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Abstract

Are pairs of words that tend to occur together
also likely to stand in a linguistic dependency?
This empirical question is motivated by a long
history of literature in cognitive science, psy-
cholinguistics, and NLP. In this work we con-
tribute an extensive analysis of the relationship
between linguistic dependencies and statistical
dependence between words. Improving on pre-
vious work, we introduce the use of large pre-
trained language models to compute contextu-
alized estimates of the pointwise mutual infor-
mation between words (CPMI). For multiple
models and languages, we extract dependency
trees which maximize CPMI, and compare to
gold standard linguistic dependencies. Over-
all, we find that CPMI dependencies achieve
an unlabelled undirected attachment score of
at most ≈ 0.5. While far above chance, and
consistently above a non-contextualized PMI
baseline, this score is generally comparable to
a simple baseline formed by connecting adja-
cent words. We analyze which kinds of linguis-
tic dependencies are best captured in CPMI de-
pendencies, and also find marked differences
between the estimates of the large pretrained
language models, illustrating how their differ-
ent training schemes affect the type of depen-
dencies they capture.

1 Introduction

A fundamental aspect of natural language struc-
ture is the set of dependency relations which hold
between pairs of words in a sentence. Such de-
pendencies indicate how the sentence is to be in-
terpreted and mediate other aspects of its structure,
such as agreement. Consider the sentence: Several
ravens flew out of their nests to confront the invad-
ing mongoose. In this example, there is a depen-
dency between the verb flew and its subject ravens,
capturing the role this subject plays in the flying
event, and how it controls number agreement. All
modern linguistic theories recognize the centrality
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It is impossible to know whether that theory is realistic .

LM

Figure 1: We use models pretrained on masked lan-
guage modelling objectives to extract trees which
maximize contextualized pointwise mutual informa-
tion (CPMI) between words, to examine how linguistic
dependencies relate to statistical dependence.

of such word-word relationships, despite consid-
erable differences in detail in how they are treated
(for a review of linguistic dependency grammar lit-
erature see de Marneffe and Nivre, 2019).

In addition to linguistic dependencies between
words, there are also clear and robust statistical re-
lationships. A noun like ravens is likely to occur
with a verb like flew. In short, the presence or ab-
sence of certain words in certain positions in a sen-
tence is informative about the presence or absence
of certain other words in other positions. This
raises the question: Do words that are strongly
statistically dependent tend to be those related by
linguistic dependency (and vice versa)? In every-
day language, a sentence like the example above is
probably more likely than Several pigs flew out of
their nests to confront the invading shrubbery, de-
spite this second example being syntactically iden-
tical to the first.

The long tradition of both supervised and un-
supervised learning of grammars and parsers in
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computational linguistics suggests a strong link
between dependency structure and statistical de-
pendence. Works such as Magerman and Mar-
cus (1990) and de Paiva Alves (1996) introduced
the use of pointwise mutual information (PMI)
as a measure of the strength of statistical depen-
dence between words, for the purpose of infer-
ring linguistic structures from corpus statistics.
The link between PMI and linguistic dependency
has been studied and affirmed in Futrell et al.
(2019). They show that for words linked by lin-
guistic dependencies, the estimated mutual infor-
mation between POS tags (and distributional clus-
ters) is higher than that between non-dependent
word pairs, matched for linear distance.

In this work, we dig further into the question
of the correspondence between statistical and lin-
guistic dependencies using modern pretrained lan-
guage models (LMs) to compute estimates of con-
ditional PMI between words given context, which
we term contextualized pointwise mutual informa-
tion (CPMI). For each sentence we extract a CPMI
dependency tree, the spanning tree with maximum
total CPMI, and compare these trees with gold
standard linguistic dependency trees.1

We find that CPMI trees correspond better to
gold standard trees than non context-dependent
PMI trees. However our analysis shows that CPMI
dependencies and linguistic dependencies corre-
spond only roughly 50% of the time, even when
we introduce a number of strong controls. Notably,
we do not see better correspondence when we ex-
amine CPMI trees inferred by models that are ex-
plicitly trained to recover syntactic structure dur-
ing training. Likewise, we see no increase in cor-
respondence when we calculate CPMI over part-
of-speech (POS) tags, a control designed to exam-
ine a less fine-grained statistical dependency than
that between actual word forms. In fact, CPMI
arcs broadly correspond to linguistic dependencies
slightly less often than a simple baseline that just
connects all and only adjacent words. We see sim-
ilar overall unlabeled undirected attachment score
(UUAS) when evaluated across a variety of pre-
trained models and different languages. However,
a close analysis shows noteworthy differences be-
tween the different LMs, in particular revealing
that BERT-based models are markedly more sen-
sitive to adjacent words than XLNet. These differ-

1We release our code at https://github.com/
mcqll/cpmi-dependencies.

ences yield insights about how different LM pre-
training regimes result in differences in how the
models allocate statistical dependencies between
words in a sentence.

2 Background

Pointwise mutual information (PMI; Fano, 1961)
is commonly used as a measure of the strength of
statistical dependence between two words. For-
mally, PMI is a symmetric function of the probabil-
ities of the outcomes x, y of two random variables
X,Y , which quantifies the amount of information
about one outcome that is gained by learning the
other:

pmi(x; y) := log
p(x, y)

p(x)p(y)
= log

p(x | y)
p(x)

.

In our case, the observations are two words in a
sentence (drawn from discrete random variables
indexed by position in the sentence, ranging over
the vocabulary). PMI has been used in computa-
tional linguistic studies as a measure of how words
inform each other’s probabilities since Church and
Hanks (1989).2

Much earlier work on unsupervised dependency
parsing (e.g., Van Der Mude and Walker, 1978;
Magerman and Marcus, 1990; Carroll and Char-
niak, 1992; Yuret, 1998; Paskin, 2001) used tech-
niques involving maximizing estimates of total
pointwise mutual information between heads and
dependents, or maximizing the conditional prob-
ability of dependents given heads (these two ob-
jectives can be shown to be equivalent under
certain assumptions; see §C). While such PMI-
induced dependencies proved useful for certain
tasks (such as identifying the correct modifier for
a word among a selection of possible choices;
de Paiva Alves, 1996), purely PMI-based depen-
dency parsers did not perform well at the general
task of recovering linguistic structures overall (see
discussion in Klein and Manning, 2004).

The recent advent of pretrained contextualized
LMs (such as BERT, XLNet; Devlin et al., 2019;
Yang et al., 2019) provides an opportunity to re-
visit the relationship between PMI-induced depen-
dencies and linguistic dependencies. These net-
works are pretrained on very large amounts of nat-
ural language text using masked language mod-

2They used the term word association, which had a more
subjective meaning in the psycholinguistic literature, to refer
specifically to PMI.

https://github.com/mcqll/cpmi-dependencies
https://github.com/mcqll/cpmi-dependencies
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That theory is realistic .[MASK]

BERT

That theory is realistic .[MASK] [MASK]

BERT

p(realistic | theory, c)
p(realistic | c)

CPMI(realistic; theory | s) = log

Figure 2: Diagram illustrating using BERT to com-
pute the probability of realistic with and without mask-
ing theory, to obtain a CPMI score between those two
words in the sentence s = That theory is realistic.

elling objectives to be accurate estimators of con-
ditional probabilities of words given context, and
thus are natural tools for investigating the statisti-
cal relationships between words.

3 Contextualized PMI dependencies

Linguistic dependencies are highly sensitive to
context. For example, consider the following two
sentences: I see that the crows retreated, and The
mongoose pursued by crows retreated. In the
first there is a dependency between retreated and
crows, and in the second there is not. However,
PMI between two words in a sentence is strictly
independent of the other words in that sentence.

