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Abstract
In the area of customer support, understand-
ing customers’ intents is a crucial step. Ma-
chine learning plays a vital role in this type
of intent classification. In reality, it is typi-
cal to collect confirmation from customer sup-
port representatives (CSRs) regarding the in-
tent prediction, though it can unnecessarily
incur prohibitive cost to ask CSRs to assign
existing or new intents to the mis-classified
cases. Apart from the confirmed cases with
and without intent labels, there can be a num-
ber of cases with no human curation. This data
composition (Positives + Unlabeled + multi-
class Negatives) creates unique challenges for
model development. In response to that, we
propose a semi-supervised multi-task learn-
ing paradigm. In this manuscript, we share
our experience in building text-based intent
classification models for a customer support
service on an E-commerce website. We im-
prove the performance significantly by evolv-
ing the model from multiclass classification to
semi-supervised multi-task learning by lever-
aging the negative cases, domain- and task-
adaptively pretrained ALBERT on customer
contact texts, and a number of un-curated data
with no labels. In the evaluation, the final
model boosts the average AUC ROC by almost
20 points compared to the baseline finetuned
multiclass classification ALBERT model.

1 Introduction

As machine learning makes rapid advances in the
area of natural language processing (NLP), it is
becoming more common to aid customer support
representatives (CSRs) with NLP models. This not
only ensures timely and consistent replies to cus-
tomers, but also reduces operational costs for orga-
nizations. We can see successful use cases from or-
ganizations such as Alibaba (Fu et al., 2020), Uber
(Molino et al., 2018), Square (Fotso et al., 2018),
AT&T (Gupta et al., 2010), IBM (Mani et al., 2018),

Los Alamos National Laboratory (DeLucia and
Moore, 2020), and US Navy (Powell et al., 2020).
In general, identifying the intents of the coming
contacts is the first step in customer support. There-
fore, accurate intent classification is crucial.

Intent classification is a broad topic mostly
falling under the umbrella of NLP. In this
manuscript, we limit our discussion to intent clas-
sification in the area of customer support. In the
past two decades, researchers have been trying to
improve the efficiency of customer support by de-
tecting customer intents with machine learning ap-
proaches (Molino et al., 2018; Powell et al., 2020;
DeLucia and Moore, 2020; Hui and Jha, 2000;
Gupta et al., 2010; Fotso et al., 2018; Mani et al.,
2018; Sarikaya et al., 2011; Gupta et al., 2006; Xu
and Sarikaya, 2013). We can loosely categorize
these approaches into text classification (Molino
et al., 2018; Powell et al., 2020; DeLucia and
Moore, 2020; Hui and Jha, 2000; Gupta et al., 2010;
Fotso et al., 2018), question-answer (QA) system
(Mani et al., 2018) and automatic speech recog-
nition (ASR) (Sarikaya et al., 2011; Gupta et al.,
2006; Xu and Sarikaya, 2013). In this manuscript,
we focus on using text classification methods to
classify intents for customer support. To deal with
unstructured text data, researchers use handcrafted
features (Hui and Jha, 2000; Gupta et al., 2010),
Bag-of-Words type of features (Powell et al., 2020),
features from topic modeling (DeLucia and Moore,
2020) and vectorization type of features, such as
word2vec (Fotso et al., 2018; Molino et al., 2018)
and doc2vec (DeLucia and Moore, 2020). By con-
suming these features, classifiers determine the in-
tent of a case and the case can be routed to spe-
cialists (Molino et al., 2018; Gupta et al., 2010;
DeLucia and Moore, 2020; Powell et al., 2020)
and/or a reply template from the “Answer Bank”
can be provided (Molino et al., 2018; Fotso et al.,
2018; Hui and Jha, 2000). A general intelligent
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customer support loop can be seen in Figure 1.

Customer contacts Intelligent system
(ML and/or rules)

Customer support 
representatives

Routing,
suggesting replies, 
providing diagnostic info, etc.

Fully automated replies.

Expert-curated replies.

?

