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Abstract

Generative models for open domain question
answering have proven to be competitive, with-
out resorting to external knowledge. While
promising, this approach requires to use mod-
els with billions of parameters, which are ex-
pensive to train and query. In this paper, we
investigate how much these models can ben-
efit from retrieving text passages, potentially
containing evidence. We obtain state-of-the-
art results on the Natural Questions and Triv-
iaQA open benchmarks. Interestingly, we ob-
serve that the performance of this method sig-
nificantly improves when increasing the num-
ber of retrieved passages. This is evidence that
sequence-to-sequence models offers a flexible
framework to efficiently aggregate and com-
bine evidence from multiple passages.

1 Introduction

Recently, several works have shown that factual
information can be extracted from large scale
language models trained on vast quantities of
data (Radford et al., 2019; Petroni et al., 2019;
Jiang et al., 2019; Talmor et al., 2019). Building
on that observation and the advances in pretrain-
ing of natural language processing models, Roberts
et al. (2020) introduced a generative model for open
domain question answering. Without relying on
external knowledge, this method obtained compet-
itive results on several benchmarks. However, it
requires models containing billions of parameters,
since all the information needs to be stored in the
weights. This makes models expensive to query
and train. In this paper, we investigate how much
this method could benefit from having access to an
external source of knowledge, such as Wikipedia.

Retrieval based approaches were previously con-
sidered in the context of open domain question
answering with extractive models (Chen et al.,
2017). In that case, systems start by retrieving
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Figure 1: A simple approach to open domain question
answering. First, it retrieves support text passages from
an external source of knowledge such as Wikipedia.
Then, a generative encoder-decoder model produces
the answer, conditioned on the question and the re-
trieved passages. This approach scales well with the
number of retrieved passages, as the performance keeps
improving when retrieving up to one hundred passages.

support documents, before extracting the answer
from these documents. Different retrieval tech-
niques have been considered, either using sparse
representations based on TF/IDF or using dense
embeddings (Guu et al., 2020; Karpukhin et al.,
2020). The models which extract the answers are
often based on contextualized word representations
such as ELMo or BERT (Peters et al., 2018; De-
vlin et al., 2019), and predict a span as answer.
Aggregating and combining evidence from mul-
tiple passages is not straightforward when using
extractive models, and multiple techniques have
been proposed to address this limitation (Clark and
Gardner, 2018; Min et al., 2019a).

In this paper, we explore a simple approach hav-
ing the best of both worlds, by building on the
exciting developments in generative modeling and
retrieval for open domain question answering. This
method proceeds in two steps, by first retrieving
supporting passages using either sparse or dense
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Figure 2: Architecture of the Fusion-in-Decoder method.

representations. Then, a sequence-to-sequence
model generates the answer, taking as input the re-
trieved passages in addition to the question. While
conceptually simple, this method sets new state-of-
the-art results on the TriviaQA and NaturalQues-
tions benchmarks. In particular, we show that the
performance of our method significantly improves
when the number of retrieved passages increases.
We believe that this is evidence that generative mod-
els are good at combining evidence from multiple
passages, compared to extractive ones.

2 Related work

Open domain question answering is the task
of answering general domain questions, in which
the evidence is not given as input to the system.
While being a longstanding problem in natural lan-
guage processing (Voorhees, 1999), this task has
recently regained interest following the work by
Chen et al. (2017). In that version of the prob-
lem, strong supervision is available to the learning
system, in the form of spans corresponding to an-
swers. Chen et al. (2017) proposed to solve the
problem by first retrieving support document from
Wikipedia, before extracting the answer from the
retrieved document. Different methods were pro-
posed to tackle the setting where no gold spans are
given to the system, but only the correct answer.
Clark and Gardner (2018) proposed to use a global
normalization over all the span corresponding to
the answer, which was later applied to BERT based
models (Wang et al., 2019). Min et al. (2019a)
introduced a method based on hard expectation-
maximization to tackle noisy supervision from this
setting. Wang et al. (2018b) described a technique
to aggregate answers from different paragraphs,
using confidence and coverage scores.

