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Abstract

Neural dependency parsing has achieved re-
markable performance for many domains and
languages. The bottleneck of massive la-
beled data limits the effectiveness of these
approaches for low resource languages. In
this work, we focus on dependency parsing
for morphological rich languages (MRLs) in
a low-resource setting. Although morphologi-
cal information is essential for the dependency
parsing task, the morphological disambigua-
tion and lack of powerful analyzers pose chal-
lenges to get this information for MRLs. To ad-
dress these challenges, we propose simple aux-
iliary tasks for pretraining. We perform experi-
ments on 10 MRLs in low-resource settings to
measure the efficacy of our proposed pretrain-
ing method and observe an average absolute
gain of 2 points (UAS) and 3.6 points (LAS).1

1 Introduction

Dependency parsing has greatly benefited from
neural network-based approaches. While these ap-
proaches simplify the parsing architecture and elim-
inate the need for hand-crafted feature engineering
(Chen and Manning, 2014; Dyer et al., 2015; Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2017; Kulmizev et al., 2019), their performance
has been less exciting for several morphologically
rich languages (MRLs) and low-resource languages
(More et al., 2019; Seeker and Çetinoğlu, 2015). In
fact, the need for large labeled treebanks for such
systems has adversely affected the development of
parsing solutions for low-resource languages (Va-
nia et al., 2019). Zeman et al. (2018) observe that
data-driven parsing on 9 low resource treebanks
resulted not only in low scores but those outputs
“are hardly useful for downstream applications”.

1Code and data available at: https://github.com/
jivnesh/LCM

Several approaches have been suggested for im-
proving the parsing performance of low-resource
languages. This includes data augmentation strate-
gies, cross-lingual transfer (Vania et al., 2019) and
using unlabelled data with semi-supervised learn-
ing (Clark et al., 2018) and self-training (Rotman
and Reichart, 2019). Further, incorporating mor-
phological knowledge substantially improves the
parsing performance for MRLs, including low-
resource languages (Vania et al., 2018; Dehouck
and Denis, 2018). This aligns well with the linguis-
tic intuition of the role of morphological markers,
especially that of case markers, in deciding the syn-
tactic roles for the words involved (Wunderlich and
Lakämper, 2001; Sigursson, 2003; Kittilä et al.,
2011). However, obtaining the morphological tags
for input sentences during run time is a challenge
in itself for MRLs (More et al., 2019) and use of
predicted tags from taggers, if available, often ham-
pers the performance of these parsers. In this work,
we primarily focus on one such morphologically-
rich low-resource language, Sanskrit.

We propose a simple pretraining approach,
where we incorporate encoders from simple auxil-
iary tasks by means of a gating mechanism (Sato
et al., 2017). This approach outperforms multi-
task training and transfer learning methods under
the same low-resource data conditions (∼500 sen-
tences). The proposed approach when applied to
Dozat et al. (2017), a neural parser, not only obvi-
ates the need for providing morphological tags as
input at runtime, but also outperforms its original
configuration that uses gold morphological tags as
input. Further, our method performs close to DCST
(Rotman and Reichart, 2019), a self-training based
extension of Dozat et al. (2017), which uses gold
morphological tags as input for training.

To measure the efficacy of the proposed method,
we further perform a series of experiments on 10
MRLs in low-resource settings and show 2 points

https://github.com/jivnesh/LCM
https://github.com/jivnesh/LCM
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Figure 1: Illustration of proposed architecture for a Sanskrit sequence. English translation: “Demigods and demons
had tried with equal effort for these planets”. (a) Pretraining step: For an input word sequence, tagger predicts
labels as per three proposed auxiliary tasks, namely, Morphological Tag (green), Case Tag (red) and Label Tag
(black). (b) Parser with gating: E(P ) is encoder of a neural parser like Dozat and Manning (2017) and E(1)−(3)

are the encoders pre-trained with proposed auxiliary tasks. Gating mechanism combines representations of all the
encoders which, for each word pair, is passed to two MLPs to predict the probability of arc score (S) and label (L).

and 3.6 points average absolute gain (§ 3.1) in
terms of UAS and LAS, respectively. Our proposed
method also outperforms multilingual BERT (De-
vlin et al., 2019, mBERT) based multi-task learning
model (Kondratyuk and Straka, 2019, Udify) for
the languages which are not covered in mBERT
(§ 3.4).