Figure 1: Intelligent customer support loop

To meet ever-changing business needs, the intent
taxonomy is generally under active development
(Molino et al., 2018; Fotso et al., 2018; DeLucia
and Moore, 2020). It is not realistic to manually
relabel all cases after each intent taxonomy up-
date. This means that we have positive cases (P)
with assigned intents and unlabeled cases (U) in
data. Moreover, to maintain a high standard of
customer satisfaction, intent classification is typi-
cally a human-in-the-loop process (Fu et al., 2020;
Molino et al., 2018; Fotso et al., 2018; Gupta et al.,
2010; Powell et al., 2020). Specifically, the CSRs
are asked to confirm the intent predictions, a pro-
cess we refer to as “curation” in this manuscript.
The negative cases (N) identified by CSRs are in-
deed hard cases, since their prediction scores are
above the preset confidence threshold yet they are
mis-classified by the existing model. It is an active
research area to create classifiers with only P and
U (Elkan and Noto, 2008; Xu et al., 2017). Some
research has explored models that also include N,
but they have been only concerned with binary clas-
sifiers (Fei and Liu, 2015; Hsieh et al., 2019; Li
et al., 2010).

In this manuscript, we adopt the semi-supervised
paradigm and the multi-task approach to deal with
the U and the multiclass N, respectively. More-
over, in contrast to the above-mentioned works
about intent classification for customer support, we
use the ALBERT pretrained language model (Lan
et al., 2019) plus domain- and task-adaptive pre-
training (Ramponi and Plank, 2020; Gururangan
et al., 2020) to process texts. In the following sec-
tions, we describe how these techniques improve
the model performance.

The paper outline is as follows. We start with
Section 2 by elaborating the business background
and how we pose it as a machine learning problem.

Then we describe the details of the training data
and models in Section 3, compare the models by
conducting experiments with real data in Section 4,
and discuss the results in Section 5. We conclude
in Section 6.

2 Background

The E-commerce website of interest receives many
support requests from customers in each second.
There is a team of CSRs to actively address the
requests via phone, online chat, and email chan-
nels. Identifying appropriate requests and grouping
them into categories is not a trivial task. While a
deep discussion of the taxonomy building process
is out of the scope of this manuscript, it is sufficient
to know that we have a taxonomy system that is
similar to those described in (Molino et al., 2018;
Fotso et al., 2018), where customized reply tem-
plates are pre-compiled for each customer contact
intent. This study elaborates our journey building
machine learning models to classify the intents.

3 Methodology

Since the inception of BERT (Devlin et al., 2019),
an abundance of research in the area of NLP has
demonstrated it to be an effective approach to trans-
fer knowledge from pretrained language models to
downstream tasks (Xia et al., 2020; Wang et al.,
2018, 2019a; Rajpurkar et al., 2016; Lai et al.,
2017). Following BERT’s architecture, there is a
stream of research that achieve comparable or bet-
ter performance, to name a few (Lan et al., 2019;
Liu et al., 2019; Wang et al., 2019b; Clark et al.,
2020; Yang et al., 2019; Sanh et al., 2019). Among
these BERT variants, ALBERT aims to strike a bal-
ance between model performance and model size
(Lan et al., 2019). Therefore, we use albert-base-
v2 as the backbone encoder and perform further
pretraining and finetuning. The implementation is
based on Transformers from Huggingface (Wolf
et al., 2019).

3.1 Training Data

3.1.1 Features
The input to the model is a collection of emailed
support requests in text format. The texts are min-
imally preprocessed, including removing invalid
characters, lowercasing letters and replacing some
obvious entities with consistent words, such as re-
placing urls and emails to url id and email id.
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3.1.2 Targets
In industrial machine learning applications, it is
typical to construct a feedback loop to collect train-
ing data. In most cases, it is straightforward to
obtain a simple “yes” or “no” from human label-
ers with respect to the predictions. That means
the human labelers only need to accept or dismiss
the recommendations. Those “yes” cases are con-
firmed positive ones with explicit labels. However,
in a common multiclass classification setting, the
“no” cases can have any other label, so the labels are
effectively unknown. In some scenarios, such as
object detection in computer vision, it is not hard
to ask human labelers to assign a label to those
negative cases. However, it is highly non-trivial
to ask for a valid label in many NLP applications,
owing to the size of the taxonomy and the neces-
sary domain-expertise, as is the case for the intent
classification in this manuscript. Therefore, in our
training data, we only have “yes” or “no” feedback
to each case in each intent class.

