
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 160–167
November 7–11, 2021. ©2021 Association for Computational Linguistics

160

UMR-Writer: A Web Application for Annotating Uniform Meaning
Representations

Jin Zhao1, Nianwen Xue1, Jens Van Gysel2, Jinho D. Choi3

1Brandeis University 2The University of New Mexico 3Emory University
{jinzhao,xuen}@brandeis.edu

jelvangysel@unm.edu
jinho.choi@emory.edu

Abstract
We present UMR-Writer, a web-based appli-
cation for annotating Uniform Meaning Rep-
resentations (UMR), a graph-based, cross-
linguistically applicable semantic representa-
tion developed recently to support the devel-
opment of interpretable natural language appli-
cations that require deep semantic analysis of
texts. We present the functionalities of UMR-
Writer and discuss the challenges in develop-
ing such a tool and how they are addressed.

1 Introduction

1.1 UMR Overview
Uniform Meaning Representation is a graph-based
cross-linguistically applicable semantic represen-
tation that was recently developed with the goal
of supporting interpretable natural language ap-
plications that require deep semantic analysis of
texts (Van Gysel et al., 2021). UMR has two com-
ponents: a sentence-level representation that is
adapted from Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), and a document-
level representation that captures semantic relations
that potentially go beyond sentence boundaries.
Like AMR, the UMR sentence-level representa-
tion captures the argument structures of predicative
events, word senses, as well as semantic types of
named entities. It also adds a representation for
aspect and quantifier scope, which are not part of
AMR. At the document level, UMR represents tem-
poral (Zhang and Xue, 2018b,a; Yao et al., 2020)
and modal dependencies (Vigus et al., 2019) as
well as coreference. UMR abstracts away from
syntactic representations and preserves semantic
relations within and across sentences. Building
a corpus of UMRs could potentially be very use-
ful to NLP practitioners in multiple fields, such as
information extraction and machine translation.

Figure 1 is an example UMR for a short text
snippet. Like AMR, UMR is a node- and edge-
labeled directed graph, where the nodes represent

semantic concepts (including word senses, entity
types etc.) and edges represent relations (partic-
ipant roles and general semantic relations). The
solid lines represent sentence-level relations while
the dashed lines represent semantic relations that
go beyond sentence boundaries. The direction of
the arrows is always from parent to child, at both
the sentence- and document level. For instance, at
the sentence level, taste-01 is an eventive concept
labeled with the first sense of the lemma “taste” as
defined in PropBank (Palmer et al., 2005), and a
person concept with the name “Edmund Pope” is
its ARG0. The concept taste-01 also has an aspect
attribute with the value State. The pronoun “he”
in the third sentence is decomposed into a person
concept with a person attribute 3rd and number
attribute Singular, indicating third person singular.
At the document level, the person concept mapped
from the pronoun “he” refers to the same entity
as the person concept in the first sentence, as in-
dicated by the dashed line connecting these nodes.
The event taste-01 in the first sentence occurs be-
fore document creation time (DCT), as indicated
by the dashed line with the red :Before label, and
in the third sentence, the edge label :NEG indicates
that Edmund Pope (who corresponds to the person
node) as a conceiver/source has a full negative epis-
temic stance (Boye, 2012) towards the do event.

1.2 Challenges in Building a Tool for UMR
Annotation

As should be clear from the UMR example in Fig-
ure 1, UMR is a fairly complex representation that
has many dimensions, and we need to address a
number of challenges in order to develop a tool
that makes UMR annotation practical. First of all,
the UMR annotation scheme involves both closed
and open vocabularies. For instance, while the rela-
tions, attributes, and abstract concepts (e.g., entity
types such as person) can be selected from a closed
set with a few hundred items, sense-disambiguated



161

Figure 1: Uniform Meaning Representation

words (e.g., taste-01, convict-01) form open classes
that need to be stored in a lexicon that can be
dynamically updated during the annotation. This
means that UMR-Writer needs to store both types
of annotation resources to support UMR annotation
and arrange them in a way that is convenient for an-
notators to access. Second, as UMR is a graph and
thus a highly structured annotation object, UMR-
Writer needs to enforce the well-formedness of
UMR during the annotation process and does not
leave this responsibility to the users. Similarly,
UMR-Writer also needs to keep track of the vari-
ables that are crucial to the coreference aspect of
the UMR annotation and automatically generates
and updates the variables in response to user input.

