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Abstract

The automatic detection of hypernymy rela-
tionships represents a challenging problem
in NLP. The successful application of state-
of-the-art supervised approaches using dis-
tributed representations has generally been im-
peded by the limited availability of high qual-
ity training data. We have developed two
novel data augmentation techniques which
generate new training examples from existing
ones. First, we combine the linguistic prin-
ciples of hypernym transitivity and intersec-
tive modifier-noun composition to generate ad-
ditional pairs of vectors, such as small dog -
dog or small dog - animal, for which a hy-
pernymy relationship can be assumed. Sec-
ond, we use generative adversarial networks
(GANG) to generate pairs of vectors for which
the hypernymy relation can also be assumed.
We furthermore present two complementary
strategies for extending an existing dataset by
leveraging linguistic resources such as Word-
Net. Using an evaluation across 3 different
datasets for hypernymy detection and 2 differ-
ent vector spaces, we demonstrate that both
of the proposed automatic data augmentation
and dataset extension strategies substantially
improve classifier performance.

1 Introduction

The detection of hypernymy relationships between
terms represents a challenging commonsense infer-
ence problem and is a major component in recog-
nising paraphrase and textual entailment in larger
units of text. Consequently, it is important for
Question-Answering, Text Simplification and Au-
tomatic Summarization. For example,

There are lots of cars and vans at the port today.
might be adequately summarised by

There are lots of vehicles at the port today.

as car and van both lexically entail, i.e. they are
both hyponyms of the more general term vehicle.
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Furthermore, the recognition and discovery of
hyponym-hypernym relations is a foundational part
of constructing taxonomies, which has a range of
practical applications in a variety of domains such
as Healthcare (Barisevicius et al., 2018) or Fash-
ion.

While distributed representations of words are
commonly used to find semantically similar words,
they do not straightforwardly provide a way to dis-
tinguish more fine-grained semantic information,
such as hypernymy, co-hyponymy and meronymy
relationships. This deficiency has attracted sub-
stantial attention in the literature, and with regard
to the task of hypernymy detection, both unsuper-
vised approaches (Hearst, 1992; Weeds et al., 2004;
Kotlerman et al., 2010; Santus et al., 2014; Rimell,
2014; Nguyen et al., 2017; Chang et al., 2018) and
supervised approaches (Weeds et al., 2014; Roller
et al., 2014; Roller and Erk, 2016; Shwartz et al.,
2016; Vuli¢ and Mrksié, 2018; Rei et al., 2018;
Kamath et al., 2019) have been proposed.

Supervised methods have, however, been
severely hampered by a lack of adequate train-
ing data. Not only has a paucity of labelled data
been an obstacle in the adoption of deep neural net-
works and other more complex supervised methods,
but two compounding problem-specific issues have
been identified. First, there is a need to avoid lex-
ical overlap between the training and test sets in
order to avoid the lexical memorisation problem
(Weeds et al., 2014; Levy et al., 2015a), where a
supervised method simply learns the relationships
between lexemes rather than generalising to their
distributional features. Second, the performance of
classifiers given just the hypernym word (at training

'See e.g. https://www.voguebusiness.com/
technology/taxonomy%2Dis%2Dthe%2Dnew$
2Dfashion%2Dtech%2Dessential%2Dthe%
2Dyes or https://fashionbrain-project.
eu/fashion%2Dtaxonomy/.
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and testing) has been shown to be almost as good as
performance given both words (Weeds et al., 2014;
Shwartz et al., 2017). This suggests that classifiers
are learning the distributional features that make
something a more general term or a more specific
term. Our conjecture is that in order to learn the
more complex function, more complex machinery,
and hence more labelled data is required.

In computer vision or speech recognition, it is
common to use data augmentation to increase the
size of the training set (Shrivastava et al., 2017;
Park et al., 2019). The idea is that there are certain
transformations of the data under which the class
label remains invariant. For example, rotating an
image does not change whether that image contains
a face or not. By providing a supervised classifier
with rotated examples, it can better generalise.

In this work, we consider the use of linguistic
transformations to augment existing datasets for
hypernymy detection. The challenge is to identify
transformations that can be applied to the repre-
sentations of two words that are known to be in
a hypernym relationship, such that the entailment
relation still holds between the transformed repre-
sentations. We propose two ways to achieve this.

Our first augmentation technique is based on the
hypothesis that lexical entailment is transitive and
therefore invariant under certain compositions. For
example, if A entails B and B entails C' then A also
entails C'. Suitable candidates for A can be found
by composing common intersective adjectives with
the noun B. For example, if we know that car
entails vehicle, then we can augment the dataset
with fast car entails car and fast car entails vehicle.