2 Pretraining approach

Our proposed pretraining approach essentially at-
tempts to combine word representations from en-
coders trained on multiple sequence level super-
vised tasks, as auxiliary tasks, with that of the
default encoder of the neural dependency parser.
While our approach is generic and can be used with
any neural parser, we use BiAFFINE parser (Dozat
and Manning, 2017), hence forth referred to as Bi-
AFF, in our experiments.This is a graph-based neu-
ral parser that makes use of biaffine attention and
a biaffine classifier.2 Figure 1 illustrates the pro-
posed approach using an example sequence from
Sanskrit. Our pipeline-based approach consists of
two steps: (1) Pretraining step (2) Integration step.
Figure 1a describes the pretraining step with three
auxiliary tasks to pretrain the corresponding en-
coders E(1)−(3). Finally, in the integration step,
these pretrained encoders along with the encoder
for the BiAFF model E(P ) are then combined us-

2More details can be found in supplemental (§ A.1).

ing a gating mechanism (1b) as employed in Sato
et al. (2017). 3

All the auxiliary tasks are trained independently
as separate models, but using the same architec-
ture and hyperparameter settings which differ only
in terms of the output label they use. The mod-
els for the pretraining components are trained us-
ing BiLSTM encoders, similar to the encoders in
Dozat and Manning (2017) and then decoded using
two fully connected layers, followed by a softmax
layer (Huang et al., 2015). These sequential tasks
involve prediction of the morphological tag (MT),
dependency label (relation) that each word holds
with its head (LT) and further we also consider
task where the case information of each nominal
forms the output label (CT). Other grammatical
categories did not show significant improvements
over the case (§ 3.2). This aligns well with the lin-
guistic paradigm that the case information plays an
important role in deciding the syntactic role that a
nominal can be assigned in the sentence. For words
with no case-information, we predict their coarse
POS tags. Here, the morphological information is
automatically leveraged using the pre-trained en-
coders, and thus during runtime the morphological
tags need not be provided as inputs. It also helps in
reducing the gap between UAS and LAS (§ 3.1).

3Our proposed approach is inspired from Rotman and Re-
ichart (2019).
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3 Experiments

Data and Metric: We use 500, 1,000 and 1,000
sentences from the Sanskrit Treebank Corpus
(Kulkarni et al., 2010, STBC) as the training, dev
and test data respectively for all the models. For
the proposed auxiliary tasks, all the sequence tag-
gers are trained with additional previously unused
1,000 sentences from STBC along with the train-
ing sentences used for the dependency parsing task.
For the Label Tag (LT) prediction auxiliary task,
we do not use gold dependency information; rather
we use predicted tags from BiAFF parser. For the
remaining auxiliary tasks, we use gold standard
morphological information.

For all the models, input representation consists
of FastText (Grave et al., 2018)4 embedding of
300-dimension and convolutional neural network
(CNN) based 100-dimensional character embed-
ding (Zhang et al., 2015). For character level CNN
architecture, we use following setting: 100 number
of filters with kernel size equal to 3. We use stan-
dard Unlabelled and Labelled Attachment Scores
(UAS, LAS) to measure the parsing performance
and use t-test for statistical significance (Dror et al.,
2018).