Here we define contextualized pointwise mu-
tual information (CPMI) as the conditional PMI
given context, which we estimate using pretrained
contextualized LMs. A contextualized LM M
provides an estimate for the probability of words
given context, which we use to define CPMIM be-
tween two words wi and wj in a sentence W as

CPMIM (wi;wj | W ) = log
pM (wi | W−i)

pM (wi | W−i,j)

where the W−i is the sentence with word wi

masked, and W−i,j is the sentence with words
wi, wj masked. To demonstrate the computation
of this quantity, Figure 2 illustrates how BERT is
used to obtain a CPMI score between the words
theory and realistic in the sentence That theory is
realistic.

3.1 Dependency tree induction

Given a sentence, we compute a matrix consisting
of the CPMI between each pair of words. We then
symmetrize this matrix by summing across the di-
agonal, so that we have a single score for each pair

of words (omitting this step led to extremely simi-
lar results).3 We then extract tree structures which
maximize total CPMI. Since natural language
dependencies are overwhelmingly projective (see
Kuhlmann, 2010) we extract maximum projective
spanning trees using the dynamic programming al-
gorithm from Eisner (1996, 1997).4 Results for
dependency trees alternatively extracted without
the projectivity constraint, using Prim’s maximum
spanning tree (MST) algorithm (Prim, 1957), are
similar, and results using both algorithms are pro-
vided in §D for comparison. For further details on
the extraction of CPMI dependencies, see §A.3.

4 Evaluating CPMI dependencies

In this section, we analyze the degree to which
CPMI-inferred dependencies from pretrained LMs
resemble linguistic dependencies.

4.1 Method

We use gold dependencies for sentences from
the Wall Street Journal (WSJ), from the Penn
Treebank (PTB) corpus of English text hand-
annotated for syntactic constituency parses (Mar-
cus et al., 1994), converted into Stanford Depen-
dencies (de Marneffe et al., 2006; de Marneffe and
Manning, 2008b).5 We evaluate all extracted de-
pendency trees on the full development split (WSJ
section 22, consisting of 1700 sentences). For
comparison with other work in unsupervised gram-
mar induction, we also report results on the WSJ10
(all 389 sentences of length ≤ 10 from section 23,
the test split, as used in e.g. Yang et al. (2020))
in §D.1.

To compare results across languages we use the
Parallel Universal Dependencies treebanks subset
of Universal Dependencies (Nivre et al., 2020,
v2.7). These consist of 1000 sentences translated
into 20 languages.

Pretrained contextualized LMs We compute
CPMI scores using a number of transformer-based
pretrained LMs for English (BERT, XLNet, XLM,
BART, DistilBERT; Devlin et al., 2019; Yang
et al., 2019; Conneau and Lample, 2019; Lewis

3Note that while theoretically CPMI should be symmetric,
nothing in the pretraining of the LMs we use enforces this
identity (see §A.3.2 for details).

4Eisner’s algorithm recovers the optimal projective di-
rected dependency structure from a weighted ordered graph,
but with a symmetric weight matrix, the output dependency
trees may be interpreted as undirected.

5We use Stanford CoreNLP v3.9.2 to convert.
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Gold was nowhere the spectacular performer it was two years ago on Black Monday .

nsubj
cop

advmod
det

amod nsubj
rcmod

num npadvmod

advmod
prep

nn
pobj

BERT-large
6/13 = 46%

Gold was nowhere the spectacular performer it was two years ago on Black Monday . DistilBERT
7/13 = 54%

Gold was nowhere the spectacular performer it was two years ago on Black Monday . XLNet-base
4/13 = 31%

Figure 3: Top: CPMI matrices for an example sentence, from BERT, DistilBERT, XLNet. Gold dependencies are
marked with a dot. Bottom: Resulting projective MST parses for the three models. Gold dependency parse above
in black, CPMI dependencies below, blue where they agree, and red when they do not. The unlabeled undirected
attachment score (UUAS) is given at right. Further examples provided in appendix, Figure 14.

et al., 2020; Sanh et al., 2019). For other lan-
guages (and English) we use pretrained multilin-
gual BERT base; see D.2 for details. All pre-
trained contextualized LMs we use are provided
by Hugging Face transformers (Wolf et al., 2020).

Syntactically aware models We likewise com-
pute CPMI estimates using models explicitly de-
signed to have a linguistically-oriented inductive
bias, by taking syntax into account in their train-
ing objectives and architecture. Following Du
et al. (2020), we include two pretrained versions
of an ordered-neuron LSTM (Shen et al., 2019)—
a language model designed to have a hierarchi-
cal structural bias. The first (ONLSTM) is pre-
trained on raw text data, the second (ONLSTM-
SYD) is pretrained on the same data but with an ad-
ditional auxiliary objective to reconstruct PTB syn-
tax trees. As a control, we also include a vanilla
LSTM model. All three models are trained on the
PTB training split. Example parses extracted from
these models are given in the appendix (Figure 16).
We extract CPMI estimates from these models sim-
ilarly to the above, but we condition only on pre-
ceding material, since these LSTM-based models
operate left-to-right. See §A.2 for details.6

6Note that results of the (ON)LSTM models are not di-
rectly comparable to the transformer-based models, as these

Noncontextualized PMI control We also com-
pute a non-contextualized PMI estimate us-
ing a pretrained global word embedding model
(Word2Vec; Mikolov et al., 2013), to capture word-
to-word statistical relationships present in global
distributional information, not sensitive to the con-
text of particular sentences. This control is cal-
culated as the inner product of Word2Vec’s tar-
get and context embeddings, pmiw2v(wi;wj) :=
w⊤

i cj , since its training objective is optimized
when this quantity equals the PMI plus a global
constant (as explained in Levy and Goldberg,
2014; Allen and Hospedales, 2019). Details are
given in §A.1.

Baselines A random baseline is obtained by ex-
tracting a parse for each sentence from a random
matrix (so each pair of words is equally likely to be
connected). We also include a ‘connect-adjacent’
baseline—degenerate trees formed by simply con-
necting the words in order—a simple, strong, and
linguistically plausible baseline for English.

In addition to these baselines, we will com-
pare unlabelled undirected accuracy score (UUAS)
with that reported for the Dependency Model with
Valence (DMV; Klein and Manning, 2004), a clas-
sic dependency parsing model. Note, importantly,

models are trained on much less data.
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all len = 1 len > 1
prec. | rec. prec. | rec.

random .22 .49 | .34 .08 | .10
connect-adjacent .49 .49 | 1 – | 0

Word2Vec .39 .61 | .59 .19 | .19

BERT base .46 .57 | .72 .27 | .21
BERT large .47 .55 | .81 .24 | .13
DistilBERT .48 .57 | .72 .32 | .24
Bart large .38 .52 | .64 .16 | .13
XLM .42 .60 | .64 .23 | .22
XLNet base .45 .59 | .66 .29 | .25
XLNet large .41 .59 | .61 .23 | .22

vanilla LSTM .44 .54 | .70 .26 | .19

ONLSTM .44 .55 | .71 .27 | .19
ONLSTM-SYD .45 .55 | .71 .27 | .19

Table 1: Total UUAS for max-CPMI trees (projective).
Overall scores in the first column (over all arcs in
the corpus, precision = recall), followed by precision
and recall for adjacent words in the second and third
columns, and likewise for nonadjacent words in the fi-
nal two columns. Compare with an overall UUAS of
.544 originally reported in Klein and Manning (2004)
for the DMV on the WSJ corpus.

language rand. connect-adj. BERT base

Chinese .23 .45 .40
Czech .25 .48 .48
English .22 .42 .43
French .23 .45 .47
German .22 .42 .46
Korean .28 .58 .49
Polish .27 .54 .52
Russian .26 .51 .51
Spanish .23 .45 .48
Turkish .27 .55 .48

Table 2: Total UUAS for selected languages from
the multilingual Parallel UD dataset, for CPMI depen-
dencies extracted from from BERT (base multilingual
cased). See full results in Table 12.

the DMV is not fully unsupervised, as it relies on
gold POS tags, but it is still a useful benchmark,
with UUAS 54.4% on the entire WSJ corpus, and
63.7% on WSJ10 (as reported in Klein and Man-
ning, 2004, Fig. 3).