Our second augmentation technique is based on
the hypothesis that lexical entailment is invariant
within a certain threshold of similarity. If A entails
B, A’ is very similar to A and B’ is very similar
to B then A’ will also entail B’. In order to obtain
vectors which are sufficiently similar to the words
in the training data, we apply generative adver-
sarial networks (GANS) to create realistic-looking
synthetic vectors, from which we choose the most
similar to the words in the training data.

We evaluate the proposed techniques on three
hypernymy detection datasets. The first two are
standard benchmark tasks in this area (Weeds et al.,
2014; Baroni et al., 2012), both of which are gen-
erated from WordNet (Fellbaum, 1998). However,
since many of the approaches to hypernmy classi-
fication involve vector space models which have

been specialised using the entirety of WordNet, we
need to guard against the danger that evaluations
are simply measuring how well WordNet has been
encoded, rather than how well the general hyper-
nymy relationship has been learned. In light of this,
we introduce a new dataset (that we call HP4K)
which does not rely on WordNet in its construction.

We evaluate our two data augmentation tech-
niques against two methods for increasing the size
of the training data which rely on finding or mining
more non-synthetic examples. First, we consider
the extraction of additional examples from Word-
Net. Second, we consider extracting examples au-
tomatically from a Wikipedia corpus using Hearst
Patterns (Hearst, 1992). This provides us with what
one would expect to be an upper bound on what we
might reasonably expect to achieve with a similar
amount of synthetic examples generated using our
data augmentation techniques.

Our contributions are thus threefold. First, we
have identified two novel data augmentation tech-
niques for the task of hypernymy detection which
have the potential to generate almost limitless quan-
tities of synthetic data. Second, we show, rather
surprisingly, that adding synthetic data is more ef-
fective than adding non-synthetic data in almost all
cases. Third, we release a new benchmark evalua-
tion dataset for the lexical entailment task that is
not dependent on WordNet.

2 Related Work

Data augmentation has recently become a very pop-
ular research topic in NLP and has successfully
been applied in machine translation systems (Sen-
nrich et al., 2016; Fadaee et al., 2017; Wang et al.,
2018; Liet al., 2019; Tong et al., 2019; Matos Veliz
et al., 2019; Xia et al., 2019; Gao et al., 2019; Li
and Specia, 2019; Liu et al., 2019), but also for
tasks such as relation extraction (Can et al., 2019;
Yan et al., 2019), text classification (Wei and Zou,
2019), or natural language inference (Kang et al.,
2018; Junghyun et al., 2020). Most similar to our
usage of GANs for data augmentation is the pro-
posal of Kang et al. (2018) who leverage a GAN-
based setup together with WordNet for data aug-
mentation for natural language inference.

While to the best of our knowledge this work
represents the first application of data augmenta-
tion for lexical entailment, a number of alternative
approaches have been proposed. Most proposals
rely on supervised methods for injecting an exter-
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nal source of knowledge into distributional rep-
resentations. Starting with retro-fitting (Faruqui
et al., 2015), vector-specialization methods mod-
ify existing representations to embed desired fea-
tures (Vuli¢ and Mrksié, 2018; Rei et al., 2018;
Kamath et al., 2019; Glavas and Vulié, 2019).

3 Data Augmentation Strategies for

Hypernymy Detection
Given a labelled dataset Dy of triples
(@ @) j (4) (4)
<thYP0’xhlyper’ y(l)>’ where xhzypo’thyPeT € X

and y € {0,1}, we define data augmentation
as adding additional hyponym-hypernym triples
<$;z§5;2;7 x;li;)er, y' U )> coming from an automatically
generated augmentation set Ay/, such that
:czg,l, ‘T;zS))er € X' and ) € {0,1}, to the
existing training set of D. We ensure that the
data augmentation does not introduce any lexical
overlap with the existing test set, i.e. X N X’ = ().
Data augmentation strategies in NLP can roughly
be divided into two categories: linguistically
grounded augmentation and artificial augmenta-
tion. In the former, which has been the dominant
paradigm in NLP, any additional instances that are
added to a training set have an actual surface form
representation, i.e. the data points correspond to
actual words or sentences (Kim et al., 2019; Ku-
mar et al., 2019; Gao et al., 2019; Andreas, 2020;
Croce et al., 2020). The latter adds instances that
are fully or partly artificial, meaning they do not
correspond to any words or sentences. In this work
we propose methods for both categories, data aug-
mentation via distributional composition adds data
points grounded in real language to a training set,
and data augmentation based on GANSs infers plau-
sible points in latent space, which however, do not
correspond to any real linguistic objects.
Furthermore, we distinguish between data aug-
mentation and dataset extension, where in the for-
mer case we only leverage knowledge from the
existing dataset and in the latter case we rely on
expanding the training set with additionally mined
hyponym-hypernym pairs. Below, we discuss two
ways of augmenting and two ways of extending a
training set. We make use of a cleaned October
2013 Wikipedia dump (Wilson, 2015) as reference
corpus to determine word and bigram frequencies.
Distributional Composition based Augmenta-
tion. We take a modified noun as being in a hy-
pernymy relation with the unmodified noun. For
example, we treat the pairs (fast car,car) and