Annotating document-level UMR adds to the
complexity of an UMR annotation tool. Like
any document-level annotation tool, UMR-Writer
needs to present the entire document, which
can be arbitrarily long. To make UMR anno-
tation tractable and promote annotation consis-
tency, UMR-Writer imposes an annotation proce-
dure in which the user will proceed in a sentence-
by-sentence manner. Another challenge in UMR
annotation is that the UMR document-level repre-
sentation, i.e., temporal and modal dependencies
and coreference, needs to make reference to vari-
ables for sentence-level concepts. There is also the
need sometimes for the user to make corrections
to the sentence-level annotation that will affect the

well-formedness of the document-level annotation.
We design UMR-Writer in a way that any changes
made at the sentence-level will result in an auto-
matic update of the document-level UMR if neces-
sary.

As the name suggests, UMR is intended to be a
semantic representation uniform across languages,
and UMR-Writer needs to support multi-lingual
annotation and address the challenges resulting
from this need. At a very basic level, UMR-Writer
needs to support the display of various writing sys-
tems for languages of the world, and this factored
heavily into our decision to develop a web-based
tool that handles multilingual functionalities by
piggy-backing on the web-browsers. Languages
are also diverse with regard to their linguistic fea-
tures, and the amount of linguistic resources avail-
able. For instance, some languages are morpho-
logically complex while other languages are mor-
phologically simpler. In terms of data sources,
some languages have data from formal genres with
well-defined sentence boundaries while other lan-
guages only have transcriptions of oral recordings
where sentence boundaries are not always as clear.
In terms of availability of annotation support re-
sources, high-resource languages like English and
Chinese have well-developed lexical resources like
PropBank frame files through years of research
(Palmer et al., 2005; Xue and Palmer, 2009; Xue,
2006) while low-resource languages may not have



162

frame files at all. UMR-Writer needs to be flexible
and allow this variability. To cope with languages
that have no linguistic resources at their disposal,
UMR-Writer allows UMR annotation of languages
without pre-existing computational resources such
as frame files or digital lexicons by providing a
lexicon-building feature that aids in the develop-
ment of linguistic resources as UMRs are annotated.
To assist less experienced annotators, UMR-Writer
presents PropBank frames with argument structure
information for each lemma (when available), in-
ferred from the surface forms of a word the user
selects. To promote annotation consistency, UMR-
Writer only allows the user to select UMR relations
from a pre-specified list. This eliminates invalid
concepts and roles in annotated UMRs.

2 Related Work

Fundamentally, UMR is a representation based on
relations between concepts, and there are a num-
ber of tools that support annotation for relations.
Some examples include Anafora (Chen and Styler,
2013), MAE (Stubbs, 2011; Rim, 2016), WebAnno
(Eckart de Castilho et al., 2016), and BRAT (Stene-
torp et al., 2012). Anafora is a web-based tool that
supports the annotation of relations between text
spans. MAE is a standalone tool that offers flexible
and versatile schema support for complex relation
sets. WebAnno supports semantic role labelling
or event annotations, and it enables the annota-
tion of semantic structures and the handling of rich
semantic tagsets. BRAT provides intuitive anno-
tation visualization to help users understand the
relations between text annotations. However, all of
these tools only support annotation based on text
spans, and not annotation that requires transform-
ing word tokens in the source text into concepts in
the annotated graph that take the form of (sense-
disambiguated) word lemmas, concatenated words,
or even abstract concepts that do not correspond to
any specific word token in the source text. In con-
trast, UMR-Writer allows the creation of concepts
that are transformations from word tokens in the
source text or purely new additions.

AMR Editor (Hermjakob, 2013) is a tool cre-
ated for AMR annotation and is most similar to
UMR-Writer. Like UMR-Writer, it also supports
the annotation of concepts that are different from
word tokens in the source text. It also makes use of
both closed sets of abstract concepts and relations
as well as open-class lexicons. However, it offers

limited support for languages other than English,
and does not support document-level annotation.

