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Abstract
Transformers are the dominant architecture in
NLP, but their training and fine-tuning is still
very challenging. In this paper, we present
the design and implementation of a visual an-
alytic framework for assisting researchers in
such process, by providing them with valu-
able insights about the model’s intrinsic prop-
erties and behaviours. Our framework offers
an intuitive overview that allows the user to
explore different facets of the model (e.g., hid-
den states, attention) through interactive visu-
alization, and allows a suite of built-in algo-
rithms that compute the importance of model
components and different parts of the input
sequence. Case studies and feedback from
a user focus group indicate that the frame-
work is useful, and suggest several improve-
ments. Our framework is available at: https:
//github.com/raymondzmc/T3-Vis.

1 Introduction
Approaches through neural networks have made
significant progress in the field of NLP, with Trans-
former models (Vaswani et al., 2017) rapidly be-
coming the dominant architecture due to their
efficient parallel training and ability to effec-
tivelymodel long sequences. Following the release
of BERT (Devlin et al., 2019) along with other
Transformer-based models pretrained on large cor-
pora (Liu et al., 2019; Lewis et al., 2020; Joshi
et al., 2020; Lee et al., 2020), the most successful
strategy on many NLP leaderboards has been to
directly fine-tune such models on the downstream
tasks (e.g., summarization, classification). How-
ever, despite the strong empirical performance of
this strategy, understanding and interpreting the
training and fine-tuning processes remains a criti-
cal and challenging step for researchers due to the
inherent black-box nature of neural models (Koval-
eva et al., 2019; Hao et al., 2019; Merchant et al.,
2020; Hao et al., 2020).

∗Corresponding author.

Generally speaking, a large number of visual
analytics tools have been shown to effectively sup-
port the analysis and interpretation of deep learn-
ing models (Hohman et al., 2018). For instance,
to remedy the black-box nature of neural network
hidden states, previous work has used scatterplots
to visualize high dimensional vectors through pro-
jection techniques (Smilkov et al., 2016; Kahng
et al., 2017), with Aken et al. (2020) visualizing
the differences of token representations from differ-
ent layers of BERT (Devlin et al., 2019). Similarly,
despite some limitations regarding the explanatory
capabilities of the attention mechanism (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019), the
visualization of its weights has also been shown to
be beneficial in discovering learnt features (Clark
et al., 2019; Voita et al., 2019), with promising re-
cent work focusing on Transformers (Vig, 2019;
Hoover et al., 2020).

Besides the works on exploring what has been
learnt in the pretrained models, there are also sev-
eral visualization tools developed to show saliency
scores generated by gradient-based (Simonyan
et al., 2013; Bach et al., 2015; Shrikumar et al.,
2017) or perturbation-based interpretation meth-
ods (Ribeiro et al., 2016; Li et al., 2016), which
can help with visualizing the relative importance
of individual tokens in the input with respect to
a target prediction (Wallace et al., 2019; Johnson
et al., 2020; Tenney et al., 2020). However, only a
few studies have instead focused on visualizing the
overall training dynamics, where support is critical
for identifying mislabeled examples or failure cases
(Liu et al., 2018; Xiang et al., 2019; Swayamdipta
et al., 2020)

In essence, the framework we propose in this pa-
per, namely T3-Vis, synergistically integrates some
of the interactive visualizations mentioned above
to support developers in the challenging task of
training and fine-tuning Transformers. This is in
contrast with other similar recent visual tools (Ta-

https://github.com/raymondzmc/T3-Vis
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Figure 1: Overview of the interface: (A) Projection View provides a 2D visualization of the dataset by encoding
each example as a point on the scatterplot; (B) Data Table allows the user to view the content and metadata (e.g.
label, loss) of the data examples (e.g. document); (C) Attention Head View visualizes the head importance and
weight matrices of each attention head; (D) Instance Investigation View allows the user to perform detailed analysis
(e.g. interpretation, attention) on a data example’s input sequence.

ble 1), which either only focus on single data point
explanations for uncovering model bias (e.g., Al-
lenNLP Interpret (Wallace et al., 2019)), or rely
on failed examples to understand the model’s be-
haviour (e.g., Language Interpretability Tool (LIT)
(Tenney et al., 2020)).

Following the well-established Nested Model
for visualization design (Munzner, 2009), we first
perform an extensive requirement analysis, from
which we derive user tasks and data abstractions to
guide the design of visual encoding and interaction
techniques. More specifically, the resulting T3-
Vis framework provides an intuitive overview that
allows users to explore different facets of the model
(e.g., hidden states, attention, training dynamics)
through interactive visualization.