4.2 Results
Example CPMI dependencies and extracted pro-
jective trees are given in Figure 3, with gold depen-
dencies for comparison. Table 1 gives the UUAS
results.7 Overall UUAS is given in the first col-
umn. The remaining columns give the UUAS for

7The overall UUAS constitutes both precision and recall,
since the number of gold edges and CPMI edges are the same:
for a sentence of length n, the denominator is n− 1.

the subset of edges of length 1 and longer, in terms
of precision and recall respectively.8 Table 2 gives
overall UUAS from multilingual BERT for a selec-
tion of languages from the PUD treebanks (for full
results see Table 12, Figure 13).

The overall results show broadly that CPMI de-
pendencies correspond to linguistic dependencies
better than the noncontextual PMI-dependencies
estimated from Word2Vec. However, across the
models, and across languages, UUAS in general
is in the range 40–50%. Degenerate trees formed
by connecting words in linear order (the connect-
adjacent baseline) achieve similar UUAS. Addi-
tionally, for the ONLSTM models, which have a
hierarchical bias in their design, we see that ac-
curacy of the CPMI-induced dependencies is the
essentially the same with or without the auxiliary
syntactic objective. Overall accuracy for both syn-
tactically aware models is the same as for the
vanilla LSTM. Further analysis of these results is
in §6.

5 Delexicalized POS-CPMI dependencies

In this second experiment we estimate CPMI-
dependencies over part-of-speech (POS) tags,
rather than words. In the unsupervised depen-
dency parsing literature there is an ample history
of approaches making use of gold POS tags (see
e.g., Bod, 2006; Cramer, 2007; Klein and Man-
ning, 2004). Additionally, a traditional objection
to the idea of deducing dependency structures di-
rectly from cooccurrence statistics, beyond data
sparsity issues, is the possibility that “actual lexi-
cal items are too semantically charged to represent
workable units of syntactic structure” (as phrased
by Klein and Manning, 2004, p.3). That is, per-
haps words’ patterns of co-occurrence contain sim-
ply too much information about factors irrelevant
to dependency parsing, so as to drown out the in-
formation that would be useful for recovering de-
pendency structure. According to this line of think-
ing, we might expect linguistic dependency struc-
ture to be better related to the statistical dependen-
cies between the categories of words, rather than
lexical items themselves. Thus a version of CPMI
calculated over POS tags would be predicted to
achieve higher accuracy than the CPMI calculated

8For the connect-adjacent baseline, note: for length 1, the
recall score is perfect, because all gold arcs of length 1 are
predicted correctly by this trivial baseline; for the length >
1 subset, precision is undefined since there are no predicted
edges of length > 1, and recall is 0.
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That theory is realistic .[MASK] [MASK]

BERT
POS tagger

That theory is realistic .[MASK]

BERT
POS tagger

p(JJ | c)
p(JJ | NN, c)POS-CPMI(JJ ;NN | s) = log

Figure 4: Diagram illustrating using BERT to compute
the POS-CPMI score between the POS tags of the two
words, theory (a noun, NN) and realistic (and adjective,
JJ) in the sentence s = That theory is realistic.

over lexical item probabilities above.
A straightforward but unfeasible way to inves-

tigate this idea would be to obtain contextualized
POS-embeddings by re-training all the LMs from
scratch on large delexicalized corpora only consist-
ing of POS tags. Instead, for efficiency, follow LM
probing literature (Hewitt and Manning, 2019) and
train a small POS probe on top of a pretrained LM,
which estimates the probability of the POS tag at
a given position in a sentence. After training this
probe, we can extract a POS-based CPMI score
between words. We define this POS-CPMI anal-
ogously to CPMI, but using conditional probabili-
ties of POS tags, rather than word tokens:

POS-CPMIM (πi;πj | W )

= log
pMPOS

(πi | W−i)

pMPOS
(πi | W−i,j)

where πi, πj are the gold POS tags of wi, wj in
sentence W , and MPOS is the contextualized LM
M with a pretrained POS embedding network on
top. This is illustrated in Figure 4. We then ex-
tract POS-CPMI dependencies to compare to gold
dependencies.

5.1 Method
We implement a POS probe as a linear transforma-
tion on top of the final hidden layer of a fixed pre-
trained LM. We train two versions of this probe:
one trained simply to minimize cross entropy loss
(simple POS probe), the other trained using the in-
formation bottleneck technique (following Tishby
et al., 2000; Li and Eisner, 2019), to maximize
accuracy while minimizing extra information in-
cluded in the representation (IB POS probe). Us-
ing LMs BERT and XLNet (both base and large,
each), we train each type of probe, to recover PTB

all len = 1 len > 1
prec. | rec. prec. | rec.

BERT base .48 .56 | .79 .32 | .19
BERT large .45 .53 | .75 .27 | .16
XLNet base .36 .55 | .56 .17 | .17

si
m

pl
e-

PO
S

XLNet large .32 .56 | .51 .14 | .15

BERT base .41 .58 | .65 .20 | .18
BERT large .41 .55 | .69 .18 | .14
XLNet base .40 .55 | .60 .22 | .20

IB
-P

O
S

XLNet large .36 .56 | .56 .16 | .16

Table 3: Total UUAS for POS-CPMI using the simple
POS probe and IB POS probe, from BERT and XLNet
models. Overall results are in the first column, remain-
ing columns break down results by arc length and recall
and precision as in Table 1.

gold POS tags. All eight probes achieve between
92% and 98% training accuracy.

We extract parses from POS-CPMI matrices
just for CPMI (described above in §4). Below, we
refer to the estimates extracted using the simple
POS probe as simple-POS-CPMI, and those ex-
tracted using the IB POS probe as IB-POS-CPMI.

5.2 Results

Using the POS-CPMI dependencies does not re-
sult in higher accuracy. This provides evidence
that the correlation between linguistic dependen-
cies and CPMI dependencies is not merely artifi-
cially low due to distracting lexical information.

Table 3 shows the UUAS of the simple-POS-
CPMI and IB-POS-CPMI trees. Compared to
the lexicalized CPMI trees discussed in the pre-
vious section, for BERT models, the simple-POS-
CPMI dependencies have rather comparable over-
all UUAS, while for XLNet it is markedly lower.
For both models, IB-POS-CPMI dependencies
have lower UUAS. While these results are some-
what mixed, it is clear that, in our experimental set-
ting, POS-CPMI dependencies correspond to gold
dependencies no more than the CPMI dependen-
cies do, performing at best roughly as well as the
connect-adjacent baseline.

6 Analysis

In this section we outline main takeaways from a
more detailed examination of the results from §§4–
5, including additional analysis in §A.4.
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Figure 5: Plots of CPMI dependency recall accuracy versus gold edge relation (on the vertical axis, ordered by
mean arc length). Only dependency relations of which there are more than 60 observations are included. Left:
Including dependency arcs of all lengths. Right: Including only arcs between nonadjacent words. The connect-
adjacent baseline predicts no such edges. Notice that the correlation with mean length disappears when excluding
the length 1 arcs.

UUAS is higher for length 1 arcs Breaking
down the results by dependency length, Figure 8
(in appendix) shows the recall accuracy of CPMI
dependencies, grouped by length of gold arc.
Length 1 arcs have the highest accuracy, and
longer dependencies have lower accuracy. This
trend holds for CPMI from all LMs. For BERT
large, in particular, arcs of length 1 have recall ac-
curacy of 80%, while longer arcs are near random.
For XLNet, this trend is less pronounced.