3 System Overview

UMR-Writer is implemented in JavaScript interact-
ing with HTML pages, and uses Flask as the server
side web framework. It is deployed at Heroku with
a Postgres database at the backend to store anno-
tated UMR graphs.1

UMR-Writer provides a Graphical User Inter-
face (GUI) that allows annotators to point and
select words from the source text, and then se-
lect and click to add concepts and relations to the
UMR graph. UMR-Writer has separate views for
sentence-level and document-level annotation, but
the two views share the same underlying data struc-
ture. At the sentence level, UMR-Writer makes
clear distinctions between the annotation of lexi-
calized and abstract concepts, named entity types,
attributes, and relations. At the document level,
UMR-Writer has separate functionalities for anno-
tating temporal and modal dependencies as well as
coreference. UMR-Writer allows the user to easily
switch between the sentence-level and document-
level views with a simple click.

3.1 Importing Source text into UMR-Writer
for Annotation

Annotators can upload their source data in the form
of single files for annotation from the upload page.
UMR-Writer can parse and render plain text format
as well as 6 output format variations of FLEx and
Toolbox, tools commonly used by field linguists.
In addition, the user can also upload an output file
exported by UMR-Writer to add more annotation
or make corrections. UMR-Writer extracts and re-
tains all information in the imported source file use-
ful for UMR annotation (e.g., morphological seg-
mentation, word-level and morpheme-level glosses,
paragraph boundaries, etc.). This is particularly im-
portant for field linguists annotating languages that
they are not native speakers of. Users have access
to all files they have uploaded in their individual
accounts. A short sample text comes with every
newly registered account for new users to try out
the the tool without having to first upload their own
data.

The upload page also has functionality that al-
lows PropBank-style frame files (Palmer et al.,

1https://github.com/jinzhao3611/
umr-annotation-tool

https://github.com/jinzhao3611/umr-annotation-tool
https://github.com/jinzhao3611/umr-annotation-tool


163

2005; Xue and Palmer, 2009) to be imported into
UMR-Writer to support the annotation of word
senses and lexicalized semantic roles. So far, En-
glish and Chinese frame files have already been
pre-loaded into UMR-Writer. Annotators for other
languages can upload their own lexicon as support
data so long as it is in the FLEx export format.

3.2 The View for Sentence-level UMR
Annotation

In this view, the user can iteratively build up the
sentence-level UMR graph and UMR-Writer will
automatically record the alignment between the
UMR concepts and word tokens in the source text.
The UMR graph is rendered in PENMAN notation
(Kasper, 1989; Goodman, 2020).

Figure 2: Sentence-level annotation

3.2.1 Building the Sentence-level UMR
Graph

The sentence-level UMR graph building process
starts with the user choosing a concept as the root
node of the graph. After that, the user iteratively
builds up the UMR graph by setting the parent,
choosing either a lexicalized or abstract concept
as its child, selecting a relation between the child
and the parent, and adding this “triple” to the UMR
graph. Alternatively, the user can also select an
attribute for the parent, set its value, and add it to

the UMR graph. Annotators can set the parent by
double-clicking the node in the partially completed
graph. In case corrections need to be made to the
UMR graph, the user can enter the editing/deleting
mode and modify the graph directly. Possible cor-
rections include making changes to concepts or
deleting subgraphs from the UMR graph.

Annotating lexicalized or abstract concepts
As seen in Figure 2, the view of the sentence-level
annotation varies based on the imported data. Mini-
mally, UMR-Writer presents a single tokenized sen-
tence for the user to annotate. When available, mor-
phemes and their glosses can also be displayed to
support UMR annotation. For example, in morpho-
logically complex languages like Sanapaná (Enlhet-
Enenlhet, Paraguay), information about which mor-
pheme within a word is the root is crucially impor-
tant to help annotators choose a lemma form as the
UMR concept. When a text span in the sentence
is selected, UMR-Writer automatically generates
a few concept options for the user to choose from.
These options include word senses (if the selected
text matches a word in the frame files), a lemma
form of the word (when there is no matching entry
in the frame files), or a concatenated form (when
multiple words are selected in the text span). An-
notators can also choose an abstract concept from
a pre-defined drop-down menu that does not map
to any word token but can be inferred from the
context. Finally, UMR-Writer provides short-hand
buttons for adding named entity concepts to the
UMR graph. Named entity concepts have inter-
nal structures that are predictable, but usually take
several actions to complete.

