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Abstract

Multimodal Transformers achieve superior
performance in multimodal learning tasks.
However, the quadratic complexity of the self-
attention mechanism in Transformers limits
their deployment in low-resource devices and
makes their inference and training computa-
tionally expensive. We propose multimodal
Sparse Phased Transformer (SPT) to allevi-
ate the problem of self-attention complexity
and memory footprint. SPT uses a sampling
function to generate a sparse attention matrix
and compress a long sequence to a shorter se-
quence of hidden states. SPT concurrently
captures interactions between the hidden states
of different modalities at every layer. To fur-
ther improve the efficiency of our method, we
use Layer-wise parameter sharing and Factor-
ized Co-Attention that share parameters be-
tween Cross Attention Blocks, with minimal
impact on task performance. We evaluate our
model with three sentiment analysis datasets
and achieve comparable or superior perfor-
mance compared with the existing methods,
with a 90% reduction in the number of param-
eters. We conclude that (SPT) along with pa-
rameter sharing can capture multimodal inter-
actions with reduced model size and improved
sample efficiency.

1 Introduction

The objective of multimodal sentiment analysis is
to identify the polarity of one’s attitude toward an
entity through multimodal inputs such as audio,
video, and text. For many applications such as per-
sonal assistants, social robots and virtual agents,
the efficiency and scalability of a method are as
important as accuracy. Such applications can have
limited computational resources or large-scale de-
ployment requirements. Multimodal understanding
of constructs, such as sentiment, requires capturing
information available in every modality in addi-

∗equal contribution

tion to their potential interactions, e.g., an exag-
gerated smile combined with negative sentiment
in language might signal irony. Modeling these
interactions efficiently is still an open challenge
(Baltrušaitis et al., 2018). Some work on this topic
use the different networks for each modality fol-
lowed by fusion methods, like concatenation (Tsai
et al., 2019; Hazarika et al., 2020; Pan et al., 2020)
and outer-product (Zadeh et al., 2017), to model
the interaction of multimodal representations which
largely increases the dimensionality of representa-
tions thus increasing computational cost. Rahman
et al. (2020) rely on large pre-trained models, like
BERT (Devlin et al., 2018) and XLNet (Yang et al.,
2019). The computational cost of such approaches
is high due to the over-parameterization of the mod-
els. And Transformer-based methods (Tsai et al.,
2019; Rahman et al., 2020) suffer from quadratic
complexity of self-attention.

The existing multimodal sentiment analysis
datasets are rather small due to the laborious la-
beling process. The development of the existing
datasets, such as (Zadeh et al., 2016; Bagher Zadeh
et al., 2018), involves data curation and annotation
by multiple annotators. The limited dataset size
raises the risk of over-fitting for over-parameterized
models which motivated building models that can
be trained with fewer data.

Recent work, such as (Child et al., 2019; Beltagy
et al., 2020; Zaheer et al., 2020), improve the effi-
ciency of Transformers through Sparse-Attention.
Compared to the full attention that calculates atten-
tion for all pairs of input elements, sparse attention
only computes attention for a subset of element
pairs. As a consequence, each element from one
sequence attends only to a limited number of ele-
ments in the source sequence. Other work reduce
attention matrix size by iterative processing only a
shorter segment of the original long sequence at a
time (Dai et al., 2019; Rae et al., 2020).

In this paper, we propose a Sparse Phased atten-
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tion (SP) mechanism that uses a sampling function
to compress a longer input sequence to a shorted se-
quence of hidden states and improve the efficiency
of the attention computation. Multimodal SPT can
capture multimodal interactions through a “Con-
current” network structure rather than a “Serial”
structure of previous work (Tsai et al., 2019; Rah-
man et al., 2020; Huang et al., 2020; Pan et al.,
2020). We improve the efficiency of SPT through
parameter sharing and a Factorized Co-Attention.
We perform extensive experiments evaluating the
performance of SPT on multimodal sentiment anal-
ysis and an ablation study on its structure, sam-
pling function, parameter sharing approaches, and
SP-Block. We compare our method with the state-
of-the-art efficient Transformers, i.e., Performer
(Choromanski et al., 2020). Our experimental re-
sults show that our model is able to achieve min-
imal or no performance loss with a significant re-
duction in model size. Other efficient Transformer-
based approaches with linear efficiency result in a
larger degradation of the performance. In compar-
ison with the previous work on multimodal senti-
ment analysis, we reduce memory use in addition
to training and inference time, with complexity de-
creasing from quadratic to linear, with only 10% of
the parameters.

The main contributions of this work are as fol-
lows.

• We introduce and evaluate a SP-Block that uses
a sampling function and a short sequence of hid-
den states to attend to and compress a longer
sequence. SP-Attention creates a sparse atten-
tion matrix that improves both computational and
sampling efficiency.

• We propose Multimodal SP-Transformer that
uses a concurrent structure of blocks in each
sub-layer to allow multimodal signal to interact
within every layer. SPT uses Input Attention on
the source input sequence, Cross-Attention on the
hidden state pairs of different modalities and Self-
Attention on the hidden states of each modality.