For STBC treebank, the original data does not
have morphological tag entry, so the Sanskrit Her-
itage reader (Huet and Goyal, 2013; Goyal and
Huet, 2016) is used to obtain all the possible
morphological analysis and only those sentences
are chosen which do not have any word showing
homonymy or syncretism (Krishna et al., 2020).
For other MRLs, we restrict to the same training
setup as Sanskrit and use 500 annotated sentences
as labeled data for training. Additionally, we use
1000 sentences with morphological information as
unlabelled data for pretraining sequence taggers.5

We use all the sentences present in original devel-
opment and test split data for development and test
data. For languages where multiple treebanks are
available, we chose only one available treebank to
avoid domain shift. Note that STBC adopts a tag-
ging scheme based on the grammatical tradition of
Sanskrit, specifically based on Kāraka (Kulkarni
and Sharma, 2019; Kulkarni et al., 2010), while the
other MRLs including Sanskrit-Vedic use UD.

4https://fasttext.cc/docs/en/
crawl-vectors.html

5The predicted relations on unlabelled data by the model
trained with 500 samples are used for Label Tagging task.

Hyper-parameters: We utilize the BiAFFINE
parser (BiAFF) implemented by Ma et al. (2018).
We employ the following hyper-parameter setting
for pretraining sequence taggers and base parser
BiAFF: the batch size of 16, number of epochs as
100, and a dropout rate of 0.33 with a learning rate
equal to 0.002. The hidden representation gener-
ated from n-Stacked-LSTM layers of size 1,024
is passed through two fully connected layers of
size 128 and 64. Note that LCM and MTL models
use 2-Stacked LSTMs. We keep all the remaining
parameters the same as that of Ma et al. (2018).

For all TranSeq variants, one BiLSTM layer is
added on top of three augmented pretrained layers
from an off-the-shelf morphological tagger (Gupta
et al., 2020) to learn task-specific features. In
TranSeq-FEA, the dimension of the non-linearity
layer of the adaptor module is 256, and in TranSeq-
UF, after every 20 epochs, one layer is unfrozen
from top to down fashion. In TranSeq-DL, the
learning rate is decreased from top to down by a
factor of 1.2. We have used default parameters to
train Hierarchical Tagger 6 and baseline models.

Models: All our experiments are performed as
augmentations on two off the shelf neural parsers,
BiAFF (Dozat and Manning, 2017) and Deep Con-
textualized Self-training (DCST), which integrates
self-training with BiAFF (Rotman and Reichart,
2019).7 Hence their default configurations become
the baseline models (Base). We also use a system
that simultaneously trains the BiAFF (and DCST)
model for dependency parsing along with the se-
quence level case prediction task in a multi task
setting (MTL). For MTL model, we also experi-
ment with morphological tagging, as an auxiliary
task. However, we do not find significant improve-
ment in performance compared to case tagging.
Hence, we consider case tagging as an auxiliary
task to avoid sparsity issue due to the monolithic
tag scheme for morphological tagging. As a trans-
fer learning variant (TranSeq), we extract first
three layers from a hierarchical multi-task mor-
phological tagger (Gupta et al., 2020), trained on
50k examples from DCS (Hellwig, 2010). Here
each layer corresponds to different grammatical
categories, namely, number, gender and case. Note
that number of randomly initialised encoder layers
in BiAFF (and DCST) are now reduced from 3 to

6https://github.com/ashim95/
sanskrit-morphological-taggers

7We describe the baseline models in supplemental (§ A).

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/ashim95/sanskrit-morphological-taggers
https://github.com/ashim95/sanskrit-morphological-taggers
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1. We fine-tune these layers with default learning
rate and experiment with four different fine-tuning
schedules.8 Finally, our proposed configuration (in
§2) is referred to as the LCM model.9 We also train
a version each of the base models which expects
morphological tags as input and is trained with gold
morphological tags. During runtime, we report two
different settings, one which uses predicted tags as
input (Predicted MI) and other that uses gold tag
as input (Oracle MI). We obtain the morphological
tags from a Neural CRF tagger (Yang and Zhang,
2018) trained on our training data. Oracle MI will
act as an upper-bound on the reported results.

