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Abstract

Theories and models of spoken word recogni-
tion aim to explain the process of accessing
lexical knowledge given an acoustic realiza-
tion of a word form. There is consensus that
phonological and semantic information is cru-
cial for this process. However, there is ac-
cumulating evidence that orthographic infor-
mation could also have an impact on audito-
ry word recognition. This paper presents two
models of spoken word recognition that instan-
tiate different hypotheses regarding the influ-
ence of orthography on this process. We show
that these models reproduce human-like behav-
ior in different ways and provide testable hy-
potheses for future research on the source of
orthographic effects in spoken word recogni-
tion.

1 Introduction

The abstract theory of spoken word recognition
(SWR) assumes that the process of speech recog-
nition comprises two phases: a prelexical and a
lexical level (Scharenborg and Boves, 2010). The
prelexical level contains prelexical representations,
like phonological units, which are the result of hav-
ing processed the raw acoustic signal. These units
are assumed to be activated before accessing mean-
ing representations of words in the lexical level.
By instantiating the process of SWR in a compu-
tational model the underlying theory can then be
validated or further refined based on insights into
the model’s architecture and its behavior.

Influential models of SWR are for example the
Cohort model (Marslen-Wilson and Welsh, 1978;
Marslen-Wilson and Tyler, 1980; Marslen-Wilson,
1987), the TRACE model (McClelland and Elman,
1986) or the Shortlist model (Norris, 1994). These
models typically have a connectionist architec-
ture with localist or feature-based representations
as their inputs and outputs (Weber and Scharen-

borg, 2012), usually mapping phonological onto
semantic representations. There is evidence, how-
ever, that orthographic information could be co-
activated during phonological processing. For ex-
ample, words with frequent and consistent sound-
spelling relations have been proven to be beneficial
for auditory word recognition (orthographic con-
sistency effect, initially discovered by Ziegler and
Ferrand, 1998). Consistent words, i.e., words with
phonological rhymes that can be spelled in only one
way (e.g. /2k/ – uck, as in duck) produce shorter
reaction times in a lexical decision task, thus are
easier to process, compared to inconsistent words
whose rhymes can be spelled in multiple ways (e.g.
/aIp/ can be spelled ipe like in pipe or ype like in
type). This effect is replicated in a variety of stud-
ies, using different experimental paradigms and
languages (see Petrova et al., 2011, Table 1, for an
overview, but also Beyermann and Penke, 2014;
Qu and Damian, 2016; Chen et al., 2016, for re-
cent studies). Furthermore, Ziegler et al. (2003)
demonstrate that not only the phonological but al-
so the orthographic neighborhood size of a word
has an impact on SWR. They report two opposing
effects, the inhibitory phonological effect, and the
facilitatory orthographic effect. Depending on a
large phonological or orthographic neighborhood
of a word, the SWR process is either impeded or
facilitated.

There is still a debate on how orthography exact-
ly influences the process of SWR. However, there
are two prominent hypotheses about the source of
orthographic effects in SWR (Pattamadilok et al.,
2014). According to the online hypothesis, or-
thographic representations are co-activated during
phonological processing, whereas the offline hy-
pothesis claims that phonological representations
change through the acquisition of reading and writ-
ing such that they also incorporate orthographic
information.
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In what follows, we present two models of SWR
using a long short-term memory (LSTM) archi-
tecture (Hochreiter and Schmidhuber, 1997) and
distributed representations, while focusing on Ger-
man as a language. Our major outcomes are: (1)
We design two models of SWR that instantiate the
offline and the online hypothesis on the source of
orthographic effects, respectively. (2) We replicate
the inhibitory phonological and facilitatory ortho-
graphic effect, showing that these models are able
to reproduce human-like behavior. (3) We provide
testable hypotheses for future research based on
the models’ behavior, which allows us to further
validate the online or offline hypothesis.