(car, vehicle) as expressing the same semantic re-
lation when the modifier-noun compound is com-
posed with an intersective composition function.

We focus on adjective-noun (AN) and noun-
noun (NN) compounds, extracted from our ref-
erence corpus where each AN or NN phrase oc-
curred at least 50 times. We filtered pairs with
non-subsective adjectives using a wordlist from
Nayak et al. (2014)?.

We consider two strategies for automatically
constructing positive hyponym-hypernym pairs:
simple positive cases such as (small dog,dog)
or (fast car, car); and gapped positive cases that
mimic the transitivity of hypernym relations, where
we pair the hypernym of an existing hyponym-
hypernym pair with a compound hyponym. For
example if (car, vehicle) is in the training data, we
combine car with one of its modifiers to create the
pair (fast car, vehicle).

We construct negative pairs from the simple pos-
itive cases using two strategies: creating compo-
sitional co-hyponyms such as (fast car, red car),
where we keep the head noun fixed and pair it
with two different modifiers; and creating perturbed
simple positive examples, such as (small dog, cat)
where we select the incorrect hypernym (e.g. car)
from the n most similar nouns to the composed hy-
ponym (e.g. dog). We apply the same methodology
to the perturbed gapped positive examples, replac-
ing the correct hypernym with a noun from the
top n neighbours of the compositional hyponym’s
head noun. For example, given a positive pair such
as (dog, animal), this would result in negative ex-
amples such as (small dog, vehicle), where the hy-
ponym dog is paired with a modifier and the hyper-
nym animal is replaced with one of its neighbours,
in this case, vehicle.

In neural word embeddings, an additive com-
position function approximates the intersection
of the corresponding feature spaces (Tian et al.,
2017), hence by creating positive pairs such as
(small dog, dog), we encode the distributional in-
clusion hypothesis (Weeds et al., 2004; Geffet and
Dagan, 2005) in the augmentation set.

GAN based Augmentation. We create an aug-
mentation set using Generative Adversarial Net-
works (Goodfellow et al., 2014). GANs consist of
two model components — the generator and the
discriminator — which are typically implemented

’In preliminary experiments we did not find that filtering

non-subsective adjectives had much of an effect, but decided
to move forward with the filtered data nonetheless.
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as neural networks. The generator’s task is to cre-
ate data that mimics the distribution of the original
data, while the discriminator’s task is to distinguish
between data coming from the real distribution and
synthetic data coming from the generator. Both
components are trained jointly until the generator
succeeds in creating realistic data. Using GANs
for data augmentation has been shown to be a suc-
cessful strategy for a number of computer vision
tasks (Shrivastava et al., 2017; Frid-Adar et al.,
2018; Neff, 2018). Our goal is to create synthetic
hyponym-hypernym pairs that are similar to real
examples. Unlike most other scenarios involving
GANSs for NLP tasks, our generated vectors do not
need to correspond to actual words.

For our model - GANDALF? - we used a list of
~40K nouns for which we had vector representa-
tions as the “real” data input to GANDALF, and
sampled the synthetic vectors from a Gaussian dis-
tribution, optimising a binary cross-entropy error
criterion for the generator and the discriminator,
which are both simple feedforward networks with
a single hidden layer. We provide GANDALF’s
full model details in Appendix A. As an additional
quality check for the generated vectors, we tested
whether a logistic regression classifier could distin-
guish the synthetic and non-synthetic vectors. Typ-
ically, the accuracy of the classifier was between
0.55-0.65, meaning the classifier is barely able to
distinguish between “real” vectors and generated
ones.

Figure 1 illustrates the training loop of GAN-
DALF as well as the selection process for construct-
ing an augmented training set. Essentially, once
GANDALF has been trained, the generator is used
to create a large collection* of synthetic noun vec-
tors. To augment a dataset, Dy, for each triple,
(Thypo, ThypersY) € Dx we find the n synthetic
vectors most similar to xyy,, and the n synthetic
vectors most similar to xy,., and for each of the
n? synthetic vector pairs, (Thypos Thyper)» WE CrEALE
the triple (), ., T),y,r» ¥)- The augmented training
set is formed by randomly sub-sampling this set of
triples.