No relation label has high UUAS In Figure 5,
recall accuracy is plotted against gold dependency
arc label.9 When examining all lengths of depen-
dency together (left) recall accuracy would seem
to be correlated with mean arc length. But, filter-
ing out all the gold arcs of length 1 (49% of arcs),
we see that there is not a strong overall effect of
arclength on mean accuracy for lengths > 1.

For most dependency labels, CPMI accuracy
from each of the models is above the random base-
line, but at or below to the connect-adjacent base-
line. Exceptions to this trend include dependency
labels dobj (direct object), xcomp (which con-
nects a verb or adjective to the root of its clausal
complement). For wordpairs in these relations,
CPMI estimates (XLNet in particular) achieve

9For descriptions of labels see the Stanford Dependencies
manual (de Marneffe and Manning, 2008a)

higher accuracy than the baselines. However, even
in these cases, CPMI dependencies do not perform
at a level that could be considered successful for
an unsupervised parser. This is contrary to what
would be expected if CPMI-dependencies were in
a strong correspondence with linguistic dependen-
cies, even if this only held for certain types of lin-
guistic dependency.

When considering arcs of length > 1, there is no
dependency arc label which has UUAS above 0.5
from any of the models. More complete results
including the other models not shown in Figure 5
are given in Table 5 (in appendix).

UUAS is not correlated with LM perfor-
mance Figure 6 shows per-sentence UUAS plot-
ted against log pseudo-perplexity (PPL) for BERT
and XLNet models (results are similar for other
models; see §A.4.3, Figure 9). These results show
that correspondence between CPMI-dependencies
and linguistic dependencies isn’t higher on sen-
tences on which the models are more confident.

We also examined the accuracy of CPMI depen-
dencies during training of BERT (base uncased)
from scratch. Figure 11 (in appendix) shows the
average perplexity of this model at checkpoints
during training, along with average UUAS of in-
duced CPMI structures. UUAS reaches its highest
value before perplexity plateaus.
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Figure 6: Per-sentence accuracy (UUAS) against log
psuedo-perplexity. Each dot represents one sentence.
Fitting a linear regression, the coefficient of determina-
tion R2 is very close to 0 for all models (here BERT
and XLNet are shown; other models are in Figure 9)
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Figure 7: Histograms of arc length. Note, 49% of the
gold arcs are length 1, whereas all of the CPMI de-
pendencies had a higher proportion. BERT (base), in
particular has 72%. For Word2Vec (which does not
have access to word order), 47% are length 1. For the
connect-adjacent baseline (not shown) the histogram is
trivial: all arcs are length 1.

We should also stress that, throughout this pa-
per, UUAS is not a measure of LM quality. Rather,
it simply measures how well patterns of statistical
dependence captured by the LM align with linguis-
tic dependencies. Better alignment may not be re-
lated to better language modelling.

Dependencies differ between LMs Depen-
dency structures extracted from the different pre-
trained LMs show roughly similar overall UUAS,
though the models agree with each other on only
25–48% of edges. They agree with the noncon-
textualized word embedding model Word2Vec at
just slightly lower rates (21–27%), while agreeing
with the linear baseline at higher rates (34–57%).
See §A.4.1 and for these details.

In particular, CPMI dependencies from all the
models connect adjacent words more often than
the gold dependencies do, but this effect is much
more pronounced for BERT models than for XLM,

and XLNet models (Figure 7). A possible reason
for this difference lies in the way these models
are trained. XLNet is trained to predict words ac-
cording to randomly sampled chain rule decompo-
sitions, enforcing a bias to be able to predict words
in any order, including longer dependencies. XL-
Net’s probability estimates for words may there-
fore be sensitive to a larger set of words, rather
than mostly the adjacent ones. Whereas BERT,
trained with a less constrained masked LM objec-
tive, has probability estimates that are evidently
more sensitive to adjacent words.

7 Related work

Probing pretrained embeddings In the past
few years, a substantial amount of literature has
emerged on probing pretrained language models
(in the sense of e.g. Conneau et al., 2018; Man-
ning et al., 2020), wherein a presumably weak net-
work (a probe) is trained to extract linguistic infor-
mation (in particular, dependency information, in
e.g. Hewitt and Manning, 2019; Clark et al., 2019)
from pretrained embeddings. Extracting CPMI-
dependencies differs from training a dependency
probe in that it is entirely unsupervised, and is mo-
tivated by a specific hypothesis—about the rela-
tionship linguistic dependencies have with statis-
tical dependence.

Nonparametric probing A number of other re-
cent works have taken an unsupervised approach
to investigating syntactic structure encoded by pre-
trained LMs, largely focusing on self-attention
weights (e.g. Mareček and Rosa, 2018, 2019;
Kim et al., 2020a,b; Htut et al., 2019). Very re-
cently, Zhang and Hashimoto (2021, concurrent
with this paper) examined conditional dependen-
cies implied by masked language modelling using
a nonparametric method similar to our CPMI, us-
ing BERT to estimate Conditional PMI (and Con-
ditional MI) between words. They extract maxi-
mum spanning trees, and report UUAS on WSJ de-
pendency data. Their results are similar to those re-
ported here: namely, scores are much higher than
a chance baseline, but close to a connect-adjacent
baseline. While their numerical results are similar,
their interpretation differs somewhat. Given our
analysis, we find less reason for optimism about
the prospects of unsupervised dependency parsing
directly from probability estimates by pretrained
LMs.



2949

Perturbation impact The experiments in the
current paper extracting CPMI can be seen as
an application of the token perturbation approach
of Wu et al. (2020).10 They describe general
nonparametric method to examine the impact,
f(wi, wj), of a word wj on another word wi in the
sentence, where f is some difference function be-
tween the embedding of wi (masked in the input)
with and without the word wj also being masked.
In their experiments, they use two examples of
impact-measuring functions (see Wu et al., 2020,
§2.2). The first, the Dist metric, is simply Eu-
clidean distance between embeddings. The sec-
ond, the Prob metric, is defined as f(wi, wj) =
p(wi | W−i) − p(wi | W−i,j), using the masked
LM’s probability estimates (notation as defined in
§3). The latter impact metric is quite similar to
CPMI, the difference being only that Prob impact
is the difference in probabilities, while CPMI is
the difference in log probabilities.

Table 4 compares the reported UUAS of maxi-
mum projective spanning trees from CPMI matri-
ces, to those from Dist impact matrices on the En-
glish PUD data set. They do not report UUAS for
the Prob metric or release code for it, but mention
that it is significantly outperformed by the Dist
method. Wu et al. (2020, p.1) note that their “best
performing method does not go much beyond the
strong right-chain baseline”. While it may be seen
as an application of perturbed masking technique,
CPMI is motivated as a method to test a specific
hypothesis about the relationship between linguis-
tic and statistical dependence. Extracting matrices
using another impact metric (such as Euclidean
distance between embeddings, Dist) may indeed
achieve higher attachment scores, as Wu et al.
(2020) demonstrate, but this does not bear on the
hypothesis we focus on in this paper.

8 Discussion

In this paper we explored the connection between
linguistic dependency and statistical dependence.
We contribute a method to use modern pretrained
language models to compute CPMI, a context-
dependent estimate of PMI, and infer maximum
CPMI dependency trees over sentences.