Our contributions are as follows: (1) An exten-
sive user requirement analysis on supporting the
training and fine-tuning of Transformer models,
based on extensive literature review and interviews
with NLP researchers, (2) the design and implemen-
tation of an open-sourced visual analytic frame-
work for assisting researchers in the fine-tuning
process with a suite of built-in interpretation meth-
ods that analyze the importance of model compo-
nents and different parts of the input sequence, and

(3) the evaluation of the current design from case
studies with NLP researchers and feedback from a
user focus group.

2 Visualization Design

The design of our T3-Vis is based on the nested
model for InfoVis design (Munzner, 2009).

2.1 User Requirements

To derive useful analytical user tasks, we first iden-
tify a set of high-level user requirements (UR)
through interviews with five NLP researchers as
well as surveying recent literature related to the
interpretability and the fine-tuning procedures of
pretrained Transformers. In the interviews, we
prompt participants with the open-ended question
of "If a visualization tool is provided to speed up
your development (fine-tuning pretrained Trans-
formers), what information would you like to see
and explore?". Combining the interview results
and insights from the literature review, we organize
these findings into five high-level requirements,
each highlighting a different facet of the model for
visualization.

Hidden state visualization (UR-1): Support
the exploration for hidden state representations
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Frameworks Components Functions

Dataset Embeddings
Head

Importance
Attention

Training
Dynamics

Interpretations Pruning Comparison

BertViz (Vig, 2019) X
AllenNLP Interpret

(Wallace et al., 2019)
X

exBERT (Hoover et al., 2020) X X X
LIT (Tenney et al., 2020) X X X X X

InterperT (Lal et al., 2021) X X X X
T3-Vis X X X X X X X X

Table 1: Comparison with other visual frameworks from recent work.

from the model.
Attention visualization (UR-2): Allow users

to examine and explore the linguistic or positional
patterns exhibited in the self-attention distribution
for different attention heads in the model.

Attention head importance (UR-3): Enable
users to investigate and understand the importance
of the attention heads for the downstream task
and the effects of pruning them on the model’s
behaviour.

Interpretability of models (UR-4): In addition
to attention maps, support a suite of alternative
explanation methods based on token input impor-
tance, thus allowing users to better understand the
model behaviours during inference.

Training dynamics (UR-5): Assist users in
identifying relevant data examples based on their
roles in the training process.

2.2 Supported Tasks and Data Model

Based on these user requirements, we derive nine
analytical tasks framed as information seeking
questions . In Table 2, we list the tasks along with
important attributes including: When they are rele-
vant during the fine-tuning process, the Granularity
of the data that it operates on, corresponding User
Requirements, and the framework Components that
it pertains to. We then look at the specific data to
which the tasks are applied to. We characterize our
data model (i.e. data types visualized by the inter-
face) as comprising the model hidden states, the
dataset examples along with their label/training fea-
tures, the attention values, head importance scores,
and input saliency map. Although our task and data
models are derived for the fine-tuning of pretrained
models, they can naturally be extended to training
any Transformer models from scratch. Importantly,
all the questions are invariant to any Transformer-
based models for any downstream tasks (e.g. clas-
sification, sequence-generation or labeling).

2.3 T3-Vis Components: Visual Encoding
and Interactive Techniques

Projection View: To assist users in visualizing the
model’s hidden state representation (UR-1) and to
identify the training role of the data examples (UR-
5), we design the Projection View (Figure 1-(A))
as the main overview of our interface, and visual-
ize the entire (or a subset of the) dataset on a 2D
scatterplot, where each data point on the plot en-
codes a single data example (e.g. document) in the
dataset. While the scatterplots can be generated
in a variety of ways based on the user’s needs, in-
cluding dimension reduction methods (Wold et al.,
1987; McInnes et al., 2018) and plotting based on
training dynamics (Li et al., 2018; Toneva et al.,
2019). Detailed studies examining the effectiveness
of these methods in the context of visual analytics
are out of the scope of this paper, but provide a
promising direction for future work. In T3-Vis,
we provide two implementations (See Figure 2):
(1) t-SNE projection (Van der Maaten and Hinton,
2008) of the model’s hidden states, and (2) plotting
the examples by their confidence and variability
across epochs based on the Data Map technique
(Swayamdipta et al., 2020). The color of the data
points can be selected by the user via a dropdown
menu to encode attributes of the data examples,
where color saturation is used for continuous at-
tributes (e.g. loss, prediction confidence), while
hue is used for categorical attributes (e.g. labels,
prediction). The user can also filter the data points
by attributes, where a range slider is used for filter-
ing the data points by continuous attributes, while
a selectable dropdown menu is used to filter by cat-
egorical attributes. Furthermore, we also introduce
a comparison mode by displaying the two scatter-
plots side-by-side, which allows for the flexibility
of comparing across different checkpoints and the
projection of different hidden state layers.

