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Abstract

The biases present in training datasets have
been shown to affect models for sentence pair
classification tasks such as natural language
inference (NLI) and fact verification. While
fine-tuning models on additional data has been
used to mitigate them, a common issue is that
of catastrophic forgetting of the original train-
ing dataset. In this paper, we show that elas-
tic weight consolidation (EWC) allows fine-
tuning of models to mitigate biases while be-
ing less susceptible to catastrophic forgetting.
In our evaluation on fact verification and NLI
stress tests, we show that fine-tuning with
EWC dominates standard fine-tuning, yielding
models with lower levels of forgetting on the
original (biased) dataset for equivalent gains in
accuracy on the fine-tuning (unbiased) dataset.

1 Introduction

A number of recent works have illustrated short-
comings in sentence-pair classification models
that are used for Natural Language Inference
(NLI). These arise from limited or biased train-
ing data and the lack of suitable inductive bias
in models. Naik et al. (2018) demonstrated that
phenomena such as the presence of negation or a
high degree of lexical overlap induce misclassifi-
cations on models trained on the MultiNLI dataset
(Williams et al., 2018). Poliak et al. (2018) and
Gururangan et al. (2018) identified biases intro-
duced during dataset construction that were ex-
ploited by models to learn associations between
the label and only one of the two input sen-
tences without considering the other – known as
hypothesis-only bias.

Such biases also affect fact verification (Schus-
ter et al., 2019), typically modeled as a text-pair
classification between a claim and evidence re-
trieved from a trusted source (Pomerleau and Rao,
2017; Thorne et al., 2018).
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Figure 1: Hypothesis only bias in FEVER contributes
to low accuracy when testing against counterfactual ev-
idence. This is mitigated by fine-tuning on counter-
factual evidence. Catastrophic forgetting from fine-
tuning is reduced when using elastic weight consoli-
dation (EWC), preserving the original task accuracy.

To mitigate these undesirable behaviors Liu
et al. (2019a) fine-tune models with a small tar-
geted number of labeled instances to “inoculate”
the models. This can be contrasted to methods
such as Debiased Focal Loss (DFL) and Product
of Experts (POE) (Mahabadi et al., 2020) which
require architectural changes to separately encode
and penalize biases. In related work, Suntwal
et al. (2019) delexicalize instances – replacing to-
kens with placeholders, preventing classifiers from
exploiting mutual information between domain-
specific noun-phrases and class labels. Finally,
Schuster et al. (2019) re-weight the loss of in-
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stances during training guided by the mutual in-
formation between tokens and the instance labels.
Each of these methods corresponds to a multi-
objective optimization problem where the original
dataset accuracy is often sacrificed in favor of ac-
curacy on a different evaluation set.

For fine-tuning specifically, the reduction in ac-
curacy on the original task called catastrophic for-
getting (French, 1999) as parameters for the orig-
inal task are overridden during fine-tuning. In
this paper, we show that regularizing fine-tuning
with Elastic Weight Consolidation (Kirkpatrick
et al., 2017, EWC) minimizes catastrophic forget-
ting by penalizing weight updates to parameters
crucial to modeling the original dataset. EWC
has previously been applied to machine transla-
tion, where Thompson et al. (2019) and Saunders
et al. (2019) minimized catastrophic forgetting for
models undergoing domain adaption. Extending
this line of research further, we demonstrate that
EWC can be used to mitigate biases present in
two sentence-pair classification tasks without ar-
chitectural changes to the models. We evaluate
a number of popular model architectures, trained
on MultiNLI and FEVER, and demonstrate that
fine-tuning with EWC mitigates model bias while
yielding lower reductions in accuracy on the orig-
inal dataset compared to standard fine-tuning.

On all experiments on the FEVER dataset, fine-
tuning with symmetric counterfactual data (Schus-
ter et al., 2019) mitigated hypothesis-only bias, in-
creasing the absolute accuracy of a BERT model
by approximately 10%. Without EWC, accuracy
on the original dataset was reduced from 87% to
79%, whereas with EWC catastrophic forgetting
was mitigated and accuracy was 82%. In all exper-
iments with EWC, the original task accuracy was
significantly higher than fine-tuning without regu-
larization and fine-tuning with L2 regularization.
These gains were attained while maintaining sim-
ilar performance on the fine-tuning data. Plotting
the Pareto frontier, we show that equivalent gains
in accuracy can be made with less forgetting of the
original dataset. Furthermore, we demonstrate that
fine-tuning methods can be combined with POE
and DFL, yielding improvements on both the orig-
inal task as well as fine-tuning data used for debi-
asing. Similar patterns were observed when fine-
tuning MultiNLI models with lexical bias evalua-
tion datasets (Naik et al., 2018).

