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Abstract

With the success of pre-trained language mod-
els in recent years, more and more researchers
focus on opening the “black box” of these
models. Following this interest, we carry out
a qualitative and quantitative analysis of con-
stituency grammar in attention heads of BERT
and RoBERTa. We employ the syntactic dis-
tance method to extract implicit constituency
grammar from the attention weights of each
head. Our results show that there exist heads
that can induce some grammar types much bet-
ter than baselines, suggesting that some heads
act as a proxy for constituency grammar. We
also analyze how attention heads’ constituency
grammar inducing (CGI) ability changes after
fine-tuning with two kinds of tasks, including
sentence meaning similarity (SMS) tasks and
natural language inference (NLI) tasks. Our
results suggest that SMS tasks decrease the av-
erage CGI ability of upper layers, while NLI
tasks increase it. Lastly, we investigate the
connections between CGI ability and natural
language understanding ability on QQP and
MNLI tasks.

1 Introduction

Recently, pre-trained language models have
achieved great success in many natural language
processing tasks (Devlin et al., 2019; Yang et al.,
2019), including sentiment analysis (Liu et al.,
2019), question answering (Lan et al., 2020) and
constituency parsing (Zhang et al., 2020), to name
a few. Though these models have become more
and more popular in many NLP tasks, they are still
“black boxes”. What they have learned, and why
and when they perform well remain unknown. To
open these “black boxes”, researchers have used
many methods to analyze the linguistic knowledge
that these models encode (Goldberg, 2019; Clark
et al., 2019; Hewitt and Manning, 2019; Kim et al.,
2020).

Pre-trained language models use self-attention
mechanism in each layer to compute the internal
representations of each token. In this work, we in-
vestigate the hypothesis that some attention heads
in pre-trained language models have learned con-
stituency grammar. We use an unsupervised con-
stituency parsing method to extract constituency
trees from each attention heads of BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) be-
fore and after fine-tuning. This method computes
the syntactic distance between every two adjacent
words and generates a constituency parsing tree
recursively. We analyze the extracted constituency
parsing trees to investigate whether specific atten-
tion heads induce constituency grammar better than
baselines, and which types of constituency gram-
mars they learn best.

In prior work, Kim et al. (2020) show that some
layers of pre-trained language models exhibit syn-
tactic structure akin to constituency grammar to
some degree. However, they do not analyze how
fine-tuning affects models. We first follow their
methods to extract constituency grammar from
BERT and RoBERTa. Then, we use the same
approach to analyze BERT and RoBERTa after
fine-tuning. To the best of our knowledge, we are
the first to investigate how fine-tuning affects the
constituency grammar inducing (CGI) ability of
attention heads. We fine-tune them on two types of
GLUE natural language understanding (NLU) tasks
(Williams et al., 2018; Wang et al., 2018). The first
type is the sentence meaning similarity (SMS) task.
We fine-tune our models on two datasets, QQP 1

and STS-B (Cer et al., 2017). The second type is
the natural language inference (NLI) task. We fine-
tune our models on two datasets, MNLI (Williams
et al., 2018) and QNLI (Rajpurkar et al., 2016;
Wang et al., 2018). Lastly, we investigate the rela-

1https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs
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tions between CGI ability of attention heads and
natural language understanding ability on QQP and
MNLI tasks.

The findings of our study are as follows:

1. Attention heads in the higher layers of BERT
and the middle layers of RoBERTa have better
constituency grammar inducing (CGI) abil-
ity. Some heads act as a proxy for some con-
stituency grammar types, but all heads do not
appear to fully learn constituency grammar.

2. The sentence meaning similarity task de-
creases the average CGI ability in the higher
layers. The natural language inference task
increases it in the higher layers.

3. For QQP and MNLI tasks, attention heads
with better CGI ability are more important for
BERT. However, this relation is different in
RoBERTa.

2 Related Work

Many works have proposed methods to induce con-
stituency grammar and extract constituency trees
from the attention heads of the transformer-based
model. Mareček and Rosa (2018) aggregate all
the attention distributions through the layers and
get an attention weight matrix. They extract bi-
nary constituency tree and undirected dependency
tree from this matrix. Kim et al. (2020) use the
attention distribution and internal vector represen-
tation to compute Syntactic Distance (Shen et al.,
2018) between every two adjacent words to draw
constituency trees from raw sentences without any
training.