WordNet based Extension. WordNet (Fell-
baum, 1998) is a large manually curated lexical
resource, covering a wide range of lexical relations
between words, where groups of semantically sim-
ilar words form “synsets™. For each synset we

*GAN-based Data Augmentation for Lexical inFerence.

“We would typically create half a million synthetic nouns.
SWe use the API provided by NLTK (Loper and Bird,

extract all hypernyms and hyponyms of a given lex-
eme, and add it as a positive hyponym-hypernym
pair if the original lexeme and any extracted hy-
pernym/hyponym occurs at least 30 times in our
reference corpus.

We construct negative pairs based on distribu-
tional similarity, where we calculate the pairwise
cosine similarities between all lexemes in the posi-
tive set. Subsequently we use all antecedent (LHS)
lexemes from the extracted positive pairs and select
the top n most similar words for each antecedent
as negative examples®.

Pattern based Extension. Hearst Pat-
terns (Hearst, 1992) are textual patterns such as
a car is-a vehicle and can be automatically mined
from text corpora in an unsupervised way. This
has recently been shown to deliver strong perfor-
mance on the hypernymy detection task (Roller
et al., 2018). In this work, we leverage Hearst Pat-
terns to mine additional hyponym-hypernym pairs
in order to extend a training set. We treat any ex-
tracted noun pairs as additional positive examples
and create the negative pairs in the same way as for
the WordNet-based approach above.

4 Experiments

We evaluate our models on the datasets
Weeds (Weeds et al.,, 2014) and LEDS (Ba-
roni et al., 2012): well-studied and frequently
used benchmarks for the hypernymy detection
task (Roller et al., 2014; Vilnis and McCallum,
2014; Roller and Erk, 2016; Carmona and Riedel,
2017; Shwartz et al., 2017). Since both datasets
use WordNet during construction, this can give
rise to a bias in favour of those models that also
make use of WordNet. To address this concern,
we have created a new entailment dataset, HP4K,
that makes use of Hearst Patterns, and is manually
annotated, thereby avoiding the use of WordNet.
Weeds: The dataset is based on nouns sampled
from WordNet where each noun had to occur at
least 100 times in Wikipedia, and its predominant
sense had to account for more than 50% of the
occurrences in SemCor (Miller et al., 1993). We
use the predefined split of Weeds et al. (2014), that
avoids any lexical overlap between the training and
evaluation sets. The split contains 2012 examples
in the training set, evenly balanced between pos-
itive and negative hyponym-hypernym pairs, and

2002), using WordNet 3.0.
®Ensuring we don’t accidentally add any real positive pairs.
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Figure 1: The left panel shows the training loop for GANDALF where synthetic noun vectors are generated from Gaussian
noise. The discriminator’s task is to distinguish between the generated synthetic vectors and real word representations from
word2vec or HyperVec. The dashed line indicates error backpropagation, on the basis of the discriminator’s current performance,
through to the generator. After a final set of synthetic vectors has been generated with GANDALF, we choose the top n most
similar synthetic vectors to a real representation and add these with the same label as the original hyponym-hypernym pair from
an existing training set (e.g. (cat, animal)) to the augmented training set (right panel).

502 examples in the evaluation set.

LEDS: The dataset consists of 2770 examples,
evenly balanced between positive and negative
hyponym-hypernym pairs. The positive examples
are based on direct hyponym-hypernym relation-
ships from WordNet and the negative examples are
based on a random permutation of the hypernyms
of the positive pairs. As there is no predefined
training/evaluation split, we make use of the 20-
fold cross-validation methodology of Roller and
Erk (2016) that avoids any lexical overlap between
training and evaluation sets.

HP4K: We extracted Hearst Patterns from our
reference Wikipedia corpus and randomly selected
4500 unigram pairs. Subsequently, we manually
annotated each pair according to whether it con-
stitutes a correct hyponymy-hypernymy relation
or not. The labelling was carried out by 4 experi-
enced annotators — all domain experts, familiar
with the problem of hypernymy detection. We then
split up the annotators in two teams, with each
team annotating one half of the dataset. The initial
round of annotations resulted in a Cohen’s k score
of 0.714, indicating substantial agreement (Viera
and Garrett, 2005). Conflicts were resolved on a
cross-team basis such that team A would resolve
team B’s annotation conflicts and vice-versa.