Annotating semantic relations The annotator
can select a semantic relation that relates a con-
cept to its parent in the UMR graph using a “Roles”
menu. The range of semantic relations includes
lexicalized participant roles such as :ARG0, non-
lexicalized roles such as :agent, as well as other
semantic relations that are not typically considered
participant roles (e.g., :poss, :name). More infor-
mation on where each set of participant roles is
used can be found in the UMR guidelines2.

Annotating UMR attributes Annotators can
choose the attribute type (e.g. :Aspect) from an
“Attributes” menu, and choose the corresponding
attribute value in a pop-up “Attribute Values” menu

2https://umr4nlp.github.io/web

https://umr4nlp.github.io/web


164

to add the attribute to the UMR graph. For in-
stance, the values of :Aspect include both more
fine-grained values such as State and more coarse-
grained values such as Atelic Process, which are
organized in a lattice (Van Gysel et al., 2021). This
makes the tool more cross-linguistically general,
because some languages lack overt aspectual mark-
ing in their grammar, making fine-grained values
hard to distinguish, while in other languages more
fine-grained distinctions are overtly marked.

3.2.2 Token-Concept Alignments
As the user selects a text span to create a lexical-
ized concept, UMR-Writer automatically records
an alignment between the text span and the con-
cept in the UMR graph. As it is possible for some
concepts to be created out of more than one word
token or part of a word token in the source sen-
tence, or even no lexical material at all in the case
of abstract concepts, the mapping between word
tokens and UMR concepts will not be one-to-one.
This alignment is potentially useful for purposes of
improving UMR parsing accuracy or for linguists
who wish to study syntax-semantic mismatches.

3.3 View for Document-level Annotation

For both sentence-level and document-level annota-
tion, we assume an annotation procedure in which
a document is annotated sentence by sentence. The
sentence-level representation is annotated first, so
that the document-level annotation can make refer-
ence to the concepts and relations in the sentence-
level representation (Van Gysel et al., 2021). An
integrated document-level view of UMR-Writer
is shown in Figure 3: the completed sentence-
level annotations are displayed on the left, and the
document-level annotations in the middle column
are created by linking all child concepts in the cur-
rent sentence to a parent in the previous or in some
cases the following sentences. To do temporal an-
notation (Van Gysel et al., 2021), the user selects
a child and a parent which can be either an even-
tive or time concept, and then identifies the relation
(e.g., :Before, :After) between them based on con-
textual clues. Similarly, when annotating modal re-
lations, the annotator can select a parent and a child
and identify a relation that captures the epistemic
strength and polarity (e.g., :AFF, :NEG) between
the parent and child. For coreference annotation,
the annotator determines if the parent and the child
refer to the same entity/event or one designates a
subset of the other.

The document-level and sentence-level view of
UMR-Writer are tightly integrated in the sense that
any change in the sentence-level graph results in
the automatic update of the document-level graph.
This way, the burden of ensuring the integrity of
the UMR graph is shifted away from the user. This
is achieved by storing all the sentence-level UMR
graphs for a document in a single data structure.
When the user updates a node in a sentence-level
UMR graph, all document-level annotations mak-
ing reference to that node will be updated as well.

3.4 Support for Cross-lingual Annotation
A sentence-by-sentence annotation procedure at
both the sentence- and document-level is appealing
in that it makes the annotation more tractable for
the user and potentially for models trained on the re-
sulting annotated UMRs. However, data from some
languages cannot be cleanly segmented into “sen-
tences” that allow us to make the simplifying one-
line-per-sentence assumption when implementing
UMR-Writer. This is typically the case for data for
low-resource languages collected by field linguists,
who often segment and transcribe the recordings
from their fieldwork by intonation units. The ex-
ample in (1) shows the English gloss of three Sana-
paná intonation units from an oral history recording
(Van Gysel et al., 2020). Semantically, they form
one predicate-argument complex, but as they were
not uttered under a single intonation contour, they
would be represented as three lines in the text.

(1) a. Then the cuartelero bird went to eat.
b. In the lagoon.
c. Fish, and eels.