Data Table: The Data Table (Figure 1-(B)) lists
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# Question When Granularity User Requirements Components

T1
How to determine the model

representation for a given NLP task? Before Dataset 1 Projection
T2 What are the outliers of the dataset? Before, During, After Dataset 1, 5 Projection

T3
What types of linguistic or positional attributes do

the attention patterns exhibit for each attention heads? Before, During, After Instance 2 Projection

T4
Which attention heads are considered important

for the task, and what are its functions? After Both 2, 3
Attention Head

Instance Investigator
T5 How does pruning attention heads affects the model? After Instance 3 Attention Head

T6
How does the model changes at
different stages of fine-tuning? During, After Both 1, 2, 3 All

T7
Does the model rely on specific parts of the
input sequence when making predictions? After Instance 4 Instance Investigator

T8 Are there mislabeled examples in the dataset? During, After Both 1, 5 Projection

T9
How can the dataset be augmented to improve
the performance and robustness of the model? During, After Both 5 Projection

Table 2: Supported analytical tasks: questions that our interface helps to answer.

Figure 2: Interactive scatterplots based on the data ex-
amples’ training dynamics (left), and the t-SNE projec-
tions of hidden states (right)

all examples of the dataset in a single scrollable list,
where each entry displays the input text of a data
example along with its ground truth label. When
the user filters the dataset in the Projection View,
the Data Table is also filtered simultaneously.

Attention Head View: In order to visualize the
importance of the model’s attention heads (UR-3),
as well as the patterns in the attention weight ma-
trices (UR-2), we design the Attention Head View
(Figure 1-(C)), where each block in the l×h matrix
(l layers and h heads) represents a single attention
head at the respective index for layer and head. In
this view, we provide two separate visualization
techniques: namely (1) Head Importance and (2)
Attention Pattern, that can be switched using a tog-
gle button. The Head Importance technique visual-
izes the normalized task-specific head importance
score 1 through the background color saturation and
displayed value of the corresponding matrix block
(See Figure 3a). On the other hand, the Attention
Pattern technique uses heatmaps to visualize the
magnitude of the associated self-attention weight
matrices (See Figure 3b). We also provide a tog-
gle button for the user to visualize the importance

1Details are in A.1 of the Appendix

(a) Head Importance (b) Attention Pattern

Figure 3: The two visualization techniques in the At-
tention Head View.

score and attention patterns on two scales, where
the aggregate-scale visualizes the score and pat-
terns averaged over the entire dataset, while the
instance-scale visualizes the score and patterns for
a selected data example. Lastly, we also offer an
interactive technique for the user to dynamically
prune attention heads and visualize the effects on a
selected example. By hovering over each attention
head block in the view, the user can click on the
close icon to prune the respective attention head
from the model.

Instance Investigation View: After the user se-
lects a data example from the Projection View or
Data Table, the Instance Investigation View (Fig-
ure 1-(D)) renders the corresponding input text se-
quence along with the model predictions and labels
to allow the user to perform detailed analysis on
the data example. In this view, each token of the
input sequence is displayed in a separate text block,
where the background color saturation of each text
block encodes the relative saliency or importance
of the token based on the interpretation methods.
Our interface provides two analysis techniques: (1)
By selecting a head in the Attention Head View
(Figure 3), the user can click on the text block of
any input token to visualize the self-attention dis-
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tribution of the selected token over the input text
sequence (UR-3). (2) Similarly, the user can visu-
alize the input saliency map with respect to a model
output, by clicking the corresponding output token
(UR-4). Since our framework allows the user to
plug in different interpretation techniques based on
their preference, details regarding the meaningful-
ness of such techniques are out of the scope of this
paper. Our interface provides the implementation
of two input interpretation methods2 : Layer-wise
relevance propagation (Bach et al., 2015), and input
gradient (Simonyan et al., 2013).

2.4 Implementation

Data Processing For each model checkpoint,
data pertaining to dataset-level visualizations in-
cluding hidden state projections, prediction confi-
dence/variability, head importance score, and other
attributes (e.g. loss, prediction) are first processed
and saved in a back-end directory. The only added
computational overhead to the user’s training pro-
cess is the dimension reduction algorithm for pro-
jecting hidden state representation, as other visual-
ized values can all be extracted from the forward
(e.g. confidence, variability, loss) and backward
pass (e.g. head importance, input saliency) of
model training.