During annotation we noticed that positive pairs
typically fall into one of two categories. Either they
were “true” subtype-supertype relations, such as
(dog, animal), or they were individual-class rela-
tionships where the hyponym is typically a named
entity and represents a specific instance of the more
general class, as for example in (Nirvana, band).

Negative pairs were of a more diverse nature
and included a range of different relations, such
as co-hyponyms, meronyms or reverse hyponym-
hypernyms. Negative pairs can also be comprised
of two random nouns or two nouns without any
semantic relation due to some amount of noise in
extracting candidates solely on the basis of Hearst
Patterns. Table 1 shows positive and negative ex-
amples from the dataset.

Pair Relationship Label
(dog, animal) hyponymy-hypernymy (Subtype)  True
(Nirvana, band) hyponymy-hypernymy (Instance) — True

(beef , stew) meronymy False
(pedestrian, road) topical relatedness False
(chemical, adenosine)  reverse hyponymy-hypernymy False
(cherry, plum) co-hyponymy False
(form, situation) none False

Table 1: Examples from our proposed HP4K dataset.

HP4K consists of 4369 pairs with a class distri-
bution of 45:55 (positive : negative). Subsequently
we split the dataset into a training and evaluation
set, ensuring that there is no lexical overlap be-
tween the two sets. This resulted in a training set
of size 3426 and an evaluation set of size 943”.

4.1 Models

We conduct experiments with two distributional
vector space models, word2vec (Mikolov et al.,
2013) and HyperVec (Nguyen et al., 2017). Hyper-
Vec is based on word2vec’s skip-gram architecture
and leverages WordNet to optimise the word rep-
resentations for the hypernym detection task. Hi-
erarchical information is encoded in the norm of

7All resources are available from https://github.
com/tttthomasssss/le-augmentation.
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the learned vectors, such that lexemes higher up in
the hypernymy hierarchy have larger norms than
lexemes in lower parts.

For word2vec we use the 300-dimensional pre-
trained Google News vectors® and for HyperVec we
trained 100-dimensional embeddings on a October
2013 Wikipedia dump (Wilson, 2015), using the
recommended settings of Nguyen et al. (2017), as
our augmentation sets contained many words that
were OOV in the pre-trained HyperVec vectors®.

In our experiments, we consider a supervised
scenario where a classifier predicts a hyponym-
hypernym relation between two given word em-
beddings. We use two different models as clas-
sifier a logistic regression classifier (LR), and a
3-layer feedforward neural network (FF). In both
cases, the classifier takes the aggregated hypothe-
sised hyponym-hypernym pair as input and predicts
whether the pair is in a hyponym-hypernym rela-
tion. We report a detailed overview of the model
parameterisation in Appendix A.

The two models share the same procedure for ag-
gregating the word embeddings of the hypothesised
hyponym-hypernym pair. For data augmentation
based on distributional composition, we use vec-
tor averaging as composition function, which gave
substantially better performance than addition in
preliminary experiments.

4.2 Results

For the FF network, we performed 10-fold cross-
validation on the Weeds and HP4K training sets.
As our evaluation for LEDS is based on a 20-fold
cross-valiation split, rather than a pre-defined train-
ing/evaluation split as for Weeds and HP4K, the
same procedure for hyperparameter tuning is not
straightforwardly applicable without exposing the
model to some of the evaluation data. However, we
found that the top parameterisations for Weeds and
HP4K were quite similar and therefore applied hy-
perparameters to the FF model for LEDS that per-
formed well in 10-fold cross-validation on Weeds
and HP4K. For data augmentation and dataset ex-
tension, we consider the following amounts of ad-
ditional data: {0.2K, 1K, 2K, 4K, 10K, 20K, 40K }.
All augmentation sets are balanced between posi-
tive and negative pairs.

Figure 2 shows the increase in absolute points

8 Available from: https://code.google.com/
archive/p/word2vec/.

We used the HyperVec code from www.ims.
uni-stuttgart.de/data/hypervec.

of accuracy for the LR and FF model, as well as
both vector spaces, averaged across all datasets.
While in total data augmentation as well as dataset
extension has a positive impact, the gains are larger
for the FF model, suggesting that a higher capac-
ity model is necessary to more effectively lever-
age the additional information from the augmen-
tation source. Furthermore, before starting our ex-
periments we exptected that extending an existing
dataset with WordNet represents an upper bound
on performance, given that WordNet is manually
annotated and curated. However in our experiments
we found that data augmentation by either distribu-
tional composition or by using GANDALF remark-
ably surpassed performance of the WordNet-based
extension technique regularly.