• We leverage Factorized Co-Attention that use
a factorized form of the attention computation
based on an affinity matrix to further reduce
the number of parameters for the cross attention
block (Co-SP). And we further the improve ef-
ficiency of SPT by parameter sharing across all
layers.

The code and data are publicly available in
https://github.com/chengjunyan1/
SP-Transformer.

2 Related work

Sentiment analysis Multimodal sentiment analy-
sis involves leveraging the information from mul-
tiple modalities, e.g., text and vision, to recognize
the polarity of expressed sentiment. Most of the
existing work focuses on recognizing sentiment
expressed in video recordings from social media
reviewing products or movies (Zadeh et al., 2016;
Kossaifi et al., 2019; Wöllmer et al., 2013).

Recent work on multimodal sentiment analysis
has focused on the application of Transformer ar-
chitectures. Tsai et al. (2019) introduces pairwise
cross-modal attention on Transformers for multi-
modal sentiment analysis on audio, video, and text.
Our model’s architecture follows a similar design
that first encodes unimodal inputs, then models
cross-modal interactions and finally fuses multi-
modal information. The main difference is that
our model enables a concurrent way to implements
those steps. Hazarika et al. (2020) project multi-
modal input into modality-invariant and modality-
specific spaces, and use a Transformer encoder on
the concatenated projected representations. Rah-
man et al. (2020) use pre-trained Transformers
like BERT (Devlin et al., 2018), XLNET (Yang
et al., 2019) on a large corpus and perform transfer-
learning for multimodal sentiment analysis.

Multimodal learning Previous work use recur-
rent neural networks (RNN) or convolutional neu-
ral networks (CNN) on each modality and per-
form model-based, e.g., kernel-based fusion, with
graphical models, and neural networks, and model-
agnostic fusion, e.g., early, late or hybrid (Bal-
trušaitis et al., 2018). Wang et al. (2019) fuse
multimodal representations with a Gated Modality-
mixing Network, that model the fine-grained struc-
ture of non-verbal subword sequences and a Multi-
modal Shifting mechanism, that dynamically shifts
word representations based on non-verbal cues.
Pham et al. (2019) trains a sequence-to-sequence
RNN to jointly perform inter-modality translations
and sentiment analysis, the encoder output is a
joint multimodal representation that is used for sen-
timent detection. Tensor fusion networks (TFN)
use the outer product of representations for each
modality concatenated with a constant value of
“1” to generate a joint representation (Zadeh et al.,

https://github.com/chengjunyan1/SP-Transformer
https://github.com/chengjunyan1/SP-Transformer
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2017). Liu et al. (2018) propose to decompose the
weight from the fusion layers into low-rank fac-
tors to reduce the large number of parameters in
TFN. Zadeh et al. (2018) use a system of LSTMs
to learn modal-specific interactions, learn the cross-
modal interactions with an attention mechanism
and finally apply a Multi-view Gated Memory that
fuses the multimodal representations through time.
Alayrac et al. (2020) project multimodal features
to fine-granularity and coarse-granularity “spaces”
through Multi-Layer-Perceptron (MLP) Networks.
Audio and video are aligned with text features in
coarse-grained space, while audio and video fea-
tures are aligned in fine-grained space. Unlike the
previous methods that directly apply transforma-
tions on the multimodal inputs, we use a small
sequence of hidden states to capture the features
from multimodal inputs thus preserving raw input
information while improving efficiency.

In the most similar work to ours, Jaegle et al.
(2021) distill information from an input sequence
to a fixed length of hidden states with an Autore-
gressive Transformer.

Efficient Transformers One of the drawbacks
of the Transformer architecture is the computa-
tional cost and the memory footprint of the self-
attention mechanism. A number of efforts have
been made to make Transformers more efficient
(Child et al., 2019; Beltagy et al., 2020; Kitaev
et al., 2020; Zhou et al., 2021; Zaheer et al., 2020).
Such work use sparse attention to selectively attend
to pairs of elements and lead to a reduction in mem-
ory use and computational complexity of the atten-
tion mechanism. A notable example, Performer,
(Choromanski et al., 2020), improve the efficiency
of the attention computation through “unbiased”
and low-rank approximation of the attention ma-
trix.

There are other attempts for reducing the se-
quence length to improve computational efficiency.
Dai et al. (2019) introduce “segment-level recur-
rence” that recurrently use the previous segment
and current segment. Rae et al. (2020) extend this
idea and compresses multiple previous segments
into memory vectors. The hidden states in our
method are based on a similar idea that caching the
information from the input sequence in a shorter
sequence can improve efficiency. We also applied
the idea of sparse attention to achieve further im-
provements.

3 Method

The proposed method is an extension of the Trans-
former architecture for improved efficiency in mul-
timodal learning. In this section, we will introduce
the basic building block of our model, i.e., Sparse-
Phased-Block (SP), and show how we extend SP
in the context of multimodal learning to define SP-
Transformer with Input Attention, Cross Attention
and Self Attention sub-layers. We also leverage
Factorized Co-Attention and parameter sharing for
further optimizations of SP-Transformer.