3.1 Results

Table 6 presents results for dependency parsing on
Sanskrit. We observe that BiAFF + LCM outper-
forms all corresponding BiAFF models including
Oracle MI. This is indeed a serendipitous outcome
as one would expect Oracle MI to be an upper
bound owing to its use of gold morphological tags
at runtime. The DCST variant of our pretraining
approach is also the best among its peers, although
the performance of Oracle MI model in this case is
indeed the upper bound.

BiAFF DCST

Model UAS LAS UAS LAS

Base 70.67 56.85 73.23 58.64
Predicted MI 69.02 53.11 71.15 51.75

MTL 70.85 57.93 73.04 59.12
TranSeq 71.46 60.58 74.58 62.70

LCM 75.91 64.87 75.75 64.28

Oracle MI 74.08 62.48 76.66 66.35

Table 1: Results on Sanskrit dependency parsing. Ora-
cle MI is an upper bound and is not comparable.

On the other hand, using predicted morphologi-
cal tags instead of gold tags at run time degrades
results drastically, especially for LAS, possibly due
to the cascading effect of incorrect morphological
information (Nguyen and Verspoor, 2018). This
shows that morphological information is essential
in filling the UAS-LAS gap and substantiates the
need for pretraining to incorporate such knowledge
even when it is not available at run time. Inter-
estingly, both MTL, and TranSeq, show improve-
ments as compared to the base models, though do

8Refer supplemental (§ B) for variations of TranSeq.
9LCM denotes Label, Case and Morph tagging schemes.

Training BiAFF DCST BiAFF+LCM
Size UAS/LAS UAS/LAS UAS/LAS
100 58.0/42.3 64.0/44.0 70.4/59.9
500 70.7/56.9 73.2/58.6 75.9/64.9
750 74.0/61.8 75.2/62.3 77.3/66.8

1000 74.4/62.9 76.0/64.1 77.9/67.3
1250 75.6/64.7 76.7/65.2 78.5/68.3

Table 2: Performance as a function of training set size.

not match with that of our pretraining approach.
In our experiments, the pretraining approach, even
with a little training data, clearly outperforms the
other approaches.

Ablation: We perform further analysis on San-
skrit to study the effect of training set size as well as
the impact of various tagging schemes as auxiliary
tasks. First, we evaluate the impact on performance
as a function of the training size (Table 2). Notice-
ably, for training size 100, we observe a 12 (UAS)
and 17 (LAS) points increase for BiAFF+LCM
over BiAFF, demonstrating the effectiveness of our
approach in a very low-resource setting. This im-
provement is consistent for larger training sizes,
though the gain reduces.

Figure 2: Comparison of proposed tagging schemes
(MT, CT, LT) with those in DCST (RD, NC, LM, RP).

In Figure 2, we compare our tagging schemes
with those used in self-training of DCST, namely,
Relative Distance from root (RD), Number of Chil-
dren for each word (NC), Language Modeling (LM)
objective where task is to predict next word in sen-
tence, and Relative POS (RP) of modifier from root
word. Here, we integrate each pretrained model
(corresponding to each tagging scheme) individu-
ally on top of the BiAFF baseline using the gating
mechanism and report the absolute gain over the
BiAFF in terms of UAS and LAS metric. Inter-
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eu el sv pl ru avg

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BiAFF 63.18 54.52 79.64 75.01 71.73 64.83 78.33 70.83 73.98 67.42 73.37 66.52
DCST 69.60 60.65 83.48 78.61 77.03 69.62 81.40 73.09 78.61 72.07 78.02 70.81

DCST+MTL 70.38 61.52 83.74 79.31 76.70 69.88 81.25 73.34 78.46 72.08 78.11 71.23
DCST+TranSeq 70.70 62.96 84.69 80.37 77.30 70.85 82.84 75.02 78.95 73.18 78.90 72.48
BiAFF+LCM 72.40 65.50 86.56 83.18 77.95 72.20 84.08 77.65 79.97 74.47 80.20 74.60
DCST+LCM 72.01 65.33 85.94 82.22 78.72 73.04 83.83 77.63 80.62 75.26 80.22 74.70