The effect of data augmentation and dataset ex-
tension in absolute points of accuracy on each
dataset individually for the FF model is shown in
Figure 3. It highlights consistent improvements
across the board with only a single performance
degradation in the case of extending the LEDS
dataset with Hearst Patterns when using HyperVec-
based word representations. The results per dataset
for the LR model are presented in Appendix A and
show that the LR model is less effective in lever-
aging the augmented data, causing more frequent
performance drops. This suggests that models with
more capacity are able to make more efficient use
of additional data and are more robust in the pres-
ence of noise which is inevitably introduced by
automatic methods.

Table 2 compares our FF model using word2vec
embeddings with all proposed techniques for aug-
menting or extending a dataset. Our techniques
are able to outperform a non-augmented model by
4-6 points in accuracy, representing a relative error
reduction of 14%-26%. While the primary objec-
tive in this work is to improve an existing model
setup with data augmentation, our augmented mod-
els compare favourably with previously published
results.!? In general, data augmentation by distri-
butional composition or by GANDALF overcomes
two key weaknesses of simply extending a dataset
with more data from WordNet or Hearst Patterns.
First, many of the hyponym-hypernym pairs we
mined from WordNet contain low-frequency words,

1We note that due to the use of different performance met-
rics and cross-validation splits, direct model-to-model com-
parisons are difficult on the LEDS and Weeds datasets. Thus
we only compare to approaches that use the same evaluation
protocol as we do.

1039


https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
www.ims.uni- stuttgart.de/data/hypervec
www.ims.uni- stuttgart.de/data/hypervec

word2vec

+0.0

-0.3

Logistic Regression +1.3

DC GAN DC

Data Augmentation

hypervec

word2vec hypervec

+3.0 +1.0 -0.3 e +1.0
+3.0 ANV
GAN WN HP WN HP

Dataset Extension

Figure 2: Effect of data augmentation and dataset extension in absolute points of accuracy averaged across all datasets over the
same model without augmentation or extension. The 2 heatmaps on the left are based on data augmentation (DC=Distributional
Composition, GAN=GANDALF). The 2 heatmaps on the right use dataset extension (WN=WordNet, HP=Hearst Patterns).

word2vec

LEDS RS

hypervec

Data Augmentation

DC GAN DC GAN

word2vec

:

hypervec

+1 4

WN HP WN HP
Dataset Extension

Figure 3: Effect of data augmentation and dataset extension in absolute points of accuracy on all datasets for the FF model.

Model Weeds | LEDS | HP4K
No Augmentation 0.72 0.77 0.67
Distributional Composition 0.76 0.83 0.70
GANDALF 0.75 0.80 0.71
WordNet Extension 0.75 0.83 0.69
Hearst Patterns Extension 0.74 0.81 0.68
Weeds et al. (2014) 0.75 - -
Carmona and Riedel (2017) 0.63 0.81 -

Table 2: Accuracy scores for the data augmentation and the
two dataset extension strategies in comparison to the same FF
model without any augmentation or extension.

which may have poor representations in our vector
space models. Second, while using Hearst Pat-
terns typically returned higher frequency words,
the retrieved candidates frequently did not repre-
sent hyponymy-hypernymy relationships.

S Analysis

The concrete amount of data augmentation, i.e. the
number of additional hyponym-hypernym pairs
that are added to the training set, represents a
tuneable parameter. Figure 4 shows the effect of
varying amounts of data augmentation for the FF
model, using word2vec representations, across all
datasets. We note that all amounts of additional
augmentation data share the same quality, i.e. it is
not the case that a smaller augmentation set con-
sists of “better data” or contains less noise than a
larger set. For the Weeds and LEDS datasets, peak
performance is typically achieved with smaller
amounts of additional data, whereas for the HP4K

dataset optimal performance is achieved with larger
amounts of augmentation data. One explanation
for the different augmentation characteristics of
the HP4K dataset in comparison to the other two
datasets is its independence of WordNet during the
development of the dataset.

5.1 Data Augmentation in Space

In order to visualise what area of the vector space
the GANDALF vectors and the composed vectors
inhabit, we created a t-SNE (van der Maaten and
Hinton, 2008) projection of the vector spaces in Fig-
ure 5. For the visualisation we produced the near-
est neighbours of standard word2vec embeddings
and augmentation embeddings for 5 exemplary
words and project them into the same space. Fig-
ure 5 shows that the generated augmentation points,
marked with an “x”, fit in with the real neighbours
and do not deviate much from the “natural” neigh-
bourhood of a given word. GANDALF vectors
typically inhabit the edges of a neighbour cluster,
whereas composed vectors are frequently closer to
the cluster centroid. Table 3 lists the nearest neigh-
bours for the example words. For word2vec and
the composed augmentation vectors, we simply list
the nearest neighbours of each query word. For
GANDALF we list the nearest neighbours of the
generated vector that correspond to actual words.
For example, if the vector GANDALF-234 is clos-
est to the representations of sugar, GANDALF-451
and mountain, we only list sugar and mountain as
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Figure 5: t-SNE visualisation of the data augmentation spaces. Data points marked with

from the data augmentation set.

neighbours of GANDALF-234.