We find that these trees correlate with linguis-
tic dependencies better than trees extracted from
a noncontextual PMI estimate trained on similar

10We thank an anonymous reviewer for alerting us to this
work.

connect-adj. baseline .42
CPMI (proj.) BERT base multilingual cased .43

right-chain baseline .40*
Dist impact (proj.) BERT base uncased .52*
*As reported in Wu et al. (2020, Table 2)

Table 4: UUAS on English PUD, for CPMI (from Ta-
ble 2), compared to Wu et al. (2020)’s results. Note:
the baselines aboves are theoretically identical, discrep-
ancy may be due to data processing differences.

data. However, we do not see evidence of a
systematic correspondence between dependency
arc label and the accuracy of CPMI arcs, nor
do we see evidence that the correspondence in-
creases when using models explicitly designed to
encode linguistically-motivated inductive biases,
nor when estimated between POS embeddings in-
stead of word forms. Overall, CPMI-inferred de-
pendencies correspond to gold dependencies no
more than a simple baseline connecting adjacent
words. This is our first main takeaway: statisti-
cal dependence (as modelled by these pretrained
LMs) is not a good predictor of linguistic depen-
dencies. Second, our analysis shows that CPMI
trees extracted from different LMs differ to an ex-
tent that is perhaps surpising, given the similarity
in spirit of their training regimes. The difference
in accuracy when broken down with respect to
linear distance between words offers information
about the ways in which these models’ inductive
and structural biases inform the way they perform
the task of prediction. BERT aligns better overall,
but this is driven by its being more like the linear
baseline. For longer arcs, XLNet aligns a bit bet-
ter with linguistic structure. Compared to BERT,
XLNet can be seen as imposing a constraint on
the language modelling objective by forcing the
model to have accurate predictions under different
permutation masks.

Generalizing this observation, we ask whether
linguistic dependencies would correspond to the
patterns of statistical dependence in a model
trained with a language modelling loss while con-
currently minimizing the amount of contextual in-
formation used to perform predictions. Finding
ways of expressing such constraints on the amount
of information used during prediction, and verify-
ing the ways in which this can affect our results
and LM pretraining in general constitutes material
for future work.
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ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Mark A. Paskin. 2001. Grammatical bigrams. In Ad-
vances in Neural Information Processing Systems
14 [Neural Information Processing Systems: Natu-
ral and Synthetic, NIPS 2001, December 3-8, 2001,
Vancouver, British Columbia, Canada], pages 91–
97. MIT Press.

https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/1911.12246
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
http://arxiv.org/abs/2004.13805
http://arxiv.org/abs/2004.13805
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://www.ida.liu.se/~marku61/pdf/kuhlmann2010dependency.pdf
https://www.ida.liu.se/~marku61/pdf/kuhlmann2010dependency.pdf
https://proceedings.neurips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://www.aaai.org/Library/AAAI/1990/aaai90-147.php
https://www.aaai.org/Library/AAAI/1990/aaai90-147.php
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://www.aclweb.org/anthology/H94-1020
https://www.aclweb.org/anthology/H94-1020
http://ufal.mff.cuni.cz/biblio/attachments/2012-marecek-m1481417340536440366.pdf
http://ufal.mff.cuni.cz/biblio/attachments/2012-marecek-m1481417340536440366.pdf
https://doi.org/10.18653/v1/W18-5444
https://doi.org/10.18653/v1/W18-5444
https://doi.org/10.18653/v1/W19-4827
https://doi.org/10.18653/v1/W19-4827
https://doi.org/10.18653/v1/W19-4827
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
https://proceedings.neurips.cc/paper/2001/hash/89885ff2c83a10305ee08bd507c1049c-Abstract.html


2952

R. C. Prim. 1957. Shortest connection networks and
some generalizations. The Bell System Technical
Journal, 36(6):1389–1401.
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A CPMI-dependency implementation
details

A.1 Word2Vec as noncontextual PMI control

We use Word2Vec (Mikolov et al., 2013) to ob-
tain a non-conditional PMI measure as a con-
trol/baseline. Additionally, in contrast with the
CPMI values extracted from contextual language
models, this estimate does not take into account
the positions of the words in a particular sen-
tence, but otherwise reflects global distributional
information similarly to the contextualized mod-
els. Word2Vec should therefore function as a con-
trol with which to compare the PMI estimates de-
rived from the contextualized models.

Word2Vec maps a given word wi in the vo-
cabulary it to a ‘target’ embedding vector wi, as
well as an ‘context’ embedding vector ci (used
during training). As demonstrated by Levy and
Goldberg (2014); Allen and Hospedales (2019),
Word2Vec’s training objective is optimized when
the inner product of the target and context embed-
dings equals the PMI, shifted by a global constant
(determined by k, the number of negative sam-
ples): w⊤

i cj = pmi(wi;wj)− log k. This type of
embedding model thus provides a non-contextual
PMI estimator. A global shift will not change
the resulting PMI-dependency trees, so we simply
take pmiw2v(wi;wj) := w⊤

i cj , with embeddings
calculated using a Word2Vec model trained on the
same data as BERT.11 Note: since we are ignoring
the global shift of k, an absolute valued version of
PMI estimate will not be meaningful, and for this
reason we only ever extract dependencies from the
Word2Vec PMI estimate without taking the abso-
lute value.

A.2 LtoR-CPMI for one-directional models

Our CPMI measure as defined above requires a
bidirectional model (to calculate probabilities of
words given their context, both preceding and fol-
lowing). The LSTM models we test in this study
are L-to-R, so we define an slightly modified ver-
sion of CPMI, which we will can call here LtoR-
CPMI, to use with such unidirectional language

11We use the implementation in Gensim (Řehůřek and So-
jka, 2010), trained on BookCorpus and English Wikipedia,
and use a global average vector for out-of-vocabulary words.

models. Formally, this is

CPMILtoR(wI ;wJ | w) =

log
p(wI | w0:I−1)

p(wI | w0:J−1,J+1:I−1)
,

where w0:I−1 is the sentence up to before wI , and
w0:J−1,J+1:I−1 is the sentence up to beforewI ,
with wJ masked.

A.3 Calculating CPMI scores
A.3.1 Subtokenization
We must formulate the CPMI measure between se-
quences of subtokens, rather than tokens (words),
because the large pretrained language models we
use break down words into subtokens, for which
gold dependencies and part of speech tags are not
defined.

The calculation of CPMI between two lists of
subtokens wI and wJ in sentence w is

CPMIM (wI ;wJ | w) =

log
pM (wI | w−I,J ,wJ)

pM (wI | w−I,J)
= log

pM (wI | w−I)

pM (wI | w−I,J)

where I and J are spans of (sub)token indices, wI

is the set of subtokens with indices in I (likewise
for wJ ), w−I is the entire sentence without subto-
kens whose indices are in I , and w−I,J is the sen-
tence without subtokens whose indices are in I or
J .

Likewise, POS-CPMI is defined in terms of
subtokens. Note that gold POS tags are defined
for PTB word tokens, which may correspond to
multiple subtokens. POS-CPMI is calculated as:

POS-CPMIM (πI ;πJ | w)

= log
pMPOS

(πI | w−I)

pMPOS
(πI | w−I,J)

where MPOS is the contextual embedding model
M with a POS embedding network on top, and πI
is the POS tag of wI (the set of subtokens with
indices in I , as in the definition of CPMI above).

To get the probability estimate for a multiple-
subtoken word, we use a left-to-right chain rule
decomposition. To get an estimate for a prob-
ability p(w) of a subtokenized word w =
w0, w1, . . . , wn (that is, a joint probability, which
we cannot get straight from a language model), we
use a left-to-right chain rule decomposition of con-
ditional probability estimates within the word:

p(w) = p(w0) · p(w1 | w0) · · · p(wn | w0:n−1)
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This decomposition allows us to estimate condi-
tional pointwise information between words made
of multiple subtokens, at the expense of specifying
a left-to-right order within those words.