If we strictly follow the one-line-per-sentence
assumption during sentence-level annotation, in or-
der to capture the semantic relation between the
“eat” concept in (1a) and the “fish” concept in (1c),
we would have to posit an abstract, implicit con-
cept as its patient when annotating “eat”, and later
link it to the “fish” concept during document-level
annotation via coreference between these concepts.
We also need to do the same for the relation be-
tween “eat” and “lagoon”. This would be easy to
implement but cumbersome to the user. On the
other hand, if we allow the user to annotate seman-
tic relations from lines that are arbitrarily distant,
this would make implementation intractable and
error-prone. We adopt a compromise and allow the
user to annotate semantic relations between two ad-
jacent lines when annotating sentence-level UMR.



165

Figure 3: Document-level-annotation

This relieves the burden from the user to a large
extent while making the implementation tractable.

This example also illustrates the need to present
multiple sentences even for sentence-level anno-
tation to provide enough context for the user to
understand and properly annotate a sentence. Even
in the sentence-level view, UMR-Writer presents
all sentences in the document to serve as context
for the sentence being currently annotated.

3.4.1 Dynamic Updating of the Annotation
Lexicon

When a user creates UMR concepts from spans
of text in the source sentence, UMR-Writer sug-
gests possible concepts by lemmatizing the word
token and using the resulting lemma to query the
frame file lexicon and retrieve a list of senses for
this lemma as well as the semantic roles associated
with each sense. When this lemma is not in the
lexicon, UMR-Writer suggests using the lemma
as the concept. While lemmatization is relatively
straightforward and can be done algorithmically
for languages like English and Chinese, it cannot
be reliably done for morphologically complex low-
resource languages. As a result, UMR-Writer can-
not make accurate suggestions for these languages,
and the user has to edit the suggested lemma before
attaching it to the UMR graph. To avoid repeated
editing of the same word token, UMR-Writer al-
lows the user to enter a word token and its asso-
ciated lemma with different senses and argument
structure information into a database from a sep-
arate lexicon page. This way next time the user
encounters the same word or the different inflected

form of the same word, UMR-Writer will be able to
retrieve its lemma as a suggestion. When entering
the lemma for the word token, UMR-Writer can
also provide the lemmas for other variations of the
same word as a reminder to help the user choose
the correct lemma. Different users working on the
same language can also share the same lexicon.

4 How to Access UMR-Writer

UMR-Writer now has a demo version that allows
users to register an account and use it for their
own annotation.3 UMR-Writer was used in annota-
tion efforts for Kukama, Arapaho, Sanapaná, and
Navajo. UMR-Writer is intended to be a tool that
annotators can use to create data sets for NLP re-
searchers to train machine learning models, and
for linguists to study the semantic structures of
language. We intend to make it open-source and
make it available to the broader research commu-
nity. This tool will be released under creative com-
mons under version CC BY-NC. It has been tested
by about 30 annotators who are field linguists, com-
putational linguists, or other types of users with
UMR annotation tasks for various languages.

3The question of whether multiple users can access the
same document and generate multiple UMRs of the same sen-
tences or documents came up from our reviewers. Allowing
this would be useful for adjudication. For now, each annotator
uploads the same source file to their account, makes their own
annotation, and then shares the exported file with the other so
that IAA can be calculated. Adjudication is a non-trivial task
in the UMR annotation process, the specifics of which we are
currently working on.



166

5 Future Development

It would also be useful for UMR-Writer to be made
inter-operable with other platforms. For example,
FLEx, used by many field linguists for language
documentation, offers a convenient way of storing
texts, providing morphological glosses, and linking
these to the lexicon. Efforts will be made to inte-
grate and work more seamlessly with such common
field linguist tools.

We also plan to make UMR-Writer support more
languages. We will continue to improve the tool to
promote annotation efficiency and consistency as
ease of use as we receive feedback for users.