The composed neighbours for each word are
typically closely related to the original query, e.g.
raw sugar for sugar, or zoo animal for animal. The
GANDALF neighbours on the other hand have a
much weaker association with the query word, but
are frequently still related to it somehow as in the
example of akpeteshie, which is a spirit on sugar
cane basis, as a neighbour for sugar.

5.2 Data Augmentation as Regularisation

In the past, a prominent criticism of distributional
methods for hypernymy detection was that such
models were found to frequently identify features
of a prototypical hypernym in the distributional
representations, rather than being able to dynami-
cally focus on the relevant features that are indica-
tive of a hypernymy relation for a specific pair of
words (Weeds et al., 2014; Levy et al., 2015b). We
therefore briefly investigate whether data augmen-
tation can be used as a regularisation mechanism
that helps prevent models from overfitting on pro-
totypical hypernym features.

Table 4 shows the results on the Weeds dataset
using a hypernym-only FF model with word2vec
representations, in comparison to the same model
variant that makes use of the hyponym and the
hypernym. Ideally, we would hope to see weak per-
formance for the hypernym-only and strong perfor-
mance on the full model. This would indicate that
the classifier does not rely on prototypical features

Gy

x” denote the representation as coming

in the hypernym, but is able to focus on specific
features in a given hyponym-hypernym pair. For
data augmentation by distributional composition
there appears to be a correlation between the per-
formance of the hypernym-only and the full model,
i.e. a stronger model on the whole dataset also
results in better performance for the hypernymy-
only model. Hence augmentation by distributional
composition might not be effective in helping the
model to generalise in its current form. For aug-
mentation with GANDALF however, performance
for the full model improves, while performance
of the hypernym-only model slightly drops, sug-
gesting that the evoked GANDALF representations
have a regularisation effect, while also improving
generalisation. Hence, a fruitful avenue for future
work will be further leveraging data augmentation
for regularisation.

6 Conclusion

In NLP, in contrast to computer vision, data aug-
mentation has not been applied as standard due
to the apparent lack of universal rules for label-
invariant language transformations.

We have considered the problem of hypernymy
detection, and proposed two novel techniques for
data augmentation. These techniques rely on se-
mantic rules rather than an external knowledge
source, and have the potential to generate almost
limitless synthetic data for this task. We demon-
strate that these techniques perform better than
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Word | word2vec Neighbours GANDALF Neighbours Composed Neighbours

sugar refined sugar, cane sugar, cmh rawalpindi, prescribed antipsychotic medication, | raw sugar, white sugar, brown sugar,
turbinado, cocoa, sugars sugar, mumtaz bhutto, akpeteshie sugar price, sugar industry

dog dogs, puppy, pit bull, pooch, cat ellis burks, sniffing glue, microchip implants, pet cat, dog fighting, cat breed, rat terrier

liz klekamp, cf rocco baldelli terrier breed

ocean sea, oceans, pacific ocean, pacific ocean, heavily vegetated, alaska aleutian, ocean basin, pacific ocean, shallow sea,
atlantic ocean, oceanic seagrasses, plutoid sea fish, sea mammal

animal | animals, animal welfare, dog, pet, | animals, pet, hallway feeds, poop scooping, first animal, adult animal, zoo animal,
cats panhandle animal welfare different animal, animal organization

energy | renewable energy, enery, radial velocity measurements, stopped, energy efficiency, solar energy, state energy,
electricity, enegy, fossil fuel renewable energy, bicycle advisory, steinkuehler food energy, energy company

Table 3: Nearest neighbours for word2vec, GAN vectors and composed vectors.

Augmentation Hypernym-Only | Full
No Data Augmentation 0.59 0.72
Distributional Composition (size=100) | 0.60 0.74
Distributional Composition (size=500) | 0.57 0.71
GANDALF (size=500) 0.58 0.75
GANDALF (size=1000) 0.60 0.73

Table 4: Accuracy for the hypernym-only and full models on
the Weeds dataset with no, DC or GAN augmentation.

extending the training set with additional non-
synthetic data, drawn from an external knowledge
source in most cases. Our results are consistent
across evaluation benchmarks, word vector spaces
and classification architectures. We have also
shown that our approach is effective even when
the word vector space model has already been spe-
cialised for hypernymy detection.