Passage retrieval is an important step in open
domain question answering, and is an active area of
research to improve QA systems. Initially, sparse
representations based on TF/IDF were used to
retrieve support documents (Chen et al., 2017).
Lee et al. (2018) introduced a supervised learning

method to rerank paragraphs based on BiLSTM,
while Wang et al. (2018a) trained a ranking system
with reinforcement learning. A second approach
to improve the retrieval step of QA systems is to
used additional information such as the Wikipedia
or Wikidata graphs (Min et al., 2019b; Asai et al.,
2020). Recently, multiple works show that retrieval
systems entirely based on dense representation
and approximate nearest neighbors were competi-
tive with traditional approaches. Such models can
be trained using weak supervision in the form of
question-answer pairs (Karpukhin et al., 2020), or
pretrained using a cloze task and finetuned end-to-
end (Guu et al., 2020; Lee et al., 2019).

Generative question answering was mostly
considered in previous work for datasets requiring
to generate answers, such as NarrativeQA (Kočiskỳ
et al., 2018), CoQA (Reddy et al., 2019) or
ELI5 (Fan et al., 2019). These datasets were gen-
erated in a way that answers do not correspond
to spans in support documents, thus requiring ab-
stractive models. Raffel et al. (2020) showed that
generative models are competitive for reading com-
prehension tasks such as SQuAD (Rajpurkar et al.,
2016), where answers are spans. Roberts et al.
(2020) proposed to use large pretrained generative
models, without using additional knowledge, for
open domain question answering. Closest to our
work, Min et al. (2020) and Lewis et al. (2020b) in-
troduced retrieval augmented generative models for
open domain question answering. Our approach
differs from these works by how the generative
model processes the retrieved passages. This al-
lows to scale to large numbers of documents, and
to benefit from this large amount of evidence.

3 Method

In this section, we describe our approach to open
domain question answering. It proceeds in two
steps, first retrieving support passages before pro-
cessing them with a sequence to sequence model.
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Model NQ TriviaQA SQuAD Open
EM EM EM EM F1

DrQA (Chen et al., 2017) - - - 29.8 -
Multi-Passage BERT (Wang et al., 2019) - - - 53.0 60.9
Path Retriever (Asai et al., 2020) 31.7 - - 56.5 63.8
Graph Retriever (Min et al., 2019b) 34.7 55.8 - - -
Hard EM (Min et al., 2019a) 28.8 50.9 - - -
ORQA (Lee et al., 2019) 31.3 45.1 - 20.2 -
REALM (Guu et al., 2020) 40.4 - - - -
DPR (Karpukhin et al., 2020) 41.5 57.9 - 36.7 -
SpanSeqGen (Min et al., 2020) 42.5 - - - -
RAG (Lewis et al., 2020b) 44.5 56.1 68.0 - -

T5 (Roberts et al., 2020) 36.6 - 60.5 - -
GPT-3 few shot (Brown et al., 2020) 29.9 - 71.2 - -

Fusion-in-Decoder (base) 48.2 65.0 77.1 53.4 60.6
Fusion-in-Decoder (large) 51.4 67.6 80.1 56.7 63.2

Table 1: Comparison to state-of-the-art. On TriviaQA, we report results on the open domain test set (left), and on
the hidden test set (right), competitions.codalab.org/competitions/17208#results).

Retrieval. For the retrieval of support passages,
we consider two methods: BM25 (Robertson et al.,
1995) and DPR (Karpukhin et al., 2020). In BM25,
passages are represented as bag of words, and the
ranking function is based on term and inverse doc-
ument frequencies. We use the implementation
from Apache Lucene1 with default parameters, and
tokenize questions and passages with SpaCy.2 In
DPR, passages and questions are represented as
dense vector representations, computed using two
BERT networks. The ranking function is the dot
product between the query and passage represen-
tations. Retrieval is performed using approximate
nearest neighbors with the FAISS library.3

Reading. Our generative model for open domain
QA is based on a sequence-to-sequence network,
pretrained on unsupervised data, such as T5 or
BART (Raffel et al., 2020; Lewis et al., 2020a).
The model takes as input the question, as well as
the support passages, and generates the answer.
More precisely, each retrieved passage and its title
are concatenated with the question, and processed
independently from other passages by the encoder.
We add special tokens question:, title: and
context: before the question, title and text of
each passage. Finally, the decoder performs atten-

1lucene.apache.org
2spacy.io
3github.com/facebookresearch/faiss

tion over the concatenation of the resulting repre-
sentations of all the retrieved passages. The model
thus performs evidence fusion in the decoder only,
and we refer to it as Fusion-in-Decoder.