Back-end Our back-end Python server provides
built-in support for the PyTorch HuggingFace li-
brary (Wolf et al., 2020), including methods for
extracting attention values, head pruning, comput-
ing importance scores, and interpreting the model
predictions. In order to avoid saving instance-level
data (e.g., attention weights, input heatmap, etc.)
for all examples in the dataset, the server dynam-
ically computes these values for a selected data
example by performing a single forward and back-
ward pass on the model. This requires the server to
keep track of the model’s current state, as well as a
dataloader for indexing the selected data example.

Front-end Our front-end implementation keeps
track of the current visual state of the interface
including the selections, filters, and checkpoint.
The interface can be accessed through any web
browser, where data is retrieved from the back-end
server via the RESTful API. The interactive visual
components of the interface are implemented using
the D3.js framework (Bostock et al., 2011), and
other UI components (e.g. buttons, sliders) are

2Details are in A.2 of the Appendix

implemented with popular front-end libraries (e.g.
jQuery, Bootstrap).

3 Iterative Design

3.1 Focus Group Study

In order to collect suggestions and initial feedback
on T3-Vis, we conducted a focus group study with
20 NLP researchers that work regularly with pre-
trained Transformer models. In this study, we first
presented the design of the interface, then gave a
demo showing its usage on an example. Through-
out the process, we gathered responses from the
participants via open discussions.

Most positive feedback focused on the effective-
ness of our techniques for visualizing self-attention
especially on longer documents (in contrast to
showing links between tokens (Vig, 2019)). There
were also comments on the usefulness of the input
saliency map in providing insightful clues on the
model’s decision process.

Some participants also suggested that the inter-
face would be more useful for classification prob-
lems with well-defined evaluation metrics since
data examples tended to be better clustered in the
Projection View so that they could be easily fil-
tered for error analysis. The need of optimizing the
front-end to support the visualization of large-scale
datasets was also mentioned.

On the negative side, some participants were
concerned by the information loss intrinsic in the
dimension reduction methods, whose possible neg-
ative effects on the user analysis tasks definitely
requires further study. Encouragingly, at the end, a
few participants expressed interest in applying and
evaluating T3-Vis on their datasets and NLP tasks.

3.2 Case Studies

This section describes two case studies of how T3-
Vis facilitates the understanding and exploration of
the fine-tuning process through applications with
real-world corpora. These studies provide initial
evidence on the effectiveness of different visualiza-
tion components, and serve as examples for how
our framework can be used.

3.2.1 Pattern Exploration for an Extractive
Summarizer

NLP researchers in our group, who work on sum-
marization, applied T3-Vis to the extractive summa-
rization task, which aims to compress a document
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Figure 4: The self-attention distribution of token
“photo” in the Instance Analysis View.

by selecting its most informative sentences. BERT-
Sum, which is fine-tuned from a BERT model (Liu
and Lapata, 2019), is one of the top-performing
models for extractive summarization, but why and
how it works remains a mystery. With our inter-
face, the researchers explored patterns captured
by the model that played important roles in model
predictions. They performed an analysis on the
CNN/Daily Mail dataset (Hermann et al., 2015),
which is arguably the most popular benchmark for
summarization tasks.

The first step was to find the important heads
among all the heads across all the layers. From
the Head Importance View (Figure 1-(C)), the re-
searchers selected the attention heads with high
head importance scores, so that the corresponding
attention distribution was available to interact with.
Then they selected some tokens in the Attention
View to see which tokens they mostly attended to,
and repeated this process for multiple other data
examples, in order to explore whether there was a
general pattern across different data examples.

While examining attention heads based on their
importance in descending order, the researchers
observed that tokens tended to have high attention
on other tokens of the same word on the important
attention heads. For example, the token “photo"
attributed almost all of its attention score to other
instances of the token “photo" in the source doc-
ument (Figure 4). They further found two more
patterns in other important heads, in which the to-
kens tended to have more attention on the tokens
within the same sentence, as well as the adjacent
tokens. These behaviours were consistent across
different pretrained models, such as RoBERTa (Liu
et al., 2019).

These findings provided useful insights to as-
sist the researchers in designing more efficient and
accurate summarization models in the future, and
served as a motivation for the researchers to per-
form similar analysis for other NLP tasks.

Figure 5: A misclassified example within a cluster of
well-classified example.