Since WordNet is widely used as a source of
information about semantic relations, we have pro-
posed a new evaluation benchmark that is indepen-
dent of WordNet. Whilst results are lower across
the board on this dataset, suggesting that it is more
difficult than the others, we see the same pattern
of increasing performance with a more complex
classifier and the use of data augmentation.

Future work includes leveraging data augmenta-
tion for more complex models and the extension
of our approach to a multilingual setup as well as
domains with a more specialised vocabulary such
as Healthcare or Fashion.
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A Supplemental Material

A.1 GANDALF Model Details

The generator and discriminator in GANDALF are
single layer feedforward networks, with tanh acti-
vations and a dropout ratio (Srivastava et al., 2014)
of 0.3. We used ADAM (Kingma and Ba, 2014)
to optimise a binary cross entropy error criterion
with a learning rate of 0.0002 and /3 values of 0.5
and 0.999. We found that GANDALF required
quite a bit of wizardry to achieve strong perfor-
mance and we found the website https://github.
com/soumith/ganhacks very helpful. For exam-
ple we applied label noise and soft labels (Sali-
mans et al., 2016) and used a batch normalisation
layer (Ioffe and Szegedy, 2015), which had the
largest impact on model performance. GANDALF
is implemented in PyTorch (Paszke et al., 2017)
and we release our code on https://github.com/

tttthomasssss/le-augmentation.

A.2 Model Details

For our linear model we use the logistic regrs-
sion classifier implemented in scikit-learn (Pe-
dregosa et al., 2011). Our neural network model
is 3-layer feedforward model implemented in Py-
Torch (Paszke et al., 2017).

We tuned the parameters of the Feedforward neu-
ral network by 10-fold cross-validation on the re-
spective training sets, except for LEDS, where we
chose the parameters on the basis of a model that
performed well on the Weeds and HP4K. Our pa-
rameter grid consisted of activation function: {tanh,
relu}, dropout: { 0.0, 0.1, 0.3 } and hidden layer
sizes, where we considered { 200-200-200, 200-
100-50, 200-50-30 } for Hypervec and { 600-600-
600, 600-400-200, 600-300-100, 600-200-50} for
word2vec. We furthermore considered 3 different
aggregation functions: diff (Weeds et al., 2014),
which simply takes the elementwise difference of
the embedding pair; asym (Roller et al., 2014)
which is the concatenation of the difference and
the squared difference of the embedding pair; and
concat—-asym (Roller and Erk, 2016), which is
the concatenation of the embedding pair, their dif-
ference, and their squared difference. We trained
all models for 30 epochs with early stopping and
used ADAM with a learning rate of 0.01 to opti-
mise a cross entropy error criterion.

A.3 Results

Figure 6 below shows the effect of data augmentia-
tion in terms of points of Accuracy for the logistic
regression classifier per vector space model and
dataset. Unlike for the higher-capacity feedforward
model, data augmentation frequently causes per-
formance to go down for the simpler linear model.
This suggests that more complex models are re-
quired to fully leverage the additional information
from the augmentation sets.

Table 5 below gives an overview over the com-
plete results for both classifier and vector space
models, across all datasets. It shows the consistent
positive effect of data augmentation on the more
complex feedforward model in comparison to the
logistic regression classifier, which is less robust to
the small amounts of noise that is inevitably intro-
duced by the automatic augmentation algorithm.
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Figure 6: Effect of data augmentation and dataset extension in absolute points of accuracy on all datasets for the LR model.

Weeds LEDS HP4K
Model | None DC GAN WN HP | None DC GAN WN HP | None DC GAN WN HP | Vector Space
LR 0.69 073 072 0.74 0.70 0.81 0.80 0.78 0.80 0.80 0.64 0.61 0.63 0.63 0.63 &0
FF 072 076 075 075 04| 077 083 080 083 081 | 067 070 071 069 068 | VOV
LR 070 071 0.74 0.73 0.70 0.79 0.76  0.78 0.79 0.78 0.63 069 0.69 0.68 0.67 h
FF 071 074 075 075 074 | 079 080 081 080 075 | 0.66 070 072 070 070 [ VPEVee

Table 5: Accuracy scores for the data augmentation strategies (DC and GAN), and the two dataset extension strategies (WN and
HP), and the baseline that neither uses augmentation nor extension (None). Boldfaced results denote top performance per vector
space and dataset, underlined results denote improved performance in comparison to the baseline without data augmentation.
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