A.3.2 Symmetrizing matrices
PMI is a symmetric function, but the estimated
CPMI scores are not guaranteed to be symmet-
ric, since nothing in the models’ training explic-
itly forces their conditionaly probability estimates
of words given context to respect the identity
p(x|y)p(y) = p(y|x)p(x). For this reason, we
have a choice when assigning a score to a pair of
words v, w, whether we use the model’s estimate
of CPMIM (v;w), which compares the probabil-
ity of v with conditioner w masked and unmasked,
or of CPMIM (w; v). In our implementation of
CPMI we calculate scores in both directions, and
use their sum (as mentioned in the main text §3.1),
though experiments using one or the other (using
just the upper or lower triangular of the matrix), or
the max (equivalent to extracting a tree from the
unsymmetrized matrix) led to very similar overall
results. Likewise for the Word2Vec PMI estimate,
and the POS-CPMI estimates.

A.3.3 Negative PMI values
PMI may be positive or negative. Results in the
main text are all computed for CPMI dependencies
extracted from signed matrices (so arcs with large
negative CPMI will be rarely included). However,
there is some discussion of interpreting the mag-
nitude of PMI as indicating dependency, indepen-
dent of sign (see Salle and Villavicencio, 2019).
The choice to use an absolute-valued version of
CPMI might be justified by arguing that words
which influence each other’s distribution should
be connected, whether this influence is positive or
negative.

In §D.1 we include full results both with and
without taking the absolute value of the CPMI ma-
trices before extracting trees. The absolute-valued
CPMI dependencies show a models increase in
UUAS over the corresponding matrices without
taking the absolute value in general. But, it is not
clear whether the choice to use absolute-valued
CPMI would be justified conceptually. Contrary to
the conceptual motivation for CPMI dependencies,
in which words which often occur together should
be linked, an absolute-valued version links words
which are highly informative of each others’ not
being present. For this reason we do not choose

to use an absolute-valued version of CPMI by de-
fault, but report those results for comparison, note
that the UUAS is in fact higher with the absolute
value, and refrain from further speculation.

A.4 Additional analysis of CPMI
dependencies

A.4.1 Similarity between models
Figure 10 shows the similarity of the CPMI depen-
dency structures extracted from the different con-
textual embedding models. We measure similarity
of dependency structures with the Jaccard index
for the sets of the predicted edges by two models.
Jaccard index measures similarity of two sets A,B
and is defined as J(A,B) = |A ∩ B|/|A ∪ B|.
The contextualized models agree with each other
on around 30–50% of the edges, and agree with
the the noncontextual baseline W2V slightly less.
In general, they agree with the linear baseline at
somewhat higher rates.

A.4.2 Accuracy versus arc length
Breaking down the results by dependency length,
Figure 8 shows the recall accuracy of CPMI de-
pendencies, grouped by length of gold arc. In
general, length 1 arcs have the highest accuracy;
longer dependencies have lower accuracy. CPMI
dependencies from BERT (large) have 81% recall
accuracy on length 1 arcs, with arcs longer than 1
having much lower recall (13% overall) near ran-
dom (10%). In other models, XLNet in particular,
this distinction is less of a binary distinction, but
the trend is still for lower recall on longer arcs.

A.4.3 Accuracy versus perplexity
Here we investigate the correlation between lan-
guage model performance and CPMI-dependency
accuracy. If models’ confidence in predicting were
tied to accuracy, it would be hard to argue that the
relatively low accuracy score we see was due to the
lack of connection between syntactic dependency
and statistical dependency, rather than to the mod-
els’ struggling to recover such a structure. Here
we measure model confidence by obtaining a per-
plexity score for each sentence, calculated as the
negative mean of the pseudo log-likelihood, that
is, for a sentence w of length n,

pseudo PPL(w) = exp [− 1

n

n∑
I=1

log p(wI |w−I)]

Figure 9 shows that accuracy is not correlated
with sentence-level perplexity for any of the mod-
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Figure 8: Recall accuracy is higher for shorter arcs.
The distinction is mostly between arcs of length 1 vs
longer arcs. Note that the relatively higher accuracy of
BERT (large)’s estimates overall are driven by its very
large proportion of length 1 arcs.

els (fitting a linear regression, R2 < 0.05 for
each model). That is, the accuracy of CPMI-
dependency structures is roughly the same on the
sentences which the model predicts confidently
(lower perplexity) as on the sentences which it pre-
dicts less confidently (higher perplexity).

A.4.4 UUAS during training
We examined the accuracy of CPMI dependen-
cies during training of BERT (base uncased) from
scratch. Figure 11 shows the average perplexity
of this model, along with the sentence-wise aver-
age accuracy of CPMI structures at selected check-
points during training. After about one million
training steps the model has reached a plateau in
terms of performance (perplexity stops decreas-
ing), and we see that the peak UUAS has also
plateaued at that point, but in fact reached its
highest value after one hundred thousand training
steps.

A.4.5 UUAS by dependency label
Table 5 gives per-dependency label recall accuracy
of CPMI-dependencies extracted from the sub-
set of dependency labels for which XLNet (base)
achieves UUAS higher than both the linear and a
random (projective) baselines.

B Information Bottleneck for POS probe

The simple POS probe is a d-by-h-matrix, where
the input dimension h is the contextual embedding
network’s hidden layer dimension, and the output
dimension d is the number of different POS tags
in the tagset. Interpreting the output as an unnor-
malized probability distribution over POS tags, we

y = 0.467− 0.0155 x R2 = 0.04

y = 0.496 − 0.00797 x R2 = 0.01

y = 0.514− 0.0111 x R2 = 0.03

y = 0.526 − 0.00927 x R2 = 0.02

y = 0.443 − 0.00344 x R2 < 0.01

y = 0.472− 0.0029 x R2 < 0.01

y = 0.433 − 0.00322 x R2 < 0.01
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relation meanlen n BERT DistilBERT Bart XLNet XLM W2V connect adj. rand proj.

xcomp 3.1 398 0.24 0.23 0.18 0.43 0.40 0.26 0.07 0.13
mark 5.0 421 0.18 0.29 0.11 0.30 0.20 0.09 0.05 0.10
conj 6.1 1009 0.12 0.19 0.21 0.28 0.26 0.29 0.03 0.10
ccomp 6.9 550 0.11 0.15 0.07 0.19 0.14 0.06 0.03 0.08
dobj 2.4 1637 0.37 0.38 0.33 0.47 0.42 0.35 0.21 0.16
advcl 8.7 293 0.05 0.04 0.05 0.11 0.07 0.06 0.00 0.06
nsubjpass 4.3 253 0.13 0.15 0.12 0.21 0.26 0.19 0.00 0.13
rcmod 4.1 290 0.11 0.07 0.12 0.12 0.14 0.11 0.00 0.08
poss 2.4 709 0.30 0.28 0.21 0.32 0.31 0.30 0.24 0.17
pobj 2.3 3745 0.33 0.39 0.28 0.36 0.32 0.30 0.30 0.17
tmod 3.0 244 0.31 0.35 0.30 0.39 0.40 0.18 0.33 0.18
cop 2.1 330 0.39 0.49 0.39 0.42 0.33 0.33 0.39 0.22
det 1.7 3327 0.52 0.64 0.24 0.53 0.43 0.41 0.52 0.23

Table 5: Recall accuracy by label for the labels which XLNet achieves above the baselines, for the models BERT
large, Distilbert base, Bart large, XLNet base, XLM, as well as Word2Vec, and the connect adjacent and random
baselines.
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Figure 11: Training checkpoints for BERT-base un-
cased. After about 1 million training steps, the per-
plexity (gray, axis left) has plateaued. The UUAS (axis
right) of extracted CPMI structures does not increase
past the level it reaches at 100k steps.

train the layer to minimize the cross-entropy loss
between the predicted and observed POS (using
the labels from the Treebank). Training a simple
linear probe is a rough way to get a compressed
representations from contextual embeddings, but
it has limitations (Hewitt and Liang, 2019).