BiAFF+Oracle MI 72.16 66.08 83.05 79.81 76.50 71.17 83.27 77.83 77.83 73.13 78.56 73.60
DCST+Oracle MI 77.47 71.55 85.99 82.72 80.33 75.00 86.03 80.46 82.21 77.54 82.41 77.45

ar hu fi de cs avg

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BiAFF 76.24 68.07 70.00 62.81 60.93 50.68 67.77 59.94 65.75 57.43 70.30 62.62
DCST 79.05 71.18 74.62 67.00 66.04 54.76 73.22 65.18 74.15 65.52 75.61 67.70

DCST+Predicted MI 77.17 66.63 61.55 36.18 56.48 39.67 65.31 47.12 72.03 58.37 68.72 52.61

DCST+MTL 79.35 71.37 74.49 66.70 66.30 55.29 73.98 66.05 74.66 65.95 75.84 67.99
DCST+TranSeq-FT 79.66 72.17 75.22 68.25 67.04 56.57 74.66 67.27 75.15 67.02 76.40 69.11

BiAFF+LCM 79.68 72.55 76.15 69.53 69.05 59.41 75.85 68.80 74.94 67.58 76.91 70.13
DCST+LCM 79.60 72.38 75.71 68.93 69.15 60.06 76.12 69.20 74.81 67.54 76.99 70.22

BiAFF+Oracle MI 77.52 71.46 75.89 70.63 70.80 64.64 72.63 66.53 72.39 66.22 74.99 69.20
DCST+Oracle MI 80.43 74.79 78.43 73.19 75.30 68.90 77.70 71.66 78.54 72.38 79.09 73.40

Table 3: Evaluation on 10 MRLs. Results of BiAFF+LCM and DCST+LCM are statistically significant compared
to strong baseline DCST as per t-test (p < 0.01). Last two columns denote the average performance. Models using
Oracle MI are not comparable.

estingly, our proposed tagging schemes, with an
improvement of 3-4 points (UAS) and 5-6 points
(LAS), outperform those of DCST and help bridge
the gap between UAS-LAS.

3.2 Additional auxiliary tasks
With our proposed pretraining approach, we ex-
periment with using the prediction of different
grammatical categories as auxiliary tasks, namely,
Number Tagging (NT), Person Tagging (PT), and
Gender Tagging (GT). As the results in table ??
demonstrate, the improvements observed in these
cases are much smaller than those for our proposed
auxiliary tasks. Similar results are observed when
considering other auxiliary tasks (see table ??). We
find that combining these auxiliary tasks with our
proposed ones did not provide any notable improve-
ments. One possible reason for under performance
of these tagging schemes compared to the proposed
ones could be that either when the training set
is small, sequence taggers are not able to learn
discriminative features only from surface form of
words (F-score is less than 40 in all such cases in
table ??) or the learned features are not helpful for
the dependency parsing task.

3.3 Experiments on other MRLs

We choose 10 additional MRLs from Universal De-
pendencies (UD) dataset (McDonald et al., 2013;
Nivre et al., 2016), namely, Arabic (ar), Czech
(cs), German (de), Basque (eu), Greek (el), Finnish
(fi), Hungarian (hu), Polish (pl), Russian (ru)
and Swedish (sv).10 Then we train them in low-
resource setting (500 examples) to investigate the
applicability of our approach for these MRLs.

For all MRLs, the trend is similar to what is
observed for Sanskrit. While all four models im-
prove over both the baselines, BiAFF+LCM and
DCST+LCM consistently turn out to be the best
configurations. Note that these models are not di-
rectly comparable to Oracle MI models since Or-
acle MI models use gold morphological tags in-
stead of the predicted ones. The performance of
BiAFF+LCM and DCST+LCM is also comparable.
Across all 11 MRLs, BiAFF+LCM shows the aver-
age absolute gain of 2 points (UAS) and 3.6 points
(LAS) compared to the strong baseline DCST.