2 Mitigating biases with fine-tuning

Fine-tuning broadly refers to approaches where a
model is initially trained on one dataset and then
further improved by training on another. We re-
fer to these datasets as fine-tuning training and
test data as FT-train and FT-test respectively. This
technique is commonly used to mitigate model bi-
ases (Liu et al., 2019a), where the original data,
while useful in model training, often contain bi-
ases, which are addressed by further training the
model on a small set of instances targeting these
biases. Fine-tuning to mitigate bias, however, can
result in model parameters over-adjusting to the
instances targeting it, reducing the accuracy on the
original task, referred to as catastrophic forgetting
(French, 1999). To ameliorate this issue, one can
regularize the parameter updates so that they do
not deviate too much from the original training,
similar to the intuition behind multi-task training
approaches (Ruder, 2017).

Elastic Weight Consolidation (Kirkpatrick
et al., 2017, EWC) penalizes parameter updates
according to the model’s sensitivity to changes
in these parameters. The model sensitivity is
estimated by the Fisher information matrix,
which describes the model’s expected sensitivity
to a change in parameters, and near the (local)
minimum of the loss function used for training
is equivalent to the second-order derivative
F = E(x,y)∼Doriginal

[∇2 log p(y|x; θ)]. When
fine-tuning with EWC (which we refer to as
FT+EWC), the Fisher information is used to
elastically scale the cost of updating parameters
θi from the original value θ∗i , controlled by the λ
hyper-parameter, as follows:

L(θ) = LFT (θ) +
∑
i

λ

2
Fi,i(θi − θ∗i )2 (1)

For efficiency, we use the empirical Fisher
(Martens, 2014): diagonal elements are approxi-
mated through squaring first-order gradients from
a sample of instances, recomputed before each
epoch. If the Fisher information is not used (i.e.
Fi,i = 1), Eq. 1 is equivalent to L2 regularization
(which we refer to as FT+L2).

3 Experimental setup

We assess the application of EWC to minimize
catastrophic forgetting when mitigating model bi-
ases in the context of two sentence-pair classi-
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fication tasks: fact verification and natural lan-
guage inference. We compare the untreated model
(original), fine-tuning (FT), FT+EWC, FT+L2,
and merging instances from the FT-train dataset
when training (Merged). Each model is first
trained using the original dataset and splits from
the respective task, using the AllenNLP imple-
mentations (Gardner et al., 2017) with default
hyper-parameters and tokenize with SpaCy or pre-
trained transformer tokenizers. We train five ran-
dom initializations of each model, reporting the
mean accuracy, standard deviation, and p-value
with an unpaired t-test. For fine-tuning, the
learning rate, regularization strength λ, and num-
ber of epochs are selected through 5-fold cross-
validation on the FT-train data, selecting the model
with the highest FT-train accuracy. 30 hyper pa-
rameter choices were evaluated with grid search
over 10 choices for regularization strength be-
tween 106 and 108 and 3 choices of learning rates
in {2 · 10−6, 4 · 10−6, 6 · 10−6} for transformer
models and {2 ·10−4, 4 ·10−4, 6 ·10−4} for ESIM
models. We trained the models for a max of 8
epochs. For the transformer-based models, the
highest cross validation accuracy on the FT-train
dataset was achieved with LR = 4 · 10−6, λ =
107 and 6 epochs. For the ESIM-based models,
the highest FT-train accuracy was achieved with
LR = 2 ·10−4, λ = 107 and 5 epochs. Full hyper-
parameter choices are in Appendix D.

Mitigating hypothesis only bias in fact verifica-
tion: The FEVER1 task (Thorne et al., 2018) is
to predict whether short factoid sentences called
claims are Supported or Refuted against evidence
(in the form of sentences from Wikipedia) or
whether there is not enough info (NEI). When
training the models, the NEI instances by defini-
tion don’t have evidence: we sample negative in-
stances for these with random sentences from the
Wikipedia page closest to the claim using TF·IDF.
This preprocessing is the same as Thorne et al.
(2018). Schuster et al. (2019) identified a bias
where the label for some claims can be predicted
without the need for evidence. To evaluate this
bias, they released2 a set of 1420 symmetric coun-
terfactual instances where each claim is supported
by one Wikipedia passage and refuted by an-
other (approximately 1% of the FEVER dataset).

