA
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Figure 3: HIT@1 of sampling strategies for all EA models on DW and ENDE, as annotation portion increases. Top
row shows experiments that do not include bachelors; bottom row shows experiments that include 30% bachelors.
ActiveEA is equivalent to struct_uncert in absence of bachelors, and is thus shown only for the second row.
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Figure 4: Hit@1 for all sampling strategies on the
Alinet EA model on ENFR. Left shows experiments
without bachelors, right shows with 30% bachelors.

data, 10h with RDGCN on 15K data, and 48h with
Alinet on 100K data. Most baseline strategies take
less time than ActiveEA on the same dataset except
betweenness on 100K data, which takes more than
48h. We apply grid search for setting α and N
(shown in Sec. 5.4). Hyper-parameters of the bach-
elor recognizer are chosen by referring the settings
of OpenEA and our manual trials. Code and data-
sets are available at https://github.com/
UQ-Neusoft-Health-Data-Science/
ActiveEA.

5 Experimental Results

5.1 Comparison with Baselines

Fig. 3 presents the overall performance of each
strategy with three EA models on two datasets,
each of which we also synthetically modify to in-
clude 30% bachelors. We also report the AUC@0.5
values of these curves in Tab. 1. ActiveEA degener-
ates into struct_uncert when there is no bachelor.

Random Sampling. Random sampling usually
performs poorly when the annotation proportion
is small, while it becomes more competitive when
the amount of annotations increases. But for most
annotation proportions, random sampling exhibits
a large gap in performance compared to the best
method. This observation highlights the need to
investigate data selection for EA.

Topology-based Strategies. The topology-based
strategies are effective when few annotations are
provided, e.g., < 20%. However, once annota-
tions increase, the effectiveness of topology-based
strategies is often worse than random sampling.
This may be because these strategies suffer more
from the bias between the training set and test set.
Therefore, only considering the structural informa-
tion of KGs has considerable drawbacks for EA.

Uncertainty Sampling. On the contrary, the un-

https://github.com/UQ-Neusoft-Health-Data-Science/ActiveEA
https://github.com/UQ-Neusoft-Health-Data-Science/ActiveEA
https://github.com/UQ-Neusoft-Health-Data-Science/ActiveEA
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Strategy
BootEA AliNet RDGCN

DW
(0%)

DW
(30%)

ENDE
(0%)

ENDE
(30%)

DW
(0%)

DW
(30%)

ENDE
(0%)

ENDE
(30%)

DW
(0%)

DW
(30%)

ENDE
(0%)

ENDE
(30%)

rand 23.5n 17.0 28.1 21.3 19.4 16.7 26.0 23.7 25.8 25.0 41.3n 41.0
degree 19.5 16.0 24.0 20.0 17.1 15.2 22.2 20.5 23.3 22.9 39.1 39.4
pagerank 22.3 18.3 27.6 23.0 19.9 17.3 25.8 24.1 24.5 23.9 40.5 40.6
betweenness 20.5 16.3 26.1 21.1 17.8 15.6 23.7 22.3 23.2 22.7 40.2 40.3
uncertainty 23.9 16.1 29.8 21.2 21.6 15.4 28.2 22.2 24.7 23.9 40.9n 40.5
struct_uncert 26.3 20.8 33.6 27.4 23.1 19.1 30.6 26.8 26.5 25.6 41.9 41.0
ActiveEA 26.7 31.5 25.7 32.8 28.1 42.3

Table 1: Overall performance (AUC@0.5 (%)) for each sampling strategy. The highest performing strategy in each
column is indicated in bold. We run each strategy 5 times; most results for ActiveEA show statistically significant
differences over other methods (paired t-test with Bonferroni correction, p < 0.05), except the few cells indicated
by n.

certainty sampling strategy performs poorly when
the proportion of annotations is small but improves
after several annotations have been accumulated.
One reason for this is that neural EA models can-
not learn useful patterns with a small number of
annotations. On datasets with bachelors, uncer-
tainty sampling always performs worse than ran-
dom sampling. Thus, it is clear that uncertainty
sampling cannot be applied directly to EA.

Structure-aware Uncertainty Sampling. Struc-
ture-aware uncertainty is effective across all an-
notation proportions. One reason for this is that it
combines the advantages of both topology-based
strategies and uncertainty sampling. This is essen-
tial for AL as it is impossible to predict the amount
of annotations required for new datasets.