2 Methodology

2.1 Model architectures

We propose a recurrent model of SWR that consists
of an LSTM that takes a sequence of phonemes as
input and produces a meaning representation as
output. The procedure of processing, e.g., the Ger-
man word Maus (mouse) is illustrated in Figure 1.
First, the model takes the respective phonemic se-
quence of [/m/, /aU/, /s/] as input. Then, it should
build a vector representation that corresponds to a
phoneme sequence, thus the phonological form of
the entire word, to then produce a word meaning
representation as output. This meaning represen-
tation should be as close as possible to the actual
ground truth, which is the word embedding of Maus
(mouse).

Phoneme embeddings learn the phonemic dis-
tribution well and implicitly capture articulatory
distinctive features of phonemes (Silfverberg et al.,
2018; Kolachina and Magyar, 2019). Therefore,
phoneme vector representations are trained using
word2vec (Mikolov et al., 2013) on the phonetic
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Figure 1: Sketch of a recurrent neural model of SWR.

transcription of the NEGRA corpus (Skut et al.,
1997). The transcription is generated with the
grapheme-to-phoneme converter tool provided by
the Bavarian Archive for Speech Signals (BAS)
(Reichel, 2012, 2014). The cbow model and nega-
tive sampling is used with window size 1 to obtain
30-dimensional phoneme embeddings.

Word meanings are approximated by word em-
beddings. We use pre-trained German fastText em-
beddings (Grave et al., 2018) as the output mean-
ing representations of our models (see also Baayen
et al., 2019; Chuang et al., 2020; Hendrix and Sun,
2020, for the similar use of word embeddings as
semantic representations in models of word recog-
nition).

The offline model The first architecture imple-
ments the theoretical assumption that a prelexical
phonemic representation is mapped onto a lexical
meaning representation, without incorporating ex-
plicit orthographic representations at the prelexical
level. The offline model, which instantiates the
offline hypothesis, processes one phoneme per time
step. After the last phoneme of a phonological
sequence is processed, a linear transformation is
performed on the output of the LSTM layer which
consists of 400 units. The resulting fully connected
layer has 400 neurons and is then connected to the
output layer. A tangent activation function is used
on the output layer (300 units).

The online model The second proposed model
architecture includes explicit orthographic informa-
tion at the prelexical level, instantiating the online
hypothesis. The online model processes two kinds
of inputs – a sequence of 30-dimensional phoneme
representations and a localist orthographic repre-
sentation of a word that is based on character bi-
grams (818 units). The first input layer (30 units)
is connected to an LSTM cell (400 units) which is
fully connected to an intermediate layer (400 units).
This intermediate layer is connected to an inter-
mediate phonological layer (400 units). A tangent
non-linearity is then used on it. On the other side
of the model, a linear transformation together with
a tangent non-linearity is applied on the second
input layer to obtain a 100-dimensional layer. The
intermediate phonological and orthographic repre-
sentation are concatenated to a 500-dimensional
vector which is then fully connected to a hidden
layer of size 300. This hidden layer serves as an
intermediate processing stage that processes both
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types of information, auditory and visual ones, to
then give the 300-dimensional meaning representa-
tion as output.

2.2 Training
A good model should be able to learn the meaning
of spoken words seen during training and gener-
alize to similar but unseen words. We expect the
model to learn that very similar sounding words
have a very similar meaning (e.g., duck and ducks
share nearly the same semantic concept of a water
bird with short legs). By training the model on
inflected forms and lemmas, e.g. Maus (mouse),
Mäuse (mice) and Häuser (houses), one can after-
ward test whether the model can get to the cor-
rect meaning representation of an unseen lemma
like Haus (house), even if it never encountered the
phonological sequence and word meaning repre-
sentation during the training phase.