1https://fever.ai/
2https://github.com/TalSchuster/

FeverSymmetric/

This is mitigating the claim-only bias by reduc-
ing the mutual information between claims and la-
bels. The availability of counterfactual data meant
that it is possible to experiment with fine-tuning
as a mitigation strategy, using the published dev
and test data as FT-train and FT-test respectively.
Following Schuster et al. (2019)’s evaluation, we
train two ESIM (Enhanced LSTM) variants (Chen
et al., 2016), and a BERT (Devlin et al., 2019)
transformer. We also evaluate RoBERTa (Liu
et al., 2019b), as it has been shown to be more
robust to adversarial testing (Bartolo et al., 2020).

Mitigating model limitations in NLI stress
tests: The MultiNLI3 task (Williams et al.,
2018) requires systems to predict whether a hy-
pothesis is entailed by a premise. Naik et al.
(2018) identify limitations of models trained on
this dataset where 6 phenomena such as lexi-
cal overlap, numerical reasoning and presence of
antonyms were evaluated with ‘stress-tests’. In
this paper, we report on antonyms and numeri-
cal reasoning as these stress-tests exhibited catas-
trophic forgetting when used to fine-tune models
(Liu et al., 2019a). To this end, we do not evaluate
on HANS (McCoy et al., 2020), as high accuracies
can be attained without forgetting.

Like Liu et al. (2019a), we mitigate these bi-
ases through fine-tuning both an ESIM (Chen
et al., 2016) model on stress-test data4. Each con-
tains a small number of procedurally generated in-
stances (between 1500-9800) that specifically tar-
get one of these phenomena. We evaluate FT and
FT+EWC using the same methodology, control-
ling the number of instances, sampled at random,
in FT-train and report the change in accuracy on
the FT-test and original test sets.

4 Results

4.1 Fact verification
Fine-tuning the models, rather than merging
datasets, yielded the greatest improvements in ac-
curacy on FT-test. All improvements from the un-
treated model were significant (p < 0.05, denoted
#). Without L2 or EWC, catastrophic forgetting
occurs due to the shift in label distribution between
the FEVER and FT-train dataset, which only con-
tains 2 of the original 3 label classes.

3https://cims.nyu.edu/˜sbowman/
multinli/

4https://abhilasharavichander.github.
io/NLI_StressTest/

https://fever.ai/
https://github.com/TalSchuster/FeverSymmetric/
https://github.com/TalSchuster/FeverSymmetric/
https://cims.nyu.edu/~sbowman/multinli/
https://cims.nyu.edu/~sbowman/multinli/
https://abhilasharavichander.github.io/NLI_StressTest/
https://abhilasharavichander.github.io/NLI_StressTest/
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Model FEVER Dataset (Original Task) Accuracy (%)
Original Merged FineTune FineTune+L2 FineTune+EWC

ESIM+GloVe 79.94± 0.4 79.57± 0.4 70.78± 1.1 73.29± 0.4∗ 74.64± 0.7∗†

ESIM+ELMo 80.15± 0.2 80.33± 0.8 76.45± 0.8 73.72± 0.6∗ 78.09± 0.4∗†

BERT Base 86.88± 0.5 86.87± 0.5 78.82± 0.9 79.90± 1.4∗ 82.23± 1.1∗†

RoBERTa Base 88.12± 0.3 88.11± 0.1 82.51± 1.5 83.14± 1.4∗ 85.12± 1.1∗†

Symmetric Dataset (Fine-tuning Task) Accuracy (%)

ESIM+GloVe 68.37± 1.0 69.35± 0.5 74.21± 1.3# 73.34± 1.2#♦ 73.20± 1.4#♦♥

ESIM+ELMo 64.04± 0.7 66.46± 1.3# 68.68± 0.7# 70.31± 0.5# 69.16± 0.7#

BERT Base 74.77± 1.4 79.24± 0.7# 87.07± 0.6# 86.66± 0.4#♦ 85.11± 0.4#

RoBERTa Base 78.34± 0.2 87.03± 2.3# 91.01± 0.6# 90.98± 0.5#♦ 89.63± 1.3#♦♥

Table 1: Bias mitigation for FEVER classifiers comparing no treatment (original), against merging from instances
from the FT-train with the original task training dataset (Merged) and FineTuning (with EWC and L2). Improve-
ments p < 0.05 are marked with the following symbols: ∗ against FT, † against FT+L2, # against original.
Deteriorations p > 0.05 on the symmetric dataset are marked with ♦ against FT and ♥ against FT+L2

Both L2 and EWC reduced catastrophic forget-
ting. Improvements on the original task are signif-
icant (denoted ∗) compared to FT. However, EWC
regularization retained more of the original task
accuracy than L2 for all models; this was also sig-
nificant (denoted †). In all cases, there is a trade-
off between original and fine-tuning task accura-
cies. With regularization, the FT accuracy was
higher than FT+L2 and FT+EWC (with the ex-
ception of ESIM+ELMo). However, the deteriora-
tion from FT when regularizing was not significant
(p > 0.05, denoted ♦). Furthermore, for the high-
est performing model (RoBERTa base), the deteri-
oration of using FT+EWC against FT+L2 was also
not significant (denoted ♥).