Each SP-Block uses a sampling function to gen-
erate sparse attention patterns that guide a sequence
to selectively compress information from elements
of another sequence as shown in Figure 2. We use
SP-Block to build our Multimodal SP-Transformer,
in each layer, we first use an SP-Block that executes
Input attention for each modality and compress in-
formation from each unimodal input sequence to
the hidden states. The hidden state sequences for
each pair of two modalities interact through Cross
Attention by a Co-SP-Block using Factorized Co-
Attention. Finally, the cross-modal information for
each modality is fused by summation and distilled
with Self Attention using an SP-Block. The full
model is presented in Figure 3.

3.1 Sparse Phased Block

Figure 1: A sequence of hidden state h with length 10
sample from a sequence X of length 30. From top to
down: (1) Sparse attention pattern created by Mixed
sampling function. (2) Attention mask for the same
function and for four layers of SPT. Different color is
used for each layer and top layer overlap bottom layers.

Sparse Phased Block (SP-Block) accept a se-
quenceX and a sequence of hidden state h as input
and use sampling function ψ to compress X to h
by selective attention between the two. ψ create
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Figure 2: SP-Block samples from a sequence X with
hidden state h and with a fixed sampling function with
sampling length r = 2. The hidden states of h attend at
most to five input states of X . In a mixed sampling, the
sampling interval for each hidden state would shift with
a distance that depends on the layer (sliding), a periodic
function with its index as parameter, and random per-
turbation, which makes it sample in a “dynamic” way
as opposed to a static (fixed) sampling.

a sparse attention mask for which h is used as the
Query vector and X is Key and Value.

SP -Block(h,X) = FFN(WO‖Hi=0headi + h)

headi = (G� σ(
hWQ

i (XWK
i )T√

dk
))XW V

i

where σ is softmax function, ‖ is concatenation,
WQ
i ∈ Rdmodel×dk ,WK

i ∈ RdX×dk ,W V
i ∈

RdX×dv ,WO ∈ Rdmodel×Hdv are parameter matri-
ces. H is number of heads, dmodel is the dimension
of the model and the query sequence h, dX is the
dimension of the key and the value sequence X .
FFN(x) = W2ReLU(W1x+b1)+b2+x is Feed-
Forward Network (FFN) (Vaswani et al., 2017)
where W1 ∈ Rdmodel×dff ,W2 ∈ Rdff×dmodel are
parameter matrices, b1 ∈ Rdff , b2 ∈ Rdmodel are
bias terms and include a residual connection to x.

The SP-Block is illustrated in Figure 2. For each
block we apply layer normalization prior to FFN
and Attention function. Sampling function ψ can
define single or multiple interval in X and is used
to compute a boolean attention mask G. Every
element hi ∈ h attend to element Xj ∈ X only if
j ∈ ψ(i) and Gij = 1ψ(i)(j). We experiment with
four sampling functions that use Sliding, Periodic,
Fixed and Random attention patterns.

Sampling function map every hidden state hi
to an interval in X with a sampling length r ∈ N
such that ψ(i) = (ρ(i) + φ)%LX where ρ(i) =
[LX
Lh
i − r, LX

Lh
i + r] and φf = 0 for Fixed sam-

pling function. A convolution operation is similar
to the Fixed sampling found in Figure 2. Sliding
sampling function shift the same interval at every
layer such that that φs(i) = αλ with magnitude
α. Periodic sampling function map hi to multi-
ple intervals that periodically span X such that

φp(i) = LXsin(β × i) with magnitude β. Ran-
dom sampling function define a random interval
in X such that φr = U(−γ,+γ) and window γ.
Mixed sampling combine the above pattern such
that φm = φs + φp + φr and improve performance
compared to each sampling function individually.
An example of attention mask generated by sam-
pling function is visualized in Figure 1.

Implementation of efficient sparse computation
in GPU is known to be challenging (Zaheer et al.,
2020). The sparse pattern introduced can be opti-
mized for GPU, similar to previous work (Beltagy
et al., 2020; Child et al., 2019; Zaheer et al., 2020)
with an additional speed-up for custom CUDA ker-
nels (Beltagy et al., 2020; Child et al., 2019). In
our experiments, we do not consider custom CUDA
kernels a discussed in Section 5.

3.2 Multimodal Sparse Phased Transformer

Multimodal SP-Transformer, is a stack of SP-
Transformer layers composed of Input Attention,
Cross Attention and Self Attention sub-layer ap-
plied in the same order. All blocks are identical
in computation and are defined by SP-Block. SP-
Transformer layer accept multiple sequence Xm,
where m ∈ M is the set of all modalities as well
as hidden states hλm for each modality at layer λ.
The layer output updated hidden states hλ+1

m . The
first layer use learnable embedding h0m. At every
layer Input Attention attend to the original signal
Xm with the hidden states from the previous layer
hλm to compute updated hidden states for modal-
ity m, ĥλ+1

m . Cross Attention is applied on the
output of the two Input Attention blocks of differ-
ent modalities. For every modality, Cross Atten-
tion attend to the hidden states between m→ m′,
∀m′ ∈M\{m}. We extend Cross Attention to Co-
SP-Block that shares the parameters for attention
between the hidden states of modalitym′ → m and
m→ m′. We describe Co-SP-Block, in detail, later
in this section. Finally, we sum the Cross Attention
hidden states for modality m→ ∀m′ and apply a
Self Attention mechanism in the final vector that
represent the hidden states learned for modality m
defined as hλ+1

m . The output of this layer can be
fed to another layer or be used in a downstream
task. The architecture is illustrated in Figure 3.