For the training and test data, the most frequent
singular and plural nouns in nominative case are
extracted from the German Morphology Lexicon
(Lezius, 2000), leading to 3118 inflected forms
and their lemmas, as well as 583 single inflected
forms in the training set, and their corresponding
583 testing lemmas in the test set. In this data set,
a lemma is always one of the ten nearest neigh-
bors (measured by cosine similarity) of its inflected
form such that the meaning representations of an
inflected form and the respective lemma are similar
to each other in the embedding space.

The offline model is trained for 100 and the on-
line model for 150 epochs, using the Adam opti-
mizer with its default parameters in PyTorch, as
well as the CosineEmbeddingLoss to minimize the
cosine distance between the output of a model and
the correct word embedding.

2.3 Evaluation
To evaluate the models, the cosine similarity be-
tween a model’s output and every possible ground
truth vector representation is computed. The set
of competing word vectors, therefore, consists of
3701 word embeddings during training, and of
4284 (3701 training + 583 testing) vectors during
testing. Given these competing word embeddings,
Recall@k (R@k) is computed as the proportion of
times that the set of top k word embeddings which
are closest to the model’s output also includes the
ground truth vector representation. If the ground
truth is most similar to the output vector of a model,
then this contributes to R@1. Furthermore, a word

contributes to R@5 (R@10), if the corresponding
ground truth word embedding is within the top 5
(top 10) most similar words to the output vector.

2.4 Simulation data
The model is considered to be successful if it can
reproduce human behavioral data that is measured
by Ziegler et al. (2003) in an auditory lexical de-
cision task. The stimuli either have a large (+)
or a small (-) number of phonological (PN) and
orthographic neighbors (ON), which leads to the
four categories ON-PN-, ON+PN-, ON-PN+, and
ON+PN+. A word is considered to be an ortho-
graphic (phonological) neighbor of a target item if
it is possible to create it by substituting one letter
(one phoneme) in the target word (Coltheart’s N,
Coltheart et al., 1977). For example, tape is an or-
thographic neighbor of type, whereas /paIp/ (pipe)
is a phonological neighbor of /taIp/ (type). The
authors report two different effects on SWR.

The inhibitory phonological effect A large
phonological neighborhood size impedes access-
ing the correct meaning representation of a word;
whenever a stimulus has a large phonological neigh-
borhood size (PN+), the reaction time in a down-
stream task like lexical decision is larger compared
to a word that has a small phonological neighbor-
hood size (PN-). A model should thus also have
more difficulties to get to the correct word meaning
representation for PN+ vs. PN- words.

The facilitatory orthographic effect Words
with a large orthographic neighborhood size (ON+)
produce shorter reaction times than words with a
small orthographic neighborhood size (ON-). A
large orthographic neighborhood size, therefore,
facilitates SWR. Therefore, it should be easier for
a model to produce the correct meaning representa-
tion for an ON+ compared to an ON- word.

2.5 Linking hypothesis
In a lexical decision task, shorter reaction times are
associated with fast and effortless processing which
is a result of strong word activations (Scharenborg
and Boves, 2010). As word activation is assumed
to be dependent on the degree of match between
processed and stored information in the SWR pro-
cess (Weber and Scharenborg, 2012), we infer the
response time by comparing the model’s output
(processed information) with the ground truth rep-
resentation of a word (stored information). A large
difference would, therefore, indicate a relatively
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weak word activation, which suggests a larger re-
sponse time. On the other hand, a smaller error sig-
nals a stronger word activation, which corresponds
to a smaller reaction time.

A larger error score for PN+ vs. PN- words, thus,
corresponds to the inhibitory phonological effect ,
as a large phonological neighborhood size (PN+)
impedes accessing the correct meaning represen-
tation of a word. By contrast, a large orthograph-
ic neighborhood size (ON+) facilitates the word
recognition process. Hence, a lower error score for
ON+ vs. ON- words is assumed to be an analog for
the facilitatory orthographic effect.