Since the scope of the intent taxonomy is not
trying to cover all customer support requests, there
are many requests falling out of the scope of the
taxonomy but still scored by the model. The neg-
ative cases are either out-of-scope requests or in-
scope requests falling in the wrong bucket. The
former one is more probable, since the requests
are false positives for existing classes with high
confidence scores above the preset thresholds. In
this manuscript, we tried two ways to deal with this
situation.

1. We can simply exclude the negative cases
from training data, since they do not come
with labels. In this scenario, it is a multiclass
classification model trained on positive cases,
i.e. confirmed intents. However, we lose valu-
able signals by excluding the negative cases.

2. Since the negative cases are indeed hard nega-
tives and contain valuable signals, we can use
the multi-task learning paradigm to elegantly
treat the negatives for each intent class as the
negative samples for a binary classification
task. In this scenario, we have a binary clas-
sification task for each class plus a multiclass
classification task for all classes. It is also not
necessary to examine the negative cases and
assign them to appropriate new or existing
classes, especially when the labeling efforts
outweigh the benefits it could bring to model

development. With this approach, we make
full use of the signals in the training data.

Apart from the multiclass positive (P) and nega-
tive (N) cases mentioned above, we also have the
un-curated cases that do not come with labels, i.e.
the U cases. We adopt an iterative semi-supervised
approach to deal with them. The approach is de-
scribed in Section 3.2.2.

3.2 Models

3.2.1 ALBERT
Following the pretraining-finetuning framework for
language models, we start with a finetuned AL-
BERT. We simply remove the masked language
model (MLM) head and the sentence order predic-
tion (SOP) head from ALBERT and add a sequence
classification head. Following the convention from
(Devlin et al., 2019), the final hidden vector corre-
sponding to the first input token [CLS] is used for
classification. We denote this vector as the classifi-
cation vector in the rest of the manuscript. We note
that this ALBERT model is trained as a multiclass
classification with only positive cases.

3.2.2 SS MT D/TAPT ALBERT
The pretrained language models are mostly trained
on well-known corpora, such as Wikipedia, Com-
mon Crawl, BookCorpus, Reddit, etc. However, in
many cases, we need to apply the language models
to very different domains, like BioMed, scientific
publication, or product reviews. For these types
of problems, researchers have found that, in ad-
dition to finetuning on specific downstream tasks,
it is beneficial to adapt the language models to
the domain- and task-specific corpus, i.e. domain-
adaptive pretraining (DAPT) and task-adaptive pre-
training (TAPT) (Gururangan et al., 2020). This is
achieved by further training the language modeling
tasks, such as MLM, with the corpus of the domain
and the task. We note that it can be difficult to
rigorously define domain in NLP. For the DAPT
training in this manuscript, we simply use customer
contacts in the past few months as the domain cor-
pus and follow the training recommendations from
(Gururangan et al., 2020).

To make full use of the feedback from CSRs, we
include the negatively confirmed cases and treat
each class as a separate binary classification task
in addition to the multiclass classification task. We
accomplish the modeling with the multi-task (MT)
learning paradigm (Liu et al., 2019). In this case,
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we have n + 1 tasks, i.e. n binary classification
tasks and 1 multiclass classification task. As illus-
trated on the left of Figure 2, we train the model in
an end-to-end fashion. This means the n+ 1 tasks
are finetuned jointly sharing the same encoder. We
note that every positive sample belongs to two tasks
(the multiclass classification task and one binary
task) and each negative sample only belongs to the
corresponding binary classification task. In infer-
encing time, as illustrated on the right of Figure 2,
the model first processes the case text through the
encoder to get the classification vector. Then the
multiclass classification task consumes the vector
and predicts the class. In the end, the same vector
is routed to the binary task corresponding to that
class, predicting the probability of the intent class
accepted by the CSRs.

To make it more concrete, we can see the train-
ing loss implementation in Equation (1). yb is the
binary label, i.e. 1 means it is a positive sample and
its intent class is confirmed by CSRs with “yes”.
lm is the multiclass task loss. ym is the one-hot
encoded n-dimensional multiclass label vector. lb

is the loss function vector for n binary tasks. N is
the number of samples. Typical cross-entropy loss
is used for all tasks here.