10We choose MRLs that have the explicit morphological in-
formation with following grammatical categories: case, num-
ber, gender, and tense.
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Auxiliary Task F-score Gain

Relative Distance (RD) 58.71 1.9/1.3
No of children (NC) 52.82 2.2/1.3
Relative POS (RP) 46.52 2.9/2.3
Lang Model (LM) 41.54 2.6/1.4

Coarse POS (CP) 13.02 1.6/0.8
Head Word (HW) 40.12 1.5/0.4

POS Head Word (PHW) 38.98 2.0/1.2
Number Tagging (NT) 13.33 1.9/0.9
Person Tagging (PT) 12.27 1.6/0.7
Gender Tagging (GT) 0.28 1.3/0.2

Morph Tagging (MT) 62.84 3.5/5.1
Case Tagging (CT) 73.51 4.0/5.6
Label Tagging (LT) 71.51 4.2/6.0

Table 4: Comparison of different auxiliary tasks. F-
score: Task performance, Gain: Absolute gain (when
integrated with BiAFF) in terms of UAS/LAS score
compared to BiAFF scores.

3.4 Comparison with mBERT Pretraining
We compare the proposed method with multilin-
gual BERT (Devlin et al., 2019, mBERT) based
multi-task learning model (Kondratyuk and Straka,
2019, Udify). This single model trained on 124
UD treebanks covers 75 different languages and
produces state of the art results for many of them.
Multilingual BERT leverages large scale pretrain-
ing on wikipedia for 104 languages.

Lang BiAFF BiAFF+LCM Udify
Basque 63.2/54.5 72.4/65.5 76.6/69.0
German 67.7/60.0 75.8/68.8 83.7/77.5

Hungarian 70.0/62.8 76.2/69.5 84.4/76.7
Greek 69.6/75.0 86.6/83.2 90.6/87.0
Polish 78.3.70.8 84.1/77.7 90.7/85.0

Sanskrit 70.7/56.8 75.9/64.9 69.4/53.2
Sanskrit-Vedic 56.0/42.3 61.6/48.0 47.4/28.3

Wolof 75.3/67.8 78.4/71.3 70.9/60.6
Gothic 61.7/53.3 69.6/61.4 63.4/52.2
Coptic 84.3/80.2 86.2/82.7 32.7/14.3

Table 5: The proposed method outperforms Udify for
the languages (down) not covered in mBERT and under
performs for the languages (top) which are covered in
mBERT.

In our experiments, we find that Udify outper-
forms the proposed method for languages covered
during mBERT’s pretraining. Notably, not only the
proposed method but also a simple BiAFF parser

with randomly initialized embedding outperforms
Udify (Table 5) for languages which not available
in mBERT. Out of 7,000 languages, only a handful
of languages can take advantage of mBERT pre-
training (Joshi et al., 2020) which substantiates the
need of our proposed pretraining scheme.

4 Conclusion

In this work, we focused on dependency parsing
for low-resource MRLs, where getting morpho-
logical information itself is a challenge. To ad-
dress low-resource nature and lack of morphologi-
cal information, we proposed a simple pretraining
method based on sequence labeling that does not
require complex architectures or massive labelled
or unlabelled data. We show that little supervised
pretraining goes a long way compared to transfer
learning, multi-task learning, and mBERT pretrain-
ing approaches (for the languages not covered in
mBERT). One primary benefit of our approach is
that it does not rely on morphological information
at run time; instead this information is leveraged
using the pretrained encoders. Our experiments
across 10 MRLs showed that proposed pretrain-
ing provides a significant boost with an average 2
points (UAS) and 3.6 points (LAS) absolute gain
compared to DCST.
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Supplemental Material

A Baselines

A.1 BiAFFINE Parser (BiAFF)

BiAFF (Dozat and Manning, 2017) is a graph-
based dependency parsing approach similar to
Kiperwasser and Goldberg (2016). It uses biaffine
attention instead of using a traditional MLP-based
attention mechanism. For input vector ~h, the affine
classifier is expressed as W~h+b, while the biaffine
classifier is expressed as W ′(W~h + b) + b′. The
choice of biaffine classifier facilitates the key ben-
efit of representing the prior probability of word
j to be head and the likelihood of word i getting
word j as the head. In this system, during training,
each modifier in the predicted tree has the highest-
scoring word as the head. This predicted tree need
not be valid. However, at test time, to generate a
valid tree MST algorithm (Edmonds, 1967) is used
on the arc scores.