Input Attention which compresses each uni-
modal input sequence into hidden states is defined
as follows.

ĥλ+1
m = SP -Block(hλm, Xm)
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Cross Attention models cross-modal interac-
tion between hidden state sequences for two modal-
ities, as follows.

h̄λ+1
m =

∑
m′∈M

SP -Block(ĥλ+1
m , ĥλ+1

m′ )

Self Attention refines the representation fusing
cross-modal information for each modality.

hλ+1
m = SP -Block(h̄λ+1

m , h̄λ+1
m )

The use of hidden states is the main difference
between our method and the previous Transformer-
based methods (Tsai et al., 2019; Rahman et al.,
2020; Hazarika et al., 2020). Information from
longer input sequences is absorbed by a shorter
hidden state sequence iteratively for every layer
instead of only the first layer (Rahman et al., 2020;
Tsai et al., 2019; Huang et al., 2020; Pan et al.,
2020) or recurrently on segments of the input se-
quence (Dai et al., 2019; Rae et al., 2020). In our
experiments, we constraint the length of a hidden
state sequence Lhm =

LXm
S where S is a hyperpa-

rameter to control the compression ratio.
Previous work (Tsai et al., 2019; Rahman et al.,

2020; Huang et al., 2020; Pan et al., 2020) apply
a set of sub-layers serially multiple times with the
output of one stack as input to the next. We per-
form experiments on a Serial Structure and use
Input Attention sub-layers ×N →, Cross attention
sub-layers ×N → and Self Attention sub-layers
×N , available in Appendix D. For each modality, a
Concurrent Structure use Input Attention blocks
→, Cross Attention blocks→ and Self Attention
blocks with interaction happening only in the Cross
Attention sub-layers. The same process is repeated
N times. SPT uses concurrent structure that fuses
cross-modal information with summation. We also
experiment with a variant of a concurrent structure
that uses concatenation (see the Appendix C).

3.3 Optimized Sparse Phased Blocks

Cross attention sub-layer models the bimodal in-
teraction. We would need two SP-Blocks to model
the interaction between modalities A → B and
B → A. The number of SP-Blocks required to
model pair-wise interactions has a quadratic growth
with respect to the number of modalities. Factor-
ized Co-Attention reduces the number of parame-
ters by half and shares a SP-Block for a given pair
of modalities without accuracy loss. We extend the
idea of Co-Attention (Lu et al., 2016) to Factor-
ized Co-Attention where an affinity matrix C rep-
resents the distance between two sequence X and

Figure 3: A trimodal SP-Transformer for audio A,
video V , and text T , with N layers to update hidden
states hm. SP-Block is indicated with grey rectangles.

Y with C = d(X,Y ) = XWY T = d(Y,X)T =

(YW TXT )T , for which W = WQWKT
. Co-SP-

Block applies Factorized Co-Attention and shares
trainable parameters (FFN , WQ, WK , W V and
WO) between two SP-Blocks. We omit the multi-
head notation for clarity.

hmm′ = Co-SPm(ĥm, ĥm′) =
FFN(WOG� σ(C)ĥmW

V )
hm′m = Co-SPm′(ĥm′ , ĥm) =
FFN(WOGT � σ(CT )ĥm′W

V )

The pairs of modalities in cross attention have
a quadratic growth (i.e., the pair-wise hidden state
sequences for a Cross Attention sub-layer will be
|M|(|M| − 1)). Previous work (Tsai et al., 2019;
Hazarika et al., 2020) concatenate the representa-
tions of modalities to fuse cross-modal information.
In contrast, we add the pair-wise hidden states for
each modality, which reduces the size of the model
and reduces its complexity.

SP-Transformer also shares parameters across
layers which have shown to be effective by Lan
et al. (2020) and Jaegle et al. (2021). We did an ab-
lation experiment for all parameter sharing patterns,
the results are presented in Section 4.3.

4 Experiment

We introduce the experimental setup, baseline
methods and datasets. We present the results and
additional evaluations through an ablation study.

4.1 Experimental setup

We evaluate our model on three multimodal senti-
ment and humor analysis datasets, namely, CMU-
MOSI (Zadeh et al., 2016), UR-FUNNY Hasan
et al. (2019) and CMU-MOSEI (Bagher Zadeh
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et al., 2018). CMU-MOSI (Zadeh et al., 2016)
includes 2,199 short monologue video clips, CMU-
MOSEI (Bagher Zadeh et al., 2018) includes
23,454 movie review video clips taken from
YouTube, and UR-FUNNY (Hasan et al., 2019)
comprises 8253 punchlines from TED talks. We
classify each sample with a positive/negative sen-
timent for CMU-MOSI and CMU-MOSEI and
humor/non-humor for UR-FUNNY. Additional de-
tails about the datasets can be found in Appendix
A. For CMU-MOSI and CMU-MOSEI, we use the
preprocessed datasets provided with the code of
the Multimodal Transformers (MulT) (Tsai et al.,
2019). We experiment on both aligned and un-
aligned data and denote with a suffix (A) and (UA)
respectively. Audio and video features that have
no time-aligned text features are excluded from the
aligned dataset while they are preserved in the un-
aligned dataset. For the UR-FUNNY dataset, we
use the publicly available extracted features for text
(Glove), audio (COVAREP), and video (OpenFace
(Baltrusaitis et al., 2018)) from Hasan et al. (2019).
We report the accuracy, F1 score, and the number
of trainable parameters for a model as metrics for
all our experiments.