Additionally, researchers have investigated how
fine-tuning affects syntactic knowledge that BERT
learns. Kovaleva et al. (2019) use the subset of
GLUE tasks (Wang et al., 2018) to fine-tune BERT-
base model. They find that fine-tuning does not
change the self-attention patterns. They also find
that after fine-tuning, the last two layers’ atten-
tion heads undergo the largest changes. Htut et al.
(2019) investigates whether fine-tuning affects the
dependency syntax in BERT attentions. They
find that fine-tuning does not have great effects
on attention heads’ dependency syntax inducing
ability. Zhao and Bethard (2020) investigate the
negation scope linguistic knowledge in BERT and
RoBERTa’s attention heads before and after fine-
tuning. They find that after fine-tuning, the average
attention heads are more sensitive to negation.

While there are some prior works analyzing at-
tention heads in BERT, we believe we are the first
to analyze the constituency grammar learned by
fine-tuned BERT and RoBERTa models.

3 Methods

3.1 Transformer and BERT

Transformer (Vaswani et al., 2017) is a neural net-
work model based on self-attention mechanism. It
contains multiple layers and each layer contains
multiple attention heads. Each attention head takes
a sequence of input vectors h = [h1, ..., hn] corre-
sponding to the n tokens. An attention head will
transform each vector hi into query qi, key ki, and
value vi vectors. Then it computes the output oi by
a weighted sum of the value vectors.

aij =
exp(qTi kj)∑n
t=1 exp(q

T
i kt)

(1)

oi =
n∑

j=1

aijvj (2)

Attention weights distribution of each token can be
viewed as the “importance” from other tokens in
the sentence to the current token.

BERT is a Transformer-based pre-trained lan-
guage model. It is pre-trained on BooksCorpus
(Zhu et al., 2015) and English Wikipedia with
masked language model (MLM) objective and next
sentence prediction (NSP) objective. RoBERTa is a
modified version of BERT. It removes the NSP pre-
training objective and training with much larger
mini-batches and learning rates. We use the un-
cased base size of BERT and base size of RoBERTa
which have 12 layers and each layer contains 12
attention heads. Our models are downloaded from
Hugging Face’s Transformers Library 2 (Wolf et al.,
2020).

3.2 Analysis Methods

We aim to analyze constituency grammar in
attention heads. We use a method to extract con-
stituency parsing trees from attention distributions.
This method operates on the attention weight
matrix W ∈ (0, 1)T×T for every head at a given
layer, where T is the number of tokens in the
sentence.

2https://huggingface.co/models
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Method: Syntactic Distance to Constituency
Tree To extract complete valid constituency pars-
ing trees from the attention weights for a given
layer and head, we follow the method of Kim et al.
(2020) and treat every row of the attention weight
matrix as attention distribution of each token in the
sentence. As in Kim et al. (2020), we compute the
syntactic distance vector d= [d1, d2, ..., dn−1] for a
given sentence w1, ..., wn, where di is the syntactic
distance between wi and wi+1. Each di is defined
as follows:

di = f(g(wi), g(wi+1)), (3)

where f(·, ·) and g(·) are a distance measure func-
tion and feature extractor function. We use Jensen-
Shannon function to measure the distance between
each attention distribution. Appendix A gives a
brief introduction of this function. g(wi) is equal
to the ith row of the attention matrix W .

To introduce the right-skewness bias for English
constituency trees, we follow Kim et al. (2020) by
adding a linear bias term to every di:

d̂i = di + λ ·Mean(d)×
(
1− i− 1

m− 1

)
, (4)

where m = n− 1 and λ is set to 1.5.
After computing the syntactic distance, we use

the algorithm introduced by Shen et al. (2018) to
get the target constituency tree. Appendix B de-
scribes this algorithm.

Constituency parsing is a word-level task, but
BERT uses byte-pair tokenization (Sennrich et al.,
2016). This means that some words are tokenized
into subword units. Therefore, we need to convert
token-to-token attention matrix to word-to-word
attention matrix. We merge the non-matching sub-
word units and compute the means of the atten-
tion distributions for the corresponding rows and
columns. We use two baselines in our experiments.
They are left-branching and right-branching trees.

3.3 Experiments Setup
In our experiments, we use an unsupervised con-
stituency parsing method to induce constituency
grammar on WSJ Penn Treebank (PTB, Marcus
et al. (1993)) without any training. We use the
standard split of the dataset-23 for testing. We use
sentence-level F1 (S-F1) score to evaluate our mod-
els. In addition, we also report label recall scores
for six main phrase categories: SBAR, NP, VP, PP,
ADJP, and ADVP.

Figure 1: Average constituency parsing S-F1 score of
each layer in BERT and RoBERTa.