A.2 Deep Contextualized Self-training
(DCST)

Rotman and Reichart (2019) proposed a self-
training method called Deep Contextualized Self-
training (DCST).11 In this system, the base parser
BiAFF (Dozat and Manning, 2017) is trained on
the labelled dataset. Then this trained base parser
is applied to the unlabelled data to generate auto-
matically labelled dependency trees. In the next
step, these automatically-generated trees are trans-
formed into one or more sequence tagging schemes.
Finally, the ensembled parser is trained on manu-
ally labelled data by integrating base parser with
learned representation models. The gating mecha-
nism proposed by Sato et al. (2017) is used to inte-
grate different tagging schemes into the ensembled
parser. This approach is in line with the represen-
tation models based on language modeling related
tasks (Peters et al., 2018; Devlin et al., 2019). In
summary, DCST demonstrates a novel approach
to transfer information learned on labelled data to
unlabelled data using sequence tagging schemes
such that it can be integrated into final ensembled
parser via word embedding layers.

B Experiments on TranSeq Variants

In TranSeq variations, instead of pretraining with
three auxiliary tasks, we use a hierarchical multi-
task morphological tagger (Gupta et al., 2020)
trained on 50k training data from DCS (Hell-
wig, 2010). In TranSeq setting, we extract the
first three layers from this tagger and augment
them in baseline models and experiment with five
model sub-variants. To avoid catastrophic forget-

BiAFF DCST

Model UAS LAS UAS LAS

Base 70.67 56.85 73.23 58.64
Base? 69.35 52.79 72.31 54.82

TranSeq-FE 66.54 55.46 71.65 60.10
TranSeq-FEA 69.50 58.48 73.48 61.52
TranSeq-UF 70.60 59.74 73.55 62.39
TranSeq-DL 71.40 60.58 74.52 62.73
TranSeq-FT 71.46 60.58 74.58 62.70

Oracle MI 74.08 62.48 76.66 66.35

Table 6: Ablation analysis for TranSeq variations. Ora-
cle MI is not comparable. It can be considered as upper
bound for TranSeq.

11https://github.com/rotmanguy/DCST
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ting (McCloskey and Cohen, 1989; French, 1999),
we gradually increase the capacity of adaptations
for each variant. TranSeq-FE: Freeze the pre-
trained layers and use them as Feature Extrac-
tors (FE). TranSeq-FEA: In the feature extrac-
tor setting, we additionally integrate adaptor mod-
ules (Houlsby et al., 2019; Stickland and Murray,
2019) in between two consecutive pre-trained lay-
ers. TranSeq-UF: Gradually Unfreeze (UF) these
three pre-trained layers in the top to down fash-
ion (Felbo et al., 2017; Howard and Ruder, 2018).
TranSeq-DL: In this setting, we use discrimina-
tive learning (DL) rate (Howard and Ruder, 2018)
for pre-trained layers, i.e., decreasing the learn-
ing rate as we move from top-to-bottom layers.
TranSeq-FT: We fine-tune (FT), pre-trained lay-
ers with default learning rate used by Dozat and
Manning (2017).

In the TranSeq setting, as we move down across
its sub-variants in Table 6, performance improves
gradually, and TranSeq-FT configuration shows the
best performance with 1-2 points improvement over
Base. The Base? has one additional LSTM layer
compared to Base such that the number of parame-
ters are same as that of TranSeq-FT variation. The
performance of Base? decreases compared to Base
but TranSeq-FT outperforms Base. This shows
that transfer learning definitely helps to boost the
performance.