We use Tsai et al. (2019) as the baseline for
CMU-MOSI and CMU-MOSEI that is state-of-the-
art for publicly available features extracted with
Glove (Pennington et al., 2014) for text, Facet (Lit-
tlewort et al., 2011) for video and COVAREP (De-
gottex et al., 2014) for audio. We compare and fol-
low the methodology from Hazarika et al. (2020)
for UR-FUNNY which is state-of-the-art for the
Glove feature on text. The BERT feature reported
by the same work is not publicly available and
requires manual extraction and check. There are
work that achieve higher performance for the afore-
mentioned datasets but do not publish the prepro-
cessed data or code (Sun et al., 2020; Hasan et al.,
2021). It is not possible to directly compare with
those methods.

We perform a grid search for some of the hyper-
parameters, consistent with previous work (Tsai
et al., 2019; Rahman et al., 2020; Hazarika et al.,
2020; Sun et al., 2020), and empirically select the
remaining ones. Our hyper-parameter settings and
optimization strategy are available in Appendix B.

4.2 Results

Our method achieves comparable results in MOSI
and superior results in MOSEI and UR-FUNNY

Figure 4: Sample efficiency test on unaligned CMU-
MOSEI dataset in comparison with MulT. We gradu-
ally increase the size of the training set and use the
same training set for both models for consistency.

datasets. Sample efficiency define the efficiency
of a model in leveraging information from a single
training sample. We follow a similar methodology
as previous work (Khandelwal et al., 2019) and
use multiple identical training subsets from the un-
aligned CMU-MOSEI dataset to compare the sam-
ple efficiency between our model and MulT. Even
though, the improvement is marginal our model
uses a significantly lower number of parameters
and has a higher sample efficiency.

We compare SPT (“Ours”) with layer-wise pa-
rameter sharing, mixed sampling and summation
for cross-modal interactions with other state-of-the-
art. Our model use 154K trainable parameter which
is a reduction of 90% compared to Tsai et al. (2019)
and 97% for Hazarika et al. (2020). Detailed result
are listed in Table 1. The reduction in parameters
can also explain the improved sample efficiency of
our model as shown in Figure 4.

4.3 Additional Experiments

We perform an ablation study on SP-Transformer
and quantitatively evaluate the memory use, infer-
ence time, and training time for our model. Results
of ablation study are available in Table 2.

Ablation experiment on network structure
We modify and experiment with the structure of
SP-Transformer described in Section 3.2. We ex-
periment on multimodal interactions with a Serial
model and two variations of the Concurrent model,
with summation (“Ours”) and concatenation on the
output of Cross Attention sub-layer. Summation
use half the parameters compared with the concate-
nation with nearly identical accuracy. Concurrent
structure improves accuracy compared with a serial
structure which could be due to the richer multi-
modal interactions at every layer.

Parameter sharing We analyze the influence of
parameter sharing strategies on the model perfor-
mance.
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Table 1: Result on aligned and unaligned CMU-MOSI, CMU-MOSEI datasets for (1) LF-LSTM (Tsai et al.,
2019) (2) Wang et al. (2019) (3) Pham et al. (2019) and UR-FUNNY dataset for (5) Zadeh et al. (2017) (6) Liu
et al. (2018) (7) C-MFN (Zadeh et al., 2018) (8) Hazarika et al. (2020). RAVEN and MCTN are trained with
Connectionist Temporal Classification (CTC) loss (Graves et al., 2006) on unaligned datasets.

MOSI-A MOSI-UA MOSEI-A MOSEI-UA UR-FUNNY
Model Acc F1 Acc F1 Acc F1 Acc F1 Size Model Acc Size

LSTM1 76.8 76.7 77.6 77.8 80.6 80.6 77.5 78.2 - TFN5 64.7 -
RAVEN2 78.0 76.6 72.7 73.1 79.1 79.5 75.4 75.7 - LMF6 65.2 -
MCTN3 79.3 79.1 75.9 76.4 79.8 80.6 79.3 79.3 - MFN7 65.2 -
MulT1 83.0 82.8 81.1 81.0 82.5 82.3 81.6 81.6 1.56M MISA8 68.6 5.34M

Ours 82.8 82.9 81.2 81.3 82.6 82.8 82.4 82.7 154K Ours 70.0 158K

We perform experiments on a model that does
not share parameters across layers (“Layer NS”)
and within cross attention sub-layer (“Cross NS”).
Our results indicate that parameter sharing can de-
crease the model size by 71% with negligible im-
pact on model accuracy. Layer-wise parameter
sharing improves performance, this could be due to
the fact that sharing reduces the risk of over-fitting.
This is in accordance with the results reported in
Jaegle et al. (2021).