4 Results and Analysis

4.1 Constituency Grammar in Attention
Heads before Fine-tuning

In this part, our goal is to understand how con-
stituency grammar is captured by different attention
heads in BERT and RoBERTa before fine-tuning.
First, we investigate the common patterns of atten-
tion heads’ constituency grammar inducing (CGI)
ability in BERT and RoBERTa. From Figure 1, we
can find that the CGI ability of the higher layers
of BERT is better than the lower layers. However,
the middle layers of RoBERTa are better than the
other layers. In appendix C, two heatmaps of ev-
ery heads’ S-F1 score in BERT and RoBERTa also
show such patterns.

Table 1 describes the S-F1 scores of the best
attention heads of BERT and RoBERTa. We also
choose the best recall for each phrase type. We ob-
serve that the S-F1 scores of BERT and RoBERTa
are only slightly better than the right-branching
baseline. This implies that the attention heads in
BERT and RoBERTa do not appear to fully learn
constituency grammar. However, they outperform
the baselines by a large margin for noun phrase
(NP), preposition phrase (PP), adjective phrase
(ADJP), and adverb phrase (ADVP). This implies
that the attention heads in BERT and RoBERTa
only learn a part of constituency grammar.

4.2 Constituency Grammar in Attention
Heads after Fine-tuning

In this part, we fine-tune BERT and RoBERTa with
four downstream tasks, QQP, STS-B, QNLI, and
MNLI. These four tasks can be divided into two
types. The first type is the sentence meaning simi-
larity task (SMS), including QQP and STS-B. This
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Models S-F1 SBAR NP VP PP ADJP ADVP
Baselines
Left-branching Trees 8.73 5.46% 11.33% 0.82% 5.02% 2.46% 8.04%
Right-branching Trees 39.46 68.76% 24.89% 71.76% 42.43% 27.65% 38.11%
Pre-trained LMs
BERT 39.47 67.32% 46.48% 68.82% 57.26% 46.39% 65.03%
BERT-QQP 39.97 67.32% 45.39% 68.79% 50.71% 45.01% 61.54%
BERT-STS-B 39.48 67.32% 44.16% 68.82% 56.68% 48.39% 57.69%
BERT-QNLI 39.74 67.32% 50.96% 68.81% 65.38% 46.08% 63.29%
BERT-MNLI 39.66 67.32% 44.89% 68.75% 62.81% 49.16% 64.69%
RoBERTa 39.60 67.43% 47.92% 69.35% 56.53% 49.00% 66.43%
RoBERTa-QQP 39.41 66.70% 43.02% 69.45% 51.06% 43.16% 60.84%
RoBERTa-STS-B 40.36 66.76% 46.82% 69.50% 54.91% 46.54% 64.34%
RoBERTa-QNLI 43.95 66.76% 52.51% 69.48% 58.30% 48.39% 69.23%
RoBERTa-MNLI 40.41 66.76% 47.97% 69.42% 57.50% 47.77% 68.88%

Table 1: Highest constituency parsing scores of all models. Blue score means that this score is lower after fine-
tuning. Red score means that this score is higher after fine-tuning.

Figure 2: Changes of average S-F1 score of each layer
in BERT after fine-tuning.

Figure 3: Changes of average S-F1 score of each layer
in RoBERTa after fine-tuning.

task requires models to determine whether two sen-
tences have the same meaning. The second type is
the natural language inference task (NLI), includ-
ing QNLI and MNLI. This task requires models to
determine whether the first sentence can infer the
second sentence. We want to analyze how these
two kinds of downstream tasks affect constituency
grammar inducing (CGI) ability of attention heads
in BERT and RoBERTa.

Figure 2 and Figure 3 show that these four
tasks do not have much influence on BERT and
RoBERTa for the lower layers. For the higher lay-
ers, fine-tuning with NLI tasks can increase the
average CGI ability of attention heads in BERT
and RoBERTa. However, fine-tuning with SMS
tasks harms it.

Table 1 shows that fine-tuning can increase the
highest constituency parsing scores of all models
except RoBERTa-QQP. However, fine-tuning with
SMS tasks decreases the ability of attention heads
to induce NP, PP, ADJP, and ADVP. For BERT, NLI
tasks can increase the ability of attention heads
to induce NP, PP. For RoBERTa, NLI tasks can
increase the ability of attention heads to induce NP,
VP, PP, and ADVP.

4.3 Constituency Grammar Inducing Ability
and Natural Language Understanding
Ability

In this part, we analyze the relations between con-
stituency grammar inducing (CGI) ability and natu-
ral language understanding (NLU) ability on QQP
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Figure 4: QQP dev and MNLI dev-matched accuracy
after masking the top-k/bottom-k attention heads in
each layer of BERT-QQP and BERT-MNLI.

Figure 5: QQP dev and MNLI dev-matched accuracy
after masking the top-k/bottom-k attention heads in
each layer of RoBERTa-QQP and RoBERTa-MNLI.

and MNLI tasks. We use the performance of BERT
and RoBERTa to evaluate their NLU ability. We
report the scores on the validation, rather than test
data, so the results are different from the original
BERT paper.