3 Experiments

3.1 Word meaning retrieval task

After training, the models are evaluated on the train-
ing and the test set to compute the training and
testing recall (Table 1). Training recall is nearly
perfect for both models, showing that they are able
to memorize the data well. However, the online
model achieves a higher R@1 of 100% than the
offline model in the training data. Overall, both
models perform well in the word meaning retrieval
task, which concerns activating the correct mean-
ing representation based on a phonological word
form.

3.2 Generalization task

On the test set, the offline model reaches an R@10
of 62.95%, an R@5 of 56.78%, and an R@1 of
21.61%, whereas the online model again performs
comparatively better with a testing recall of 70.67%
for R@10, 59.35% for R@5, and 22.98% for R@1.
This is very good, given that the models have never
encountered the exact phonological sequence, nor
the word embedding of a testing item during train-
ing. The generalization performance of the models
is an indicator that they globally learn how word
forms and their semantics relate to each other. As
for future work, one can compare these results with
the performance of the models on unseen words
which are semantically unrelated to those in the
training set. Considering both training and testing
recall values, the online model performs compar-
atively better in learning the meaning of spoken
words. However, it still needs to be verified to
what extent each of the models is able to reproduce
human-like behavior.

Model Split R@10 R@5 R@1

Offline Train 100 100 99.32
Test 62.95 56.78 21.61

Online Train 100 100 100
Test 70.67 59.35 22.98

Table 1: Training and testing recall in percent.

Figure 2: Mean cosine distance between the outputs
and ground truths of the items of the four neighborhood
categories. Error bars show standard errors.

3.3 Simulation task

To simulate the study by Ziegler et al. (2003),
their experimental design is mimicked by divid-
ing the German training data into the four neigh-
borhood categories ON-PN-, ON+PN-, ON-PN+,
and ON+PN+. Analogous to their categorisation, a
word is considered to be part of the ON- category,
when it has zero or one orthographic neighbor, oth-
erwise it belongs to ON+. If a word has less than 3
phonological neighbors, it belongs to the PN- cat-
egory, otherwise, it is considered to be part of the
PN+ condition. For each of these four groups, we
sample 70 items with similar mean word length,
frequency, and density of the embedding space.
The frequency of a word is estimated using the
module wordfreq (Speer et al., 2018), whereas the
density of the semantic space is approximated by
subtracting the cosine distance between the ground
truth word embedding and the mean vector of its
ten nearest neighbors from 1.

Figure 2 shows a bar plot for each model that
presents the mean cosine distance between the mod-
el’s output of each word and the corresponding
ground truth per condition after the models have
been trained. For both models, the mean cosine dis-
tance is higher in the conditions with a large phono-
logical neighborhood size (ON-PN+ and ON+PN+,
pink bars in Figure 2) compared to the conditions
with a low phonological neighborhood size (ON-
PN- and ON+PN-, turquoise bars in Figure 2). This
corresponds to a relatively lower word activation
for PN+ items, indicating higher reaction times.
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Thus, both models can reproduce the inhibitory
phonological effect. A large orthographic neigh-
borhood size (ON+PN- and ON+PN+, striped bars
in Figure 2) has a beneficial impact on the mod-
els’ performance. The mean cosine distance within
the ON+PN- condition is lower compared to the
ON-PN- group and it is also lower for the ON+PN+
compared to the ON-PN+ condition. This corre-
sponds to the facilitatory orthographic effect and
can also be observed for both model architectures.
It is larger in the offline model which is surpris-
ing, because as opposed to the online model, it has
no access to orthographic information. As the of-
fline model instantiates the offline hypothesis which
claims the phonological representation themselves
contain implicit orthographic information, it is in-
vestigated whether also the phonological sequences
of the training items reveal information about or-
thography which could have a beneficial effect on
a model’s performance.