We test two additional sharing strategies, sharing
parameters between identical block types for the
same modality (“Modal S”) and for all SP-Block
(“All Share”), across all layers and sub-layers. Due
to the difference in the dimensionality of the se-
quence between each modality, we use a linear pro-
jection to map audio, video, text inputs to dmodel.
Results show that further sharing reduces the size of
the model by 70% compared with our model, with
a 1.5% relative reduction in model accuracy. The
trade-off between accuracy and model efficiency
can be adjusted depending on the use case. The
results demonstrate that parameter sharing has a
small effect on model accuracy, in our approach.

Sampling Function We perform experiments
on the five attention mask patterns introduced in
Section 3.1. “Ours” model use a Mixed sam-
pling function and we experiment with a “Fixed”,
“Slide”, “Period” and “Random” sampling function
applied independently, as well as a “Fullattn.” as
introduced by Vaswani et al. (2017). A full atten-
tion mask is significantly slower but outperforms
other sampling functions when used in isolation. A
mixed sampling with “Ours” is a combination of
Slide, Period, and Random mask which outperform
full attention. At every layer, multiple hidden states
will attend to the original input sequence for dif-

ferent intervals (sliding sampling) or overlapping
intervals (period sampling) and with a regulariza-
tion effect (random sampling). The structured spar-
sity of mixed sampling can introduce an inductive
bias that allows hidden states to learn compressed
representations from the longer input signal.

Unimodal experiment We train SPT on the
CMU-MOSEI unaligned dataset on a single modal-
ity of text. Results for the unimodal setting use a
suffix “U” and can be found in Table 2.

We compare SPT with the result reported by
MulT (“U”) for a Unimodal setting. We also train
a model that replaces the Transformer block with
SP-Block in MulT (“MulT-SP”). SPT (“U”) uses an
Input Attention block followed by a Self-Attention
block in each layer. Results show a substantial
difference in the performance for SP-Block. The
difference between MulT-SP and Unimodal SPT
is in the downsampling by Conv1D as opposed to
the compression by Input Attention block. The
advantages of SP-Block lead to a 3.3% increase in
performance and a 89% reduction in parameters.

Comparison with Performer To compare
our method with the state-of-the-art efficient
Transformer-based architectures, we compare our
method with Performer (Choromanski et al., 2020)
using the same architecture from MulT with Per-
former layers in both multimodal (“MulP”) and
unimodal (“MulP (U)”) setting. Results indicate
that our method could improve efficiency without
the loss of accuracy, unlike Performer.

Efficiency test is performed on the inference
time and memory use of our model on different
input sequence length and we compare to MulT,
a MultiModal Performer (“MulP”). Other state-
of-the-art methods, MAG (Rahman et al., 2020),
MISA (Hazarika et al., 2020) use Transformer and
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Table 2: Alblation study on SP-Transformer with
Aligned (A) and Un-Aligned (UA) CMU-MOSEI
dataset that use different attention patterns (“Ful-
lattn.”, “Fixed”, “Slide”, “Period”, “Random”), model
structure (“Serial”, “Concat.”), and parameter shar-
ing strategies (“Cross NS”, “Layer NS”, “Modal S”,
“All Share”). Unimodal (“U”) are model trained with
only text features. [1] Multimodal Performer (“MulP”)
(Choromanski et al., 2020) [2] Multimodal Transformer
(“MulT”) (Tsai et al., 2019).

MOSEI-A MOSEI-UA
Acc F1 Acc F1 Size

Ours 82.6 82.8 82.4 82.7 154K
MulP[1] 82.0 81.8 81.3 81.2 1.56M

Fullattn. 82.5 82.4 82.2 82.4 154K
Fixed 82.3 82.3 82.0 82.3 154K
Slide 82.4 82.6 82.4 82.5 154K
Period 82.4 82.5 82.2 82.6 154K
Random 82.4 82.4 82.1 82.2 154K

Serial 82.3 82.3 81.9 82.2 154K
Concat. 82.6 82.9 82.4 82.6 322K

Cross NS 82.6 82.8 82.4 82.6 168K
Layer NS 82.6 82.7 82.3 82.5 545K
Modal S 81.4 81.3 81.5 81.9 70.4K
All Share 81.4 81.8 81.0 81.5 44.8K

MulT[2] (U) - - 77.4 78.2 430K
MulP (U) - - 77.2 78.1 430K
SPT (U) - - 80.7 80.9 45.5K
MulT-SP (U) - - 77.8 78.4 430K

share the same quadratic complexity with MulT.
We keep the same dmodel = 32 and layers λ = 4
for all models. Detailed results on inference time
and memory use are found in Figure 5.

Results show that our model achieves linear com-
plexity O( rLS ) on both memory use and inference
time with respect to the sequence length L and
with a slope determined by the compression ratio
S and segment length r. The improvement is a re-
sult of the downsampling from the Input Attention,
sparse attention from the sampling function, and a
simplified model structure.