L =
1

N

N∑
i=1

(ybi · lmi + ym
i · lbi ) (1)

For the inferencing process, we refer to Equa-
tions (2)-(5). x is the tokenized sequence vector.
u is the classification vector, i.e. the embedding
vector for the CLS token. fm is the multiclass
classifier. f b

k is the binary classifier for intent class
k.

u = Encoder(x) (2)

ŷm = fm(u) (3)

k = argmax
i

ŷm(i), i ∈ [0...n− 1] (4)

ŷb = f b
k(u) (5)

Moreover, we add the semi-supervised (SS) strat-
egy to take advantage of the un-curated data. While
a large volume of model predictions are reviewed
by the CSRs each second, we believe there are still
a number of qualified cases that we miss. There-
fore, we can train the model, make prediction on
the un-curated cases, choose the high-confidence
ones, and re-train the model with the labeled data

shared encoder

multiclass
classifier
for all intents

binary
classifier
for intent k

x

ŷm ŷb

ym lossm

multiclass
classifier
for all intents

binary
classifier
for intent k

x

ŷb

shared encoder

lossb yb

loss

ŷm

Figure 2: Training (left) and inferencing (right) for the
multi-task learning strategy, where k ∈ [0...n− 1], and
n is the number of intent classes. In training time, the
green path is only executed when x is a positive sample.

plus the high-confidence cases. We follow this in
an iterative manner until the improvement dimin-
ishes such that it cannot justify the training cost.
We note that we only augment the data of the multi-
class classification task and the data for the binary
classification tasks remain unchanged throughout
the iterative process. The same strategy is recently
used by (Schick and Schütze, 2020) to create small
language models that have similar performance to
BERT and (Xie et al., 2020) to achieve state-of-the-
art performance on Imagenet in computer vision.

Adding up the techniques described above, we
denote this model as SS MT D/TAPT ALBERT.

4 Experiments and Results

4.1 Data and Experimental Setup

For confidentiality reasons, we can only share di-
rectional numbers about the training data. In this
study, we consider 9 customer intent classes. The
curated data is unbalanced among classes, rang-
ing from a few thousand to tens of thousands of
records per class. The class with the most samples
is roughly 40 times as much as the class with the
least samples. For each class, the ratio of positive-
to-negative cases in the curated data is about 4. The
un-curated data is roughly 20 times of the curated
data. We use both the curated and un-curated data
for DAPT and only curated data for TAPT. In the
semi-supervision process, for each class, we select
high-confidence samples from the un-curated data
in each iteration to be roughly two to three times
of the volume of the labeled samples in the curated
data. Table 1 shows a few sample training data
with dummy features and intents. The last column
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Table 1: Sample training data and how different training strategies incorporate them.

Curation Composition Features Targets Training data for
Messages Intents CSR responses Multiclass task Binary tasks DAPT TAPT SS

Curated
Positives Could you help me? General inquiry Yes Yes Yes (+) Yes Yes Yes

How to setup account? Account issue Yes Yes Yes (+) Yes Yes Yes

Negatives How much is this? Account issue No No Yes (-) Yes Yes Yes
Can you fix this issue? General inquiry No No Yes (-) Yes Yes Yes

Un-curated Unlabeled What’s this? General inquiry N/A No No Yes No Yes
Please help. N/A N/A No No Yes No Yes

shows how different strategies incorporate them in
training.

After being processed with the ALBERT tok-
enizer, the total data amounts to about 800 million
tokens with an average of about 80 per sample.
We performed all experiments on Sagemaker on
AWS. We used 2 ml.p3.16xlarge instances with
distributed data parallelism for DAPT and TAPT,
1 ml.p3.8xlarge instance for finetuning language
models, and 1 ml.p3.8xlarge instance for batch in-
ferencing testing data.

We hold out a portion of the data as develop-
ment data to tune hyperparameters. We follow the
suggestions from (Gururangan et al., 2020; Liu
et al., 2019) for DAPT and TAPT and (Devlin et al.,
2019) for finetuning. For the end-to-end multi-task
learning process, we kept a unit weight for each
task and did not explore different weight combina-
tions. More research about tuning task weights in
multi-task learning can be found in (Cipolla et al.,
2018).

4.2 Evaluation
4.2.1 Pretrained models
In this section, we evaluate the performance of the
pretrained language models, the out-of-the-box AL-
BERT and the D/TAPT ALBERT. We note that the
pretrained language models are evaluated before
any finetuning happens.