ActiveEA. ActiveEA, which enhances structure-
aware sampling with a bachelor recognizer, greatly
improves EA when KGs contain bachelors.

5.1.1 Generality
The structure-aware uncertainty sampling mostly
outperforms the baselines, while ActiveEA per-
forms even better in almost all cases. ActiveEA
also demonstrates generality across datasets, EA
models, and bachelor proportions.

When the dataset has no bachelors, our
uncertainty-aware sampling is exceeded by uncer-
tainty sampling in few large-budget cases. How-
ever, the real-world datasets always have bachelors.
In this case, our structure-aware uncertainty shows
more obvious advantages.

In addition, the strategies are less distinguish-
able when applied to RDGCN. The reason is that
RDGCN exploits the name of entities for pre-
alignment and thus all strategies achieve good per-
formance from the start.
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Figure 5: Comparison demonstrating the effect of bach-
elors (0% – 40%) on the BootEA and Alinet models.
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Figure 6: Comparison demonstrating the effectiveness
of the bachelor recognizer and the effect of the model
ensemble (ME) on BootEA and Alinet.

To assess the generality across datasets of differ-
ent sizes, we evaluate the sampling strategies with
Alinet using ENFR (100K entities), which is larger
than DW and ENDE (15K entities). We choose
Alinet because it is more scalable than BootEA
and RDGCN (Zhao et al., 2020). Fig. 4 presents
comparable results to the 15K datasets.

5.2 Effect of Bachelors

To investigate the effect of bachelors, we removed
different amounts of entities randomly (each larger
sample contains the subset from earlier samples)
from G2 so that G1 had different percentages of
bachelors. Fig. 5 shows the results of applying all
strategies to these datasets. We further make the
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Figure 7: Comparison demonstrating the effects differ-
ent parameters have on our sampling strategies.

following four observations:
1. The performance of all strategies except Act-
iveEA decrease as bachelors increase. How to avoid
selecting bachelors is an important issue in design-
ing AL strategies for EA.
2. Among all strategies, uncertainty sampling is
affected the most, while topology-based methods
are only marginally affected.
3. Our structure-aware uncertainty outperforms the
baselines in all tested bachelor proportions.
4. ActiveEA increases performance as the propor-
tion of bachelors increases. The reason is: if G1 is
fixed and the bachelors can be recognized success-
fully, a certain budget can lead to larger ratio of
annotated matchable entities in datasets with more
bachelors than in those with less bachelors.

5.3 Effectiveness of Bachelor Recognizer

Fig. 6 shows the effectiveness of our bachelor re-
cognizer in the sampling process and the effect of
model ensemble. The green curve shows the Micro-
F1 score of our bachelor recognizer using the
model ensemble. Our bachelor recognizer achieves
high effectiveness from the start of sampling, where
there are few annotations. Each red dot repres-
ents the performance of the bachelor recognizer
trained with a certain data partition without us-
ing the model ensemble. Performance varied be-
cause of the bias problem. Therefore, our model
ensemble makes the trained model obtain high and
stable performance.

5.4 Sensitivity of Parameters

To investigate the sensitivity of parameters, we ran
our strategy with AliNet and BootEA on two DW
variants with bachelor proportions of 0% and 30%.

The sensitivity w.r.t. α is shown in the top row of
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dropout=0.1
uncertainty
ActiveEA

3 2 1 0 1 2

dropout=0.2

Figure 8: Effect of Bayesian Transformation on uncer-
tainty and ActiveEA across the DW and ENDE datasets
and different bachelor percentages.

Fig. 7. We observe that our method is not sensitive
to α. The effectiveness fluctuates when α < 0.5,
and decreases when α > 0.5. This indicates un-
certainty is more informative than structural in-
formation. When α = 0, our struct_uncert de-
generates to uncertainty sampling (Eq. 2). In the
upper left plot, we show the corresponding per-
formance with dotted lines. Under most settings of
α, the struct_uncert is much better than uncertainty
sampling. This means that introducing structure
information is beneficial.

The bottom row of Fig. 7 shows the effect of
sampling batch size N . The overall trend is that
larger batch sizes decrease performance. This ob-
servation confirms the intuition that more frequent
updates to the EA model lead to more precise uncer-
tainty. Therefore, the choice of value of sampling
batch size is a matter of trade-off between compu-
tation cost and sampling quality.