We test training time in unaligned CMU-MOSI,
CMU-MOSEI, and UR-FUNNY datasets. All ex-
periments use the largest batch size that can be
executed on a single NVIDIA Tesla V100 with
16GB vRAM. Result are listed in Table 3. With
a compression factor, S = 8 our method reduces

Figure 5: Multimodal Transformer (“MulT”) from Tsai
et al. (2019). Performer (“MulP”). SPT (“Ours”) with
variable compression factor S. From left to right: (1)
Test on CPU inference time. (2) Test on memory use.

Table 3: Comparison between our model, MulT and
Performer (“MulP”) in training time (seconds per
epoch) for the maximum batch size and for different
compression ratios S with r fixed to 8.

MOSI-UA MOSEI-UA UR-FUNNY

S = 2 9.8s 137.6s 119.9s
S = 4 4.9s 70.2s 72.6
S = 8 2.5s 37.5s 48.2s

MulT 14.5s 192.7s 171.1s
MulP 6.0s 65.4s 70.7s

the training time per epoch by 83%, 81%, 72%
in MOSI, MOSEI, UR-FUNNY respectively com-
pared to MulT, and 58%, 43%, 32%. Improvement
in training time is a result of the auto-encoding
compressive properties of SP-Block and ratio S.

5 Future work

Sampling function Other work explore complex
sparse patterns like dilated sliding window (Belt-
agy et al., 2020) that allows the segment to be
"dilated" with gaps between sampled elements,
routine-based (Kitaev et al., 2020) that samples
the nearest neighbors for the hidden states in the
sequence, probabilistic (Zhou et al., 2021) that
samples based on KL divergence, global blocks
(Zaheer et al., 2020) which allows few elements
sampling the entire sequence or uses trainable pa-
rameters (Tay et al., 2020; Neil et al., 2016; Hu and
Qi, 2017; Mei and Eisner, 2017) which enable the
model learn to select the elements to sample. We
consider such sampling patterns for future work.
Hidden states are randomly initialized. Inductive
bias can be introduced to further improve perfor-
mance and sample efficiency. Melis et al. (2020)
warmed up the hidden state in RNNs and allow in-
teractions of the initial hidden state with the input
prior to being used by the model.
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Implementation methods rely on custom CUDA
kernels (Beltagy et al., 2020; Child et al., 2019) to
further optimize sparse computation in GPU. Our
work does not implement any custom CUDA ker-
nels, thus only achieve memory advantages from
the sparse pattern. We expect that specialized GPU
optimization should further improve our efficiency.
Moreover, further optimization could be achieved
by incorporating the factorization method from
Choromanski et al. (2020).

6 Conclusions

In this paper, we propose a multimodal SP-
Transformer that uses a sequence of hidden states
to sample from longer multimodal input sequences.
Compared with the previous Transformer-based
models, our model has a reduced computational
complexity through sparse attention. The concur-
rent structure also enables more effective capturing
of the multimodal interaction, resulting in higher
performance. The optimization through parame-
ter sharing patterns leads to a significantly lighter
model, with a lower number of parameters and
improved sampled efficiency. As a result, the pro-
posed model’s performance is superior or compa-
rable to the existing methods at a lower computa-
tional and memory cost. Our experiments show
that our method has a good balance between ac-
curacy and efficiency and has the potential to be
deployed in real-world multimodal applications.

Acknowledgements

Research was sponsored in-part by the Army Re-
search Office and was accomplished under Coop-
erative Agreement Number W911NF-20-2-0053.
The views and conclusions contained in this doc-
ument are those of the authors and should not be
interpreted as representing the official policies, ei-
ther expressed or implied, of the Army Research
Office or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstand-
ing any copyright notation herein. This material
is also based upon work supported in part by the
U.S. Department of Defense through the Systems
Engineering Research Center (SERC) under Con-
tract No. HQ0034-13-D0004 Research Task WRT
1016 – “Reducing Total Ownership Cost (TOC) and
Schedule.” SERC is a federally funded University
Affiliated Research Center managed by Stevens
Institute of Technology.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery, KDD ’19, page 2623–2631, New York,
NY, USA. Association for Computing Machinery.

Jean-Baptiste Alayrac, Adrià Recasens, Rosalia
Schneider, Relja Arandjelović, Jason Ramapuram,
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Gábor Melis, Tomáš Kočiský, and Phil Blunsom. 2020.
Mogrifier lstm. In International Conference on
Learning Representations.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. 2016.
Phased lstm: Accelerating recurrent network train-
ing for long or event-based sequences. arXiv
preprint arXiv:1610.09513.

Zexu Pan, Zhaojie Luo, Jichen Yang, and Haizhou Li.
2020. Multi-Modal Attention for Speech Emotion
Recognition. In Proc. Interspeech 2020, pages 364–
368.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-
Philippe Morency, and Barnabás Póczos. 2019.
Found in translation: Learning robust joint represen-
tations by cyclic translations between modalities. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 6892–6899.

https://doi.org/10.18653/v1/D19-1211
https://doi.org/10.18653/v1/D19-1211
https://doi.org/10.18653/v1/D19-1211
https://doi.org/10.1109/FG.2011.5771414
https://doi.org/10.1109/FG.2011.5771414
https://openreview.net/forum?id=SJe5P6EYvS


2457

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learn-
ing Representations.