To visually demonstrate how the adaptive pre-
training improves the clustering performance of the
classification vector, we sample a couple thousand
cases per class and apply t-SNE (Van Der Maaten
and Hinton, 2008) to the reduced classification vec-
tor for each case. We reduce the dimension of the
classification vectors from 768 to 50 with PCA
to keep the computational cost of t-SNE in check.
In Figure 3, we can see how clustering improves
from the vanilla ALBERT on the left to D/TAPT
ALBERT on the right.

To more quantitatively assess the performance
of the off-the-shelf pretrained ALBERT and the
D/TAPT ALBERT, we sample a couple thousand

Figure 3: t-SNE plots using the dimension-reduced
classification vectors from the off-the-shelf pretrained
ALBERT (left) and the D/TAPT ALBERT (right).

Table 2: Average kNN prediction accuracy using the
classification vectors from the pretrained models

ALBERT D/TAPT ALBERT
0% +33%

cases per class and use k-nearest-neighbor classi-
fiers (kNN) to predict each sample’s class based
on its k neighbors. We use the Euclidean distance
between the classification vector for each case as
the similarity metric for kNN. We compute the
average accuracy by varying k from 3 to 99 in
interval of 2 and report it in Table 2. As a re-
sult, D/TAPT lifts the accuracy by more than 30
points compared to the vanilla ALBERT. Similar
performance lift is also observed in (Reimers and
Gurevych, 2019). This illustrates that D/TAPT can
improve the clustering performance of the classifi-
cation vector when the clustering rules are closely
related to the domain corpus. The absolute accu-
racy values are not reported here for confidentiality
reasons.

4.2.2 Finetuned models
In practice, for each class, we expect to route more
positive cases and less negative cases to our CSRs
with machine learning models. That means we ex-
pect our models to better differentiate positives
from negatives for each class. Area Under the
Curve - Receiver Operating Characteristics (AUC
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Table 3: The average and sample-weighted average
AUC ROC for different experiment settings

Model avg AUC ROC wavg AUC ROC
ALBERT +0% +0%
+ MT +17.8% +14.3%
+ MT DAPT +18.4% + 15.8%
+ MT D/TAPT +19.0% +16.1%
+ SS MT D/TAPT +19.9% +17.0%

ROC) is a natural metric for such binary classifi-
cation problem. We note that the commonly-used
accuracy metric is not appropriate in this context
since the negatives do not have ground truth labels
in our data. The evaluation data is from recent few
weeks. For confidentiality reasons, we hide the axis
for AUC ROC and make the values relative to the
baseline finetuned ALBERT model for each class.

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+10.5%

+12.8%

+37.2%

+19.8%

+13.4%

+7.5%

+16.4%

+39.1%

+22.2%

class1

class2

class3

class4

class5

class6

class7

class8

class9

AUC ROC

ALBERT SS MT D/TAPT ALBERT

Figure 4: The AUC ROC of each class for finetuned
ALBERT and SS MT D/TAPT ALBERT

In Figure 4, for each class, we can observe con-
sistent improvement of SS MT D/TAPT ALBERT
over finetuned ALBERT in terms of AUC ROC.
Overall, the SS MT D/TAPT ALBERT model
brings 19.9 points increase in average AUC ROC
and 17 points increase in sample-weighted average
AUC ROC, compared to the finetuned ALBERT
model.

Furthermore, it is interesting to see how each
strategy in the SS MT D/TAPT ALBERT model
contributes to the performance improvement. In
Table 3, we show the average and sample-weighted
average AUC ROC improvement by incrementally
adding one strategy at a time. We can see that the
MT strategy boosts the average AUC ROC by 17.8
points and the sample-weighted average AUC ROC
by 14.3 points, compared to the finetuned ALBERT.
This demonstrates the effectiveness of including
negative signals with MT strategy. On top of MT,

we apply DAPT, D/TAPT and SS incrementally.
Each strategy pushes up the average and sample-
weighted average AUC ROC by roughly 1 point.

5 Discussion

Apart from processing the dismissed recommenda-
tions with this multi-task setting, there is another
heuristic approach that is commonly adopted un-
der this circumstance. We can group all the dis-
missed recommendations into an extra bucket Oth-
ers (Fotso et al., 2018). The advantage of this
approach is that we can pose the problem as a
straightforward multiclass classification. The disad-
vantage is that the dismissed recommendations can
either be mis-classified and belong to other existing
classes, or belong to unknown classes that might
be included in the future taxonomy. In the former
scenario, the dismissed recommendations create
noise for their true class and the Others class; In
the latter scenario, the dismissed recommendations
can seemingly improve performance for current
taxonomy, while they can pollute the future train-
ing when the unknown classes are launched in the
updated taxonomy. In both scenarios, grouping
the dismissed recommendations into Others can
negatively impact the training.