Training a model where the FEVER training
and FT-train were merged yielded modest im-
provements on the FT-test without harming the
original FEVER task accuracy. We attribute this to
the impact of these 700 instances being diluted by
the large number of training instances in FEVER
(FT-train is <1% the size of FEVER).

4.2 Combining FT and bias modeling

Fine-tuning can be applied to any task using
a small amount of bias-mitigating labeled data,
whereas explicit modeling of hypothesis-only bi-
ases (Mahabadi et al., 2020) requires architectural
changes that are specific to the task and model.
We consider two techniques from Mahabadi et al.
(2020): Product of Experts (PoE), which mul-
tiplies the sentence-pair label probabilities with
hypothesis-only label probabilities, and Debiased
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Figure 2: Pareto frontiers of fine-tuning BERT and
ESIM models showing FT+EWC dominates FT.

Focal Loss (DFL) which explicitly modulates the
loss of instances according to the accuracy of a
hypothesis-only classifier. For both ESIM and
BERT, accuracy, when trained with PoE, was sta-
ble across different choices of hyper-parameters,
whereas some hyper-parameter choices for DFL
resulted in lower accuracy on both tasks. We re-
port results for BERT+PoE and ESIM+DFL as
these were best.

The trade-off between accuracy on the original
and FT-test datasets is visualized in Figure 2 indi-
cating the change in accuracy for both bias mod-
eling techniques in isolation, as well as in combi-
nation with fine-tuning.5 This further shows that
FT+EWC Pareto dominates FT for both the ESIM
and BERT model. With EWC, equivalent gains on
the symmetric FT-test can be attained with a lower

5All Pareto frontier lines are the result of sweeping the
following: for POE, β; for DFL, β and γ; for FT, learning
rate; and for FT+EWC, learning rate + EWC strength (λ in
Equation 1) in Appendix D.8.
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Figure 3: Training curves fine tuning MultiNLI with
stress-test data. Solid lines indicate challenge dataset
accuracy. Dashed lines indicate MultiNLI accuracy.

reduction in accuracy on the original FEVER task.

4.3 Natural Language Inference (NLI)

In a separate experiment, we apply EWC to a dif-
ferent domain. We inoculate biases on the ESIM
model for natural language inference reported in
Liu et al. (2019a). For both Antonym and Numeri-
cal Reasoning challenges, MultiNLI accuracy was
higher with FT+EWC compared to FT (dashed
lines in Figure 3).

Antonym challenge: The ESIM model was sen-
sitive to fine-tuning, attaining near perfect accu-
racy (top row of Figure 3) on the FT-test data.
The antonym stress-test only contains instances la-
beled contradiction: a change in label distribution
that causes catastrophic forgetting. Without EWC,
accuracy on MultiNLI fell to just above chance
levels as the model learned only to predict con-
tradiction (yellow dashed line). However, using
an appropriate EWC penalty attained near-perfect
accuracy with a smaller reduction in MultiNLI ac-
curacy (purple dashed line).

Numerical reasoning challenge: The ESIM
model was sensitive to fine-tuning to introduce nu-
merical reasoning behaviours to the model. As the
difference in label distribution in the inoculation
dataset was less severe than the Antonym dataset,
the catastrophic forgetting was less severe. Never-
theless, FT+EWC minimized catastrophic forget-
ting at the expense of reducing sample efficiency:
accuracy on MultiNLI fell from 77.9% to 75.4%
without EWC and 76.8% with EWC.

5 Conclusions

Fine-tuning can be used to mitigate model bias but
has the risk that the model catastrophically forgets
the data it was originally trained on. Incorporat-
ing elastic weight consolidation (EWC) when fine-
tuning minimizes catastrophic forgetting, yielding

higher accuracy on the original task. We show this
holds for both the NLI stress-tests, as well debias-
ing fact-verification systems (Schuster et al., 2019)
through fine-tuning.
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both the MultiFC (Augenstein et al., 2019) and
Liar-Plus tasks (Alhindi et al., 2018) whereas for
the the FEVER data the sentence-pair accuracy is
higher. As FEVER is the only task that requires
the use of evidence for classification, this is ex-
pected.