A more correct way of extracting these repre-
sentations is by a variational information bottle-
neck technique (Tishby et al., 2000). We imple-
ment this technique (roughly following Li and Eis-
ner, 2019), as follows. Optimization is to mini-
mize LIB = −I[Y ;Z] + βI[H;Z], where H is
the input embedding, Z the latent representation
and Y the true label. This technique trains two
sets of parameters: the decoder, a linear model
just as in the simple linear POS probe, and the
encoder, another linear model, whose output in
our case is interpreted as means and log-variances
of a multivariate Gaussian (a simplifying assump-
tion). Minimizing this loss maximizes information
in the compressed representations about the output

labels given a constraint on the amount of infor-
mation that the compressed representations carry
about the original embeddings.

C Equivalence of max pmi and max
conditional probability objectives

Mareček (2012) describes the equivalence of opti-
mizing for trees with maximum conditional proba-
bility of dependents given heads and optimizing
for the maximum PMI between dependents and
heads. This equivalence relies on an assumption
that the marginal probability of words is indepen-
dent of the parse tree.

For a corpus C, a dependency structure t can
be described as a function which maps the index
of a word to the index of its head. If net mu-
tual information between dependents and heads ac-
cording to dependency structure t is pmi(t) :=∑

i pmi(wi;wt(i)), and the log conditional prob-
ability of dependents given heads is ℓcond(t) :=∏

w∈s p(wi | wt(i)), the optimum is the same:

argmax
t

pmi(t) (1)

= argmax
t

log

|C|∏
i=1

p(wi, wt(i))

p(wi)p(wt(i))
(2)

= argmax
t

log

|C|∏
i=1

p(wi, wt(i))

p(wt(i))
(3)

= argmax
t

ℓcond(t) (4)

The step taken in (3) follows only under the as-
sumption that the marginal probability of depen-
dent words is independent of the structure t. That
is, that “probabilities of the dependent words . . .
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are the same for all possible trees corresponding to
a given sentence” (Mareček, 2012, §5.1.2). This
must be stipulated as an assumption in a proba-
bilistic model for the above derivation to hold.

D Augmented tables of results

We give results in further detail for the CPMI-
dependencies on the English PTB Wall Street Jour-
nal (WSJ) and on the multilingual PUD treebanks.
Tables described below follow this appendix.

D.1 Results on WSJ data

Results presented in this section repeat those given
in the main text, with two independent additional
parameters: projectivity and absolute value.

Projectivity As described in §3.1, in the main
text we report results for projective CPMI depen-
dency trees extracted from CPMI matrices using
Eisner’s algorithm Eisner (1996, 1997). These
results are also repeated below, but we addition-
ally present UUAS results for maximum spanning
trees (MSTs) extracted from CPMI matrices using
Prim’s algorithm (Prim, 1957), following Hewitt
and Manning (2019).

Absolute value In the main text we consider de-
pendencies extracted from signed CPMI matrices.
As described in §A.3.3, we also compute UUAS
from absolute-valued matrices, and report them
here.

• Table 6 is an augmented version of Table 1
from the main text, containing results for
CPMI-dependencies both with and without
the projectivity constraint.

• Table 7 is as the previous, but using an abso-
lute valued version of CPMI.

• Table 10 is likewise an augmented version of
Table 3 from the main text, containing results
for POS-CPMI-dependencies both with and
without the projectivity constraint.

• Table 11 is as the previous but using an abso-
lute valued version of POS-CPMI.

In these tables, we also include the UUAS of
randomized ‘lengthmatched’ control. For each
sentence, this control consists of a randomized tree
whose distribution of arc lengths is identical to the
gold tree (obtained by rejection sampling).

D.1.1 WSJ10
Tables 8 and 9 give augmented UUAS results as in
to Tables 6 and 7, resp., but for only the sentences
of length ≤ 10 from the test split (section 23) of
the WSJ corpus (WSJ10). We include these results
for comparison with much of the unsupervised de-
pendency parsing literature following Klein and
Manning (2004), which reports results on that sub-
set. Note that the UUAS is naturally higher across
the board on this corpus of shorter sentences.

D.2 Results on multilingual PUD data
Table 12 gives results on the 20 languages of
the Parallel Universal Dependencies (PUD) tree-
banks. These parallel treebanks were included
in the CoNLL 2017 shared task on Multilingual
Parsing from Raw Text to Universal Dependen-
cies. The PUD treebank for each language consists
of 1000 sentences annotated for Universal Depen-
dencies. The sentences are translated into each of
the languages, with the majority (750) being origi-
nally in English.

We compute CPMI for these sentences using the
multilingual pretrained BERT-base model made
available by Hugging Face Transformers (Wolf
et al., 2020).12 This model was trained using
masked language modelling and next sentence
prediction on the 104 languages with the largest
Wikipedias, including all 20 in the PUD. UUAS
for CPMI dependency trees for all languages is
plotted in Figure 13.

12https://huggingface.co/
bert-base-multilingual-cased

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
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UUAS

MSTs Projective MSTs

language mean sent. length connect-adjacent random CPMI CPMI (abs) random CPMI CPMI (abs)

Arabic 17.52 .58 .11 .43 .48 .27 .45 .51
Chinese 17.51 .45 .11 .38 .39 .23 .40 .42
Czech 14.99 .48 .12 .47 .48 .25 .48 .50
English 17.73 .42 .10 .41 .43 .22 .43 .45
Finnish 12.47 .52 .15 .45 .46 .28 .47 .48
French 21.18 .45 .08 .44 .46 .23 .47 .49
German 17.56 .42 .11 .44 .46 .22 .46 .48
Hindi 20.53 .51 .09 .38 .39 .24 .41 .42
Icelandic 15.88 .49 .12 .40 .41 .25 .42 .44
Indonesian 16.06 .56 .12 .44 .46 .27 .46 .49
Italian 20.43 .45 .09 .45 .46 .23 .47 .48
Japanese 24.73 .48 .08 .30 .39 .23 .34 .43
Korean 13.99 .58 .13 .46 .48 .28 .49 .50
Polish 14.73 .54 .12 .50 .51 .27 .52 .53
Portuguese 19.83 .45 .10 .44 .46 .23 .47 .48
Russian 15.38 .51 .12 .49 .50 .26 .51 .51
Spanish 20.00 .45 .09 .46 .47 .23 .48 .50
Swedish 16.14 .44 .11 .41 .43 .24 .43 .45
Thai 21.05 .56 .09 .39 .38 .25 .42 .42
Turkish 13.73 .55 .14 .46 .48 .27 .48 .50

Figure 12: UUAS for multilingual Parallel UD dataset, for CPMI dependencies extracted from from BERT base
multilingual. Note that while the dataset consists of the same 1000 sentences translated into the 20 languages,
there is some variation across languages in mean sentence length. Projective (signed) UUAS are plotted below in
Figure 13 with random and connect-adjacent baselines.
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Figure 13: CPMI UUAS (signed, projective) from BERT base multilingual, ordered by the difference between
CPMI UUAS and the connect-adjacent baseline UUAS. For most languages the CPMI UUAS is below or compa-
rable to the connect-adjacent baseline.
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MSTs Projective MSTs

all len = 1 len > 1 all len = 1 len > 1
prec. | recall prec. | recall prec. | recall prec. | recall

random .09 .49 | .10 .05 | .09 .22 .49 | .34 .08 | .10
connect-adjacent .49 .49 | 1 – | 0 .49 .49 | 1 – | 0
lengthmatched .37