First, we sort all attention heads in each layer
based on their S-F1 scores before fine-tuning. Then
we use the method in Michel et al. (2019) to mask
the top-k/bottom-k (k = 1, ..., 11) attention heads
in each layer and compute the accuracy on two
downstream tasks, QQP and MNLI.

Figure 4 shows that downstream tasks accuracy
scores decrease quicker when we have masked the
top-k attention heads in BERT. Especially for the
QQP task, after masking the bottom-7 attention
heads in all layers, accuracy is still higher than
80%, which is more than 10% higher than masking
the top-7 attention heads.

Figure 5 shows that masking RoBERTa has dif-
ferent results from BERT. For the QQP task, when
k is smaller or equal to 6, masking the bottom-k at-

tention heads in all layers decreases faster. For the
MNLI task, when k is 1 or 2, masking the bottom-k
heads decreases also faster. When k is larger than 6
in the QQP task and 2 in the MNLI task, masking
the top-k heads decreases faster.

For BERT, the results show that attention heads
with better CGI ability are more important for a
model to gain NLU ability on these two tasks. For
RoBERTa, the connections between CGI ability
and NLU ability are not as strong as BERT. For the
MNLI task, we still can find that better CGI ability
is more important for NLU ability. However, better
heads are not so important for QQP task.

5 Discussion

The experiments detailed in the previous sections
point out that the attention heads in BERT and
RoBERTa does not fully learn much constituency
grammar knowledge. Even after fine-tuning with
downstream tasks, the best constituency parsing
score does not change much. Our results are simi-
lar to Htut et al. (2019). They also point out that the
attention heads do not fully learn much dependency
syntax. Fine-tuning does not affect these results.
This raises an interesting question: do attention
heads not contain syntax (constituency or depen-
dency) information? If this is true, where does
BERT encode this information? Also, is syntax
information not important for BERT to understand
language? Our simple experiment in §4.3 shows
that the attention heads with better constituency
grammar inducing ability are not important for
RoBERTa on QQP task. Glavaš and Vulic (2020)
also point out that leveraging explicit formalized
syntactic structures provides zero to negligible im-
pact on NLU tasks. The relations between syntax
and BERT’s NLU ability still need to be further
analyzed.

6 Conclusion

In this work, we investigate whether the attention
heads in BERT and RoBERTa have learned con-
stituency grammar before and after fine-tuning. We
use a method to extract constituency parsing trees
without any training, and observe that the upper
layers of BERT and the middle layers of RoBERTa
show better constituency grammar ability. Certain
attention heads better induce specific phrase types,
but none of the heads show strong constituency
grammar inducing (CGI) ability. Furthermore, we
observe that fine-tuning with SMS tasks decreases
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the average CGI ability of upper layers, but NLI
tasks can increase it. Lastly, we mask some heads
based on their parsing S-F1 scores. We show that
attention heads with better CGI ability are more
important for BERT on QQP and MNLI tasks. For
RoBERTa, better heads are not so important on
QQP task.

One of the directions for future research would
be to further study the relations between down-
stream tasks and the CGI ability in attention heads
and to explain why different tasks have different
effects.
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Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.
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A Jensen-Shannon Distance Measure
Function

Jensen-Shannon function measures the distance be-
tween two distributions. Suppose that we have two
distributions P and Q, the Jensen-Shannon Dis-
tance is defined as

JSD(P ||Q) =

(
DKL(P ||M) +DKL(Q||M)

2

) 1
2

,

(5)
where M = (P + Q)/2 and DKL(A||B) =∑

w A(w) log(A(w)/B(w)).

B Syntactic Distances to Constituency
Trees Algorithm

Algorithm 1 Syntactic Distances to Constituency
Trees Algorithm (Shen et al., 2018)

1: S = [w1, w2, ..., wn] : a sentence with n
words.

2: d = [d1, d2, ..., dn−1] : a sequence of distances
between every two adjacent words.

3: function TREE(S, d)
4: if d is empty then
5: node← Leaf(S[0])
6: else
7: i← argmaxi(d)
8: lchild← TREE(S≤i,d<i)
9: rchild← TREE(S>i,d>i)

10: node← Node(lchild, rchild)
11: end ifreturn node
12: end function

C BERT and RoBERTa Heatmaps

In this section, we present two heatmaps of S-F1
score of each heads in BERT and RoBERTa. Row
represents layer and column represents head.
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Figure 6: S-F1 score of each heads in BERT.

Figure 7: S-F1 score of each heads in RoBERTa.