Analysis of orthographic information A friend
of a target word is a word that has the same rhyme
and the same rhyme spelling, whereas enemies are
words that have the same rhyme, but a different
rhyme spelling (Ziegler et al., 2004). Therefore,
words that have friends but zero enemies naturally
fall into the category of consistent words (see Sec-
tion 1), whereas words that have at least one enemy
can be considered as being inconsistent. Based on
the phonological sequence of a consistent word,
one can infer its orthographic form, as its rhyme
is always spelled in only one way. Therefore, con-
sistent words provide implicit orthographic infor-
mation in their phonological forms. An analysis
of the friends and enemies in the training data re-
veals that the majority of items in the two groups
with a large orthographic neighborhood, ON+PN-
and ON+PN+, are consistent words. Furthermore,
the mean error score for all consistent (253) and
inconsistent words (62) in the training data (see
Figure 3), shows that it is easier for the offline mod-
el to produce a good lexical meaning representation
whenever a word is consistent, compared to incon-
sistent words that do not reveal reliable orthograph-
ic information. By contrast, the online model is not
influenced by consistency. Therefore, the underly-
ing reason for the facilitatory orthographic effect
in the offline model is likely to be the phonology-
orthography-consistency, rather than the size of the
orthographic neighborhood.

To assess whether consistency is an explanatory

Figure 3: Mean cosine distance between the outputs
and ground truths of consistent and inconsistent words.
Error bars show standard errors.

Figure 4: Mean cosine distance between the outputs
and ground truths of Finnish items. Error bars show
standard errors.

factor for the facilitatory orthographic effect, we
eliminate the difference between consistent and in-
consistent words by training the models on Finnish
data. Finnish has a grapheme to phoneme mapping
that is nearly one to one which leads to little to no
inconsistent words (Joshi and Aaron, 2016).

Excluding the factor of consistency For the
Finnish training data, the 2378 most frequent words
are extracted from the vocabulary of the Finnish
fastText embeddings (Grave et al., 2018). For the
input of the models, Finnish phoneme embeddings
are trained on the transcription of Finnish news
texts (Newscrawl 2017, Goldhahn et al., 2012).
Finnish fastText embeddings are used as meaning
representations, as well as 540-dimensional local-
ist orthographic representations within the online
model. Four balanced samples of size 70 that corre-
spond to the four neighborhood groups are drawn
from the training data to then monitor the mean
error score of each model per condition (see Figure
4).

The results after training the offline model on
Finnish data show an inverse pattern compared
to the German results. The offline model would,
therefore, predict that no facilitatory orthographic
effect can be observed in a lexical decision task
with Finnish participants as every phonological
sequence is nearly equally informative w.r.t. or-
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thographic information. If this prediction proves
true, this would further validate the offline hypoth-
esis on the source of orthographic effects. For the
online model, the general order of error scores is
similar across languages. As it is not affected by
consistency, the online model can also reproduce
the facilitatory orthographic effect in Finnish. If
this effect can be observed in a lexical decision task
with Finnish participants, this would further vali-
date the online model as a plausible model SWR,
as well as the online hypothesis.

4 Conclusion

In this work, we propose two models of SWR that
instantiate either the online or the offline hypothe-
sis on the source of orthographic effects. We show
that both models perform well in word meaning
retrieval and in simulating the inhibitory phono-
logical and facilitatory orthographic effect. The
online model achieves the best training and testing
performance, and shows the same pattern of results
independent of the language of the data. It is not
influenced by consistency, which indicates that the
size of the orthographic neighborhood is at the ori-
gin of the facilitatory orthographic effect under the
online hypothesis. This contrasts with the offline
model that produces an orthographic consistency
effect. When words don’t differ in their consis-
tency, the facilitatory orthographic effect is not
present, which suggests that consistency is the un-
derlying mechanism for this effect under the offline
hypothesis. The models predict mutually exclusive
outcomes in a lexical decision task in a language
like Finnish that has a high phonology-orthography
consistency. By testing these predictions, further
evidence for either the offline or the online hypoth-
esis can be provided.
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