Dataset Accuracy (%)
Claim Only Sentence Pair

Liar-Plus 28.74 20.48
Liar-Plus (binary) 72.59 70.48
MultiFC 46.02 44.83

FEVER 61.50 88.93
FEVER (2-way) 79.09 92.24

Table 2: Validation accuracy for claim-only vs sentence
pair classification for fact verification datasets trained
on RoBERTa. For 2-way fever we discard instances
labelled NOTENOUGHINFO. For binary Liar-Plus, we
map all positive labels to true and all negative labels to
false and discard neutral instances.

B Compute infrastructure

All experiments were performed on a single work-
station with a single Xeon E5-2630 CPU, 64GB
RAM and an Nvidia 1080Ti GPU.

C Average run-time for fine-tuning

Estimating the Fisher matrix diagonal takes ap-
proximately 2 seconds for the ESIM model using
2000 instances sampled from the original dataset.
Average training duration (excluding estimating
Fisher information) was 11 seconds in total with
700 instances.

Estimating the Fisher matrix diagonal takes
approximately 25 seconds for the BERT and
RoBERTa models using 2000 instances sampled
from the original dataset. Average training du-
ration (excluding estimating Fisher information)
was 2 minutes 20 seconds in total with 700 in-
stances.

D Hyper-parameter configurations

D.1 Base models
For the base-models, the default hyperparemters
in AllenNLP are used for the ESIM, BERT and
RoBERTa models.

ESIM
• Embedding dimension: 300, bidirectional

• Dropout: 0.5
• Optimizer: Adam
• Gradient Norm: 10.0
• Batch Size: 64
• Learning Rate: 0.0004
• Learning Rate Schedule: reduce on plateau,

patience 0, factor 0.5
• Number of Epochs: 75
• Early Stopping: Patience 10

BERT+RoBERTa
• Embedding dimension: 768
• Optimizer: AdamW
• Gradient Norm: 10.0
• Batch Size: 8
• Learning Rate: 0.0004
• Learning Rate Schedule: slanted triangular,

cut frac 0.06
• Number of Epochs: 5
• Early Stopping: Patience 0

D.2 Fine-tuning without EWC
ESIM
• FT Learning Rate: 0.0002
• FT Epochs: 8

BERT
• FT Learning Rate: 0.000004
• FT Epochs: 6

RoBERTa
• FT Learning Rate: 0.000004
• FT Epochs: 7

D.3 Fine-tuning using EWC
ESIM
• FT Learning Rate: 0.0002
• FT Epochs: 5
• EWC: 10000000

BERT+RoBERTa
• FT Learning Rate: 0.000004
• FT Epochs: 6
• EWC: 10000000

D.4 Unsupervised bias mitigation
Hyperparameters: β controls the weight update
for the hypothesis-only model and γ controls the
modulation of hypothesis-only model in the loss
function.
• POE (BERT) β = 0.4
• POE (ESIM) β = 0.05
• DFL (BERT) β = 0.4, γ = 0.6
• DFL (ESIM) β = 0.05, γ = 2.0



964

D.5 Search bounds for fine-tuning
Approximately 30 configurations were considered
(Cartesian product of LR+EWC). The best per-
forming system was selected through max accu-
racy on the FT cross validation dataset through 5
fold cross validation.

• EWC {106, 2 ·106, 4 ·106, 8 ·106, 107, 2 ·107,
4 · 107, 6 · 107, 8 · 107, 108}

• Fine-tuning learning rate (ESIMs):
{0.0002, 0.0004, 0.0006}

• Fine-tuning learning rate (Transformer):
{0.000002, 0.000004, 0.000006}

• Epochs: Up to 10 epochs cross valudating on
the FT-training dataset

D.6 Search bounds for end2end bias
mitigation

We used the same range of values published by
Mahabadi et al. (2020). For DFL, we performed a
grid search of every value totalling 30 trials.
γ ∈ {0.02, 0.05, 0.1, 0.6, 2.0, 4.0, 5.0}
β ∈ {0.05, 0.2, 0.4, 0.8, 1.0}

D.7 Stress test sizes
Following the evaluation of (Liu et al., 2019a) we
vary the number of instances from the stress test
(between 1500-9800) instances. To plot Figure 3,
we use 25, 50, 75, 100, 250, 400, 500, 600, 700,
800, 900, 1000 instances in our evaluation.

D.8 Pareto frontier sweeps
The Pareto frontier sweeps in Figure 2 were gen-
erated by plotting all hyperparameters from Ap-
pendix D.5. The end2end (blue) crosses are plot-
ted by plotting the choices from Appendix D.6 in
combination with the best FT model.