Acknowledgment

This work is supported by a grant from the IIS Di-
vision of National Science Foundation (Awards No.
1763926) entitled “Building a Uniform Meaning
Representation for Natural Language Processing”
awarded to Nianwen Xue). All views expressed
in this paper are those of the authors and do not
necessarily represent the view of the National Sci-
ence Foundation. We thank the collaborators of the
UMR project for feedback during the development
of this annotation tool.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Kasper Boye. 2012. Epistemic meaning: A crosslin-
guistic and functional-cognitive study, volume 43 of
Empirical Approaches to Language Typology. De
Gruyter Mouton, Berlin.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 312–319, Online. Association for Com-
putational Linguistics.

Ulf Hermjakob. 2013. AMR Editor: A Tool to Build
Abstract Meaning Representations.

Robert T Kasper. 1989. A flexible interface for
linking applications to penman’s sentence genera-
tor. In Speech and Natural Language: Proceedings
of a Workshop Held at Philadelphia, Pennsylvania,
February 21-23, 1989.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Kyeongmin Rim. 2016. Mae2: Portable annotation
tool for general natural language use. In Proc 12th
Joint ACL-ISO Workshop on Interoperable Semantic
Annotation, pages 75–80.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Amber Stubbs. 2011. Mae and mai: lightweight anno-
tation and adjudication tools. In Proceedings of the
5th linguistic annotation workshop, pages 129–133.

Jens E. L. Van Gysel, Roberto Álvarez, Florentino
Álvarez, Valenciano Cabrera, Cano Carlos, Cecilio
Teytaro, Esteban López, Regino Teytaro, and Marty
Adamsmith. 2020. Roberto Álvarez talking about
the history of the Sanapaná people / Roberto Álvarez
contando sobre la historia del pueblo Sanapaná. In
Jens E. L. Van Gysel (Collector): A documenta-
tion of historical narratives amongst the Sanapaná
(Enlhet-Enenlhet) of the Paraguayan Chaco. Lon-
don: Endangered Languages Archive. Session Date:
25 July 2019. Accessed: 28 June 2021.

Jens E. L. Van Gysel, Meagan Vigus, Jayeol Chun, Ken-
neth Lai, Sarah Moeller, Jiarui Yao, Tim O’Gorman,
Andrew Cowell, William Croft, Chu-Ren Huang,
Jan Hajič, James H. Martin, Stephan Oepen, Martha
Palmer, James Pustejovsky, Rosa Vallejos, and Nian-
wen Xue. 2021. Designing a Uniform Meaning Rep-
resentation for Natural Language Processing. KI -
Künstliche Intelligenz.

Meagan Vigus, Jens E. L. Van Gysel, and William
Croft. 2019. A dependency structure annotation
for modality. In Proceedings of the First Interna-
tional Workshop on Designing Meaning Representa-
tions, pages 182–198, Florence, Italy. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/W16-4011
https://www.aclweb.org/anthology/W16-4011
https://doi.org/10.18653/v1/2020.acl-demos.35
https://doi.org/10.18653/v1/2020.acl-demos.35
https://amr.isi.edu/papers/amr-editor-ulf2013a.pdf
https://amr.isi.edu/papers/amr-editor-ulf2013a.pdf
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://www.elararchive.org/uncategorized/so_2683f193-285c-4f86-91e0-3aa4f7f5084d/
https://www.elararchive.org/uncategorized/so_2683f193-285c-4f86-91e0-3aa4f7f5084d/
https://www.elararchive.org/uncategorized/so_2683f193-285c-4f86-91e0-3aa4f7f5084d/
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.18653/v1/W19-3321
https://doi.org/10.18653/v1/W19-3321


167

Nianwen Xue. 2006. A chinese semantic lexicon of
senses and roles. Language resources and evalua-
tion, 40(3):395–403.

Nianwen Xue and Martha Palmer. 2009. Adding se-
mantic roles to the chinese treebank. Natural Lan-
guage Engineering, 15(1):143.

Jiarui Yao, Haoling Qiu, Bonan Min, and Nianwen Xue.
2020. Annotating temporal dependency graphs via
crowdsourcing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5368–5380.

Yuchen Zhang and Nianwen Xue. 2018a. Neural rank-
ing models for temporal dependency structure pars-
ing. arXiv preprint arXiv:1809.00370.

Yuchen Zhang and Nianwen Xue. 2018b. Structured in-
terpretation of temporal relations. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

https://www.aclweb.org/anthology/L18-1490
https://www.aclweb.org/anthology/L18-1490