By processing passages independently in the en-
coder, but jointly in the decoder, this method differs
from Min et al. (2020) and Lewis et al. (2020b).
Processing passages independently in the encoder
allows to scale to large number of contexts, as it
only performs self attention over one context at a
time. This means that the computation time of the
model grows linearly with the number of passages,
instead of quadratically. On the other hand, pro-
cessing passages jointly in the decoder allows to
better aggregate evidence from multiple passages.

4 Experiments

In this section, we report empirical evaluations of
Fusion-in-Decoder for open domain QA.

Datasets. We consider the following datasets,
and use the same setting as Lee et al. (2019):

• NaturalQuestions (Kwiatkowski et al., 2019)
contains questions corresponding to Google
search queries. The open-domain version of
this dataset is obtained by discarding answers
with more than 5 tokens.

• TriviaQA (Joshi et al., 2017) contains ques-
tions gathered from trivia and quiz-league

competitions.codalab.org/competitions/17208#results
lucene.apache.org
spacy.io
github.com/facebookresearch/faiss
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Figure 3: Performance of Fusion-in-Decoder (base) on valid sets as a function of the number of retrieved passages.

websites. The unfiltered version of TriviaQA
is used for open-domain question answering.

• SQuAD v1.1 (Rajpurkar et al., 2016) is a read-
ing comprehension dataset. Given a paragraph
extracted from Wikipedia, annotators were
asked to write questions, for which the answer
is a span from the corresponding paragraph.

Following Lee et al. (2019) we use the validation as
test, and keep 10% of the training set for validation.
We use the Wikipedia dumps from Dec. 20, 2018
for NQ and TriviaQA and from Dec. 21, 2016 for
SQuAD. We apply the same preprocessing as Chen
et al. (2017); Karpukhin et al. (2020), leading to
passages of 100 words, which do not overlap.

Evaluation. Predicted answers are evaluated
with the standard exact match metric (EM), as in-
troduced by Rajpurkar et al. (2016). A generated
answer is considered correct if it matches any an-
swer of the list of acceptable answers after normal-
ization. This normalization step consists in low-
ercasing and removing articles, punctuation and
duplicated whitespace.

Technical details. We initialize our models with
the pretrained T5 models (Raffel et al., 2020), avail-
able in the HuggingFace Transformers library.4 We
consider two model sizes, base and large, contain-
ing respectively 220M and 770M parameters. We
fine-tune the models on each dataset independently,
using Adam (Kingma and Ba, 2014) with a con-
stant learning rate of 10−4 and a dropout rate of
10%. We train the model for 10k gradient steps,
with a batch size of 64, using 64 Tesla V100 32Gb.
We evaluate models every 500 steps and select the
best one on the validation set based on the Exact
Match score. During training on NaturalQuestions

4github.com/huggingface/transformers

and SQuAD, we sample the target among the list
of answers, while for TriviaQA, we use the unique
human-generated answer. For TriviaQA, answers
in uppercase are normalized by converting all let-
ters in lowercase except the first letter of each word,
using the title Python string method. For both
training and testing, we retrieve 100 passages (un-
less said otherwise), and truncate them to 250 word
pieces. Following the results of Karpukhin et al.
(2020), passages are retrieved with DPR for NQ
and TriviaQA, and with BM25 for SQuAD. We
generate answers by using greedy decoding.

Comparison to state-of-the-art. In table 1, we
compare the results obtained by Fusion-in-Decoder
with existing approaches for open domain ques-
tion answering. We observe that while conceptu-
ally simple, this method outperforms existing work
on the NaturalQuestion and TriviaQA benchmarks.
In particular, generative models seem to perform
well when evidence from multiple passages need to
be aggregated, compared to extractive approaches.
Our method also performs better than other genera-
tive models, showing that scaling to large number
of passages and processing them jointly leads to
improvement in accuracy. Second, we observe that
using additional knowledge in generative models
by using retrieval lead to important performance
gains. On NaturalQuestions, the closed book T5
model obtains 36.6% accuracy with 11B parame-
ters, while our approach obtains 44.1% with 770M
parameters plus Wikipedia with BM25 retrieval.
Both methods use roughly the same amount of
memory to store information, indicating that text
based explicit memories are competitive for knowl-