5.5 Examination of Bayesian Transformation

We enhanced the uncertainty sampling and Act-
iveEA with Bayesian Transformation, implemented
with Monte Carlo (MC) dropout, and applied them
to Alinet and RDGCN on DW and ENDE as in
Sec. 5.1. Fig. 8 shows improvements with different
settings of MC dropout rate. We find (1) the vari-
ation of effects on uncertainty sampling is greater
than that on ActiveEA; (2) Bayesian Transforma-
tion with small dropout (e.g., 0.05) results in slight
improvements to ActiveEA in most cases.

6 Related Works

Entity Alignment. Entity Alignment refers to
the matching of entities across different KGs that
refer to the same real-world object. Compared with
Entity Resolution (Mudgal et al., 2018), which
matches duplicate entities in relational data, EA
deals with graph data and emphasizes on exploit-
ing the structure of KGs. Neural models (Chen
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et al., 2017, 2018; Wang et al., 2018; Cao et al.,
2019) replaced conventional approaches (Jiménez-
Ruiz and Grau, 2011; Suchanek et al., 2011) as
the core methods used in recent years. Typically
they rely on seed alignment as training data – this
is expensive to annotate. Iterative training (i.e.,
self-training) has been applied to improve EA mod-
els by generating more training data automatic-
ally (Sun et al., 2018; Mao et al., 2020). These
works concern better training methods with given
annotated data. However, the problem of reducing
the cost of annotation has been neglected. Ber-
rendorf et al. (2021) have been the first to explore
AL strategies for EA task. They compared sev-
eral types of AL heuristics including node cent-
rality, uncertainty, graph coverage, unmatchable
entities, etc. and they empirically showed the im-
pact of sampling strategies on the creation of seed
alignment. In our work, we highlight the limita-
tions of single heuristics and propose an AL frame-
work that can consider information structure, un-
certainty sampling and unmatchable entities at the
same time. In addition, existing neural models as-
sume all KGs entities have counterparts: this is
a very strong assumption in reality (Zhao et al.,
2020). We provide a solution to recognizing the
bachelor entities, which is complementary to the
existing models.

Active Learning. Active Learning is a gen-
eral framework for selecting the most informative
data to annotate when training Machine Learning
models (Aggarwal et al., 2014). The pool-based
sampling scenario is a popular AL setting where
a base pool of unlabelled instances is available to
query from (Settles, 2012; Aggarwal et al., 2014).
Our proposed AL framework follows this scenario.
Numerous AL strategies have been proposed in the
general domain (Aggarwal et al., 2014). Uncer-
tainty sampling is the most widely used because
of its ease to implement and its robust effective-
ness (Lewis, 1995; Cohn et al., 1996). However,
there are key challenges that general AL strategies
cannot solve when applying AL to EA. Most AL
strategies are designed under the assumption that
the data is independent and identically distributed.
However, KGs entities in the AL task are correlated,
as in other graph-based tasks, e.g., node classific-
ation (Bilgic et al., 2010) and link prediction (Os-
tapuk et al., 2019). In addition, bachelor entit-
ies cause a very special issue in EA. They may
have low informativeness but high uncertainty. We

design an AL strategy to solve these special chal-
lenges. Few existing works (Qian et al., 2017;
Malmi et al., 2017) have applied AL to conven-
tional EA but do not consider neural EA models,
which have now become of widespread use. Only
Berrendorf et al. (2021) empirically explored gen-
eral AL strategies for neural EA but did not solve
the aforementioned challenges.

7 Conclusion

Entity Alignment is an essential step for KG fu-
sion. Current mainstream methods for EA are
neural models, which rely on seed alignment. The
cost of labelling seed alignment is often high, but
how to reduce this cost has been neglected. In this
work, we proposed an Active Learning framework
(named ActiveEA), aiming to produce the best EA
model with the least annotation cost. Specifically,
we attempted to solve two key challenges affect-
ing EA that general AL strategies cannot deal with.
Firstly, we proposed a structure-aware uncertainty
sampling, which can combine uncertainty sampling
with the structure information of KGs. Secondly,
we designed a bachelor recognizer, which reduces
annotation budget by avoiding the selection of bach-
elors. Specially, it can tolerate sampling biases. Ex-
tensive experimental showed ActiveEA is more ef-
fective than the considered baselines and has great
generality across different datasets, EA models and
bachelor percentages.

In future, we plan to explore combining active
learning and self-training which we believe are
complementary approaches. Self-training can gen-
erate extra training data automatically but suffers
from incorrectly labelled data. This can be ad-
dressed by amending incorrectly labelled data us-
ing AL strategies.
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