Word2Vec .27 .67 | .36 .13 | .19 .39 .61 | .59 .19 | .19

BERT base .44 .59 | .68 .26 | .22 .46 .57 | .72 .27 | .21
BERT large .46 .56 | .79 .23 | .14 .47 .55 | .81 .24 | .13
DistilBERT .46 .58 | .68 .30 | .25 .48 .57 | .72 .32 | .24
Bart large .36 .53 | .60 .15 | .14 .38 .52 | .64 .16 | .13
XLM .38 .64 | .55 .20 | .22 .42 .60 | .64 .23 | .22
XLNet base .42 .61 | .59 .25 | .26 .45 .59 | .66 .29 | .25
XLNet large .36 .63 | .51 .19 | .22 .41 .59 | .61 .23 | .22

vanilla LSTM .40 .56 | .60 .23 | .22 .44 .54 | .70 .26 | .19

ONLSTM .41 .57 | .61 .23 | .22 .44 .55 | .71 .27 | .19
ONLSTM-SYD .41 .57 | .61 .23 | .22 .45 .55 | .71 .27 | .19

Table 6: Total UUAS on the WSJ data, for CPMI dependencies extracted by both with a simple MST (Prim’s
algorithm; left) with a projectivity constraint (Eisner’s algorithm; right, repeating Table 1). In each case, overall
scores are in the first column, followed by precision and recall UUAS for the subset consisting only of adjacent
words (len = 1), and likewise for nonadjacent words (len > 1).

MSTs Projective MSTs

all len = 1 len > 1 all len = 1 len > 1
prec. | recall prec. | recall prec. | recall prec. | recall

BERT base .48 .60 | .75 .29 | .22 .49 .59 | .78 .31 | .21
BERT large .48 .56 | .84 .25 | .13 .48 .56 | .86 .26 | .13
DistilBERT .48 .58 | .73 .32 | .25 .50 .58 | .77 .35 | .24
Bart large .38 .55 | .59 .19 | .17 .40 .54 | .64 .20 | .16
XLM .41 .65 | .59 .22 | .24 .44 .63 | .67 .25 | .23
XLNet base .44 .61 | .62 .27 | .26 .47 .60 | .70 .30 | .25
XLNet large .37 .63 | .53 .19 | .23 .42 .61 | .62 .22 | .22

vanilla LSTM .42 .55 | .63 .25 | .22 .45 .54 | .73 .28 | .18

ONLSTM .42 .56 | .63 .25 | .22 .45 .54 | .73 .29 | .19
ONLSTM-SYD .42 .56 | .64 .25 | .22 .46 .54 | .74 .29 | .19

Table 7: As above in Table 6, but with dependencies extracted from absolute-valued matrices. As noted in §A.1, due
to the fact that Word2Vec estimates PMI only up to a global shift, an absolute-valued version would be meaningless,
so we do not include that model here.
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MSTs Projective MSTs

all len = 1 len > 1 all len = 1 len > 1
prec. | recall prec. | recall prec. | recall prec. | recall

random .29 .56 | .30 .18 | .28 .34 .54 | .45 .18 | .21
adjacent .53 .53 | 1 – | 0 .53 .53 | 1 – | 0
lengthmatched .51

Word2Vec .42 .61 | .51 .28 | .32 .46 .60 | .63 .29 | .27

BERT base .51 .60 | .69 .36 | .29 .52 .59 | .72 .38 | .28
BERT large .52 .59 | .81 .34 | .20 .53 .59 | .82 .36 | .20
DistilBERT .51 .59 | .71 .38 | .29 .52 .58 | .75 .40 | .27
Bart large .44 .54 | .63 .27 | .21 .45 .54 | .66 .28 | .21
XLM .48 .61 | .61 .32 | .32 .49 .60 | .66 .34 | .31
XLNet base .51 .61 | .64 .38 | .35 .53 .60 | .69 .42 | .35
XLNet large .46 .61 | .57 .32 | .34 .48 .59 | .64 .34 | .31

Table 8: Total UUAS on WSJ10, for CPMI dependencies extracted both without the projectivity constraint (MSTs),
and with it (Projective MSTs). Compare with an overall UUAS of .637 reported in Klein and Manning (2004,
Fig. 3) for the complete WSJ10.

MSTs Projective MSTs

all len = 1 len > 1 all len = 1 len > 1
prec. | recall prec. | recall prec. | recall prec. | recall

BERT base .53 .60 | .75 .39 | .28 .54 .60 | .78 .41 | .27
BERT large .54 .60 | .85 .37 | .19 .54 .59 | .86 .38 | .19
DistilBERT .54 .60 | .77 .41 | .28 .55 .60 | .79 .43 | .27
Bart large .47 .58 | .63 .31 | .28 .48 .58 | .67 .33 | .27
XLM .50 .64 | .65 .33 | .32 .51 .63 | .69 .35 | .31
XLNet base .52 .62 | .68 .39 | .34 .55 .62 | .73 .42 | .34
XLNet large .48 .62 | .61 .33 | .34 .51 .61 | .66 .37 | .33

Table 9: Total UUAS on WSJ10, MST and Projective MST, as above, but extracted from absolute-valued CPMI
matrices.
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MSTs Projective MSTs

all len = 1 len > 1 all len = 1 len > 1
prec. | recall prec. | recall prec. | recall prec. | recall

BERT base .47 .57 | .77 .29 | .20 .48 .56 | .79 .32 | .19
BERT large .44 .54 | .73 .25 | .17 .45 .53 | .75 .27 | .16
XLNet base .29 .56 | .41 .14 | .17 .36 .55 | .56 .17 | .17

si
m

pl
e-

PO
S

XLNet large .26 .59 | .38 .11 | .15 .32 .56 | .51 .14 | .15

BERT base .38 .60 | .58 .18 | .18 .41 .58 | .65 .20 | .18
BERT large .39 .56 | .64 .17 | .14 .41 .55 | .69 .18 | .14
XLNet base .36 .57 | .52 .19 | .20 .40 .55 | .60 .22 | .20

IB
-P

O
S

XLNet large .30 .60 | .44 .13 | .17 .36 .56 | .56 .16 | .16

Table 10: Total UUAS for POS-CPMI, both MST (left) and projective MST (right, a repeat of Table 3), using the
simple POS probe and IB POS probe, from BERT and XLNet models.

MSTs Projective MSTs

all len = 1 len > 1 all len = 1 len > 1
prec. | recall prec. | recall prec. | recall prec. | recall

BERT base .49 .57 | .78 .32 | .21 .50 .57 | .80 .34 | .21
BERT large .47 .56 | .79 .28 | .17 .48 .55 | .81 .30 | .16
XLNet base .31 .57 | .44 .15 | .18 .36 .56 | .56 .17 | .17

si
m

pl
e-

PO
S

XLNet large .27 .59 | .40 .12 | .15 .31 .57 | .49 .13 | .14

BERT base .35 .60 | .52 .16 | .18 .39 .59 | .61 .19 | .18
BERT large .40 .58 | .67 .17 | .15 .43 .57 | .72 .19 | .14
XLNet base .38 .58 | .56 .20 | .21 .42 .57 | .63 .23 | .21

IB
-P

O
S

XLNet large .30 .59 | .44 .13 | .16 .35 .57 | .55 .16 | .16

Table 11: As above in Table 10, but with dependencies extracted from absolute-valued matrices.
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Figure 14: Additional examples of projective parses from Bart, BERT, DistilBERT, XLM, XLNet, and the non-
contextual baseline Word2Vec. Gold standard dependency parse above in black, CPMI-dependencies below, blue
where they agree with gold dependencies, and red when they do not. Accuracy scores (UUAS) are given for each
sentence.
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Figure 15: CPMI matrices for ONLSTM and ONLSTM-SYD, with vanilla LSTM baseline. Gold edges are marked
with a dot. Compare with dependency structures in Figure 16
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Figure 16: Projective parses from the LSTM baseline and the ONSLTM and syntactic (ONSLTM-SYD) models
for three example sentences. Matrices for the second sentence are in Figure 15.