In terms of computational cost, both adaptive
pretraining and semi-supervision consume a con-
siderable amount of power, since the former is typ-
ically trained on the MLM task through a large
corpus and the latter is a iterative finetuning and
inferencing process where the data for inferencing
are often in large volume. In the meantime, the MT
strategy is a cost-effective way to improve model
performance by considering negative samples. By
examining Table 3, compared to the baseline fine-
tuned ALBERT, we can see the MT strategy in-
creases the average AUC ROC by 17.8 points while
D/TAPT and SS add 2.1 points on top of that. The
additional cost for the MT strategy, compared to
the typical multiclass classification strategy, is sim-
ply a binary classifier for each class. It is negligible
in both training and inferencing.

For the sake of easy implementation of the end-
to-end multi-task training, we only feed the training
data related to one task in each batch. In this way,
we can keep the loss function for each task separate.
It is possible that including data for various tasks
in each batch can bring benefits to training. This
assumption can be explored in future studies.

This study is only concerned with corpus in En-
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glish. Similar modeling strategies can be followed
for other high-resource languages which we have
ample training data. However, as in the customer
service departments of most global organizations, it
is common to receive customer contacts in various
low-resource languages, in which case the training
data is scarce. Recent advances in cross-lingual
language models, such as mBERT (Devlin et al.,
2019), XLM (Conneau and Lample, 2019), Uni-
coder (Huang et al., 2019) and FILTER (Fang et al.,
2020), can shed light on this situation and we plan
to investigate it in the future.

In the area of customer support, both (Molino
et al., 2018) and (Fotso et al., 2018) propose neu-
ral networks that combine unstructured text fea-
tures from customers’ messages and structured fea-
tures describing customers’ interaction with the
platforms. They empirically demonstrated bene-
fits of including the latter feature group. The next
step for our study is to evaluate the influence of
the customer-website interaction features, when
combining with advanced language models.

For the model candidates with multi-task strat-
egy in this manuscript, we train all tasks jointly
with an end-to-end multi-task deep learning ap-
proach, as described in the left plot of Figure 2.
We want to point out the isolating effect of the end-
to-end training approach. In one experiment, we
trained the tasks independently, i.e. we first trained
the multiclass classification task with the off-the-
shelf ALBERT, and then, for the binary tasks, we
trained n logistic regression binary classifiers with
the classification vector from the multiclass classi-
fication task. We still achieved 12.2 and 8.2 points
above the baseline in terms of average AUC ROC
and sample-weighted average AUC ROC. On one
hand, this shows that even training simpler mod-
els independently can still bring performance lifts,
thus emphasizing the powerful signal brought by
the negative cases; On the other hand, if compared
to the ALBERT + MT model in Table 3, it also
shows the benefits of end-to-end training.

As in most machine learning applications, the
actual model performance is determined by the
choice of the operational point for each intent class
and the operational point is determined from the
precision-recall (PR) curve. For the sake of brevity,
we ignore the PR plots because, for each class, the
PR curve of the baseline ALBERT model is well
under the envelop of the PR curve of the SS MT
D/TAPT ALBERT model. This is expected due

to the large boost presented in Figure 4. We note
that the AUC ROC can be a decent indication of
AUC PR when the data is not so skewed (Davis and
Goadrich, 2006). Therefore, the SS MT D/TAPT
ALBERT indeed outperforms the baseline for every
choice of operational point.

6 Conclusion

In this manuscript, we demonstrated and discussed
the model performance improvement brought by
multi-task learning, adaptive pretraining for AL-
BERT, and semi-supervised learning in the ap-
plication of customer support on an e-commerce
website. We observe ∼20 points performance in-
crease in average AUC ROC when comparing the
final model to the baseline multiclass classification
model. This paradigm can be particularly helpful
when there is a feedback system collecting confir-
mation from labelers. Future studies can extend
this paradigm to more complex situations, such
as when the intent taxonomy is deeply hierarchi-
cal or considering more feedback information than
simple “yes” or “no”.
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