3.2.2 Error Analysis for Topic Classification

Other researchers in our group explored the inter-
face for error analysis to identify possible improve-
ments of a BERT-based model for topic classifi-
cation. The Yahoo Answers dataset (Zhang et al.,
2015) was used, which contains 10 topic classes.

Researchers first used the Projection View (Fig-
ure 1-(A)) to find misclassified data examples as ap-
plying filters to select label and prediction classes.
For a selected topic class in the t-SNE projection
of the model’s hidden states, they found out that
the misclassified data points far away from clusters
of correctly predicted examples were often misla-
beled during annotation. Therefore, misclassfied
data points within such clusters were of greater in-
terest to them since such points tends to indicate
model failuresrather than mistakes in annotation
(Figure 5). Furthermore, data points in the area
with low variability and low confidence on the Data
Map plot were also selected for investigation since
they are interpreted as consistently misclassified
across epochs. After selecting the examples, the
researchers inspected each instance by using the
Instance Investigation View (Figure 1-(D)) with
the Input Gradient method to visualize the input
saliency map for the prediction of each class.

From this analysis, they discovered two scenar-
ios that led to misclassification. First, the model
focused on unimportant and possibly misleading
details that are not representative of the document’s
overall topic. For instance, a document about
Business & Finance was classified into the Sport
category because the model attended to “hockey
player”, “football player”, and “baseball player”,
which were listed as job titles while discussing
available jobs in Michigan. Second, the model
failed in cases where background knowledge is
required. For example, a document under the En-
tertainment & Music category mentioned names of
two actors which were key clues for the topic, but
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the model only attended to other words, and made
a wrong prediction.

These findings helped researchers to gain in-
sights for future model design where additional
information such as discourse structure (which can
better reveal importance) and encyclopedic knowl-
edge could be injected into the model’s architecture
to improve the task performance.

4 Conclusion

In this paper, we presented T3-Vis, a visual ana-
lytic framework designed to help researchers better
understand training and fine-tuning processes of
Transformer-based models. Our visual interface
provides faceted visualization of a Transformer
model and allows exploring data across multiple
granularities, while enabling users to dynamically
interact with the model. Additionally, our imple-
mentation and design allows flexible customization
to support a diverse range of tasks and workflows.
Our focus group and case studies demonstrated
the effectiveness of our interface by assisting the
researchers in interpreting the models’ behaviour
and identifying potential directions to improve task
performances.

For future work, we will continue to improve
our framework through the iterative process of ex-
ploring further usage scenarios and collecting feed-
back from users. We will extend our framework
to provide a more advanced visualization for cus-
tom Transformers. For example, we may want
to support the visualization of models with more
complex connections (e.g. parallel attention layers)
or an advanced attention mechanism (e.g. sparse
attention).
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A Appendix

A.1 Head Importance Score
Although the multi-head self attention mechanism
in Transformers allows the model to learn multi-
ple types of relationships between input representa-
tions across a single hidden layer, the importance of
the individual attention heads can vary depending
on the downstream tasks. Following previous work,
we adapt the Taylor expansion method (Molchanov
et al., 2019) to estimate the error induced from
removing a group of parameters from the model.
In our implementation, we use the first-order ex-
pansion to avoid the overhead from computing the
Hessian, where the gradient with respect to vali-
dation loss is summed over all parameters of an
attention head to estimate its importance.

A.2 Input Interpretation
Input Gradients The input gradient method (Si-
monyan et al., 2013) computes the gradient with
respect to each token. During inference, the class-
score derivative can be computed through back-
propagation. The saliency of the token xi for class
c of output y could therefore be estimated using the
first-order Taylor expansion ∂yc

∂xi
xi.

Layer-wise Relevance Propagation Layer-
wise Relevance Propagation (LRP) (Bach et al.,
2015) was originally proposed to visualize the
contributions of single pixels to predictions for
an image classifier. By recursively computing
relevance from the output layer to the input layer,
LRP is demonstrated to be useful in unravelling the
inference process of neural networks and has been
adopted in recent work to analyze Transformer
models (Voita et al., 2019). The intuition behind
LRP is that, each neuron of the network is
contributed by neurons in the previous layer, and
the total amount of contributions for each layer
should be a constant during back-propagating,
which is called the conservation principle. LRP
offers flexibility to design propagation rules to
explain various deep neural networks, one example
propagation rule is shown as follows (Montavon
et al., 2018),

Ri = Σj
aiwij

Σiaiwij
Rj (1)

where Ri and Rj are relevance scores of two neu-
rons in consecutive layers, ai is the respective acti-
vation for neuron i, and wij is the weight between
neuron i and j.