Wasifur Rahman, Md Kamrul Hasan, Sangwu Lee,
AmirAli Bagher Zadeh, Chengfeng Mao, Louis-
Philippe Morency, and Ehsan Hoque. 2020. Integrat-
ing multimodal information in large pretrained trans-
formers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
Online. Association for Computational Linguistics.

Zhongkai Sun, Prathusha Sarma, William Sethares, and
Yingyu Liang. 2020. Learning relationships be-
tween text, audio, and video via deep canonical cor-
relation for multimodal language analysis. Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, 34(05):8992–8999.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2020. Synthesizer: Re-
thinking self-attention in transformer models. arXiv
preprint arXiv:2005.00743.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J. Zico Kolter, Louis-Philippe Morency, and Ruslan
Salakhutdinov. 2019. Multimodal transformer for
unaligned multimodal language sequences. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), Florence, Italy. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Yansen Wang, Ying Shen, Zhun Liu, Paul Pu Liang,
Amir Zadeh, and Louis-Philippe Morency. 2019.
Words can shift: Dynamically adjusting word repre-
sentations using nonverbal behaviors. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):7216–7223.

Martin Wöllmer, Felix Weninger, Tobias Knaup, Björn
Schuller, Congkai Sun, Kenji Sagae, and Louis-
Philippe Morency. 2013. Youtube movie reviews:
Sentiment analysis in an audio-visual context. IEEE
Intelligent Systems, 28(3):46–53.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik
Cambria, and Louis-Philippe Morency. 2017. Ten-
sor fusion network for multimodal sentiment anal-
ysis. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Process-
ing, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Amir Zadeh, Paul Pu Liang, Navonil Mazumder,
Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. 2018. Memory fusion network for multi-
view sequential learning. Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016. Mosi: multimodal cor-
pus of sentiment intensity and subjectivity anal-
ysis in online opinion videos. arXiv preprint
arXiv:1606.06259.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in
Neural Information Processing Systems, volume 33,
pages 17283–17297. Curran Associates, Inc.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2021. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, page online. AAAI Press.

A Statistics of Datasets

Table 4: Statistics for pre-processed CMU-MOSI and
CMU-MOSEI datasets from Tsai et al. (2019). For
each column, “A” represents aligned, “UA” represents
unaligned. “A”, “T”, “V” in each row respectively rep-
resents average sequence lengths for these modalities.
“Train”, “Test”, “Valid” represent the number of data
points for each split. The sequences are pre-truncated
and padded which makes all samples from one modal-
ity have the same length.

MOSI MOSEI
A UA A UA

A 50 375 50 500
T 50 50 50 50
V 50 500 50 500

Train 1284 16265
Test 686 4643
Valid 229 1869
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Table 5: Statistics for the UR-FUNNY dataset, “target”
denote the average length of the target sentence used
for classification, “context” denotes the average length
of the preceding utterances. The audio, video and text
data in the official pre-processed UR-FUNNY dataset
are pre-aligned. We concatenate the context and target
for prediction.

Train Test Valid

Avg. target length 15.81 16.55 16.94
Avg. context length 41.69 42.86 43.94
Avg. num contexts 2.84 2.95 2.81

Num 10598 3290 2626

B Hyper-parameter Optimization

Table 6: Settings for hyper-parameter optimization.

Range Step size Distribution

lr [5e-5, 2e-3] - Log uniform
Layers [2, 8] 2 Uniform
S [2, 8] 1 Uniform
r [1, 8] 1 Uniform

Dropout [0, 0.3] 0.05 Uniform

α [0, 3] 1 Uniform
β [0, 0.5] - Uniform
γ [0, 5] 0.5 Uniform

We use Optuna hyperparameter optimization
framework (Akiba et al., 2019) to perform grid
search on hyper-parameters. Optimized hyper-
parameters, search space, and distributions are
listed in Table 6. r, α, β, γ for the three sub-layers
are optimized independently with the same setting.
Dropout rates for the attention layer, FFNs, and
embedding layer are optimized independently with
the same setting.

Attention head number is fixed to 8. dmodel is
fixed to 32. The number of epochs for CMU-MOSI,
CMU-MOSEI, UR-FUNNY are 100, 50, 100 re-
spectively. We use the maximum batch size that
can fit on a single NVIDIA Tesla V100 memory.
Gradient clipping is done for norms of 0.8, 1.0, 1.0
for CMU-MOSI, CMU-MOSEI, UR-FUNNY re-
spectively. We use Adam for optimization with the
default hyper-parameters from PyTorch. We use a
plateau learning rate scheduler that decreases the
learning rate by a factor of 10 when the validation
performance plateaus and with a patience of 20
epochs.

C SPT that use concatenation

Figure 6: SPT using concatenation instead of summa-
tion.

D SPT that implement serial structure

Figure 7: SPT using serial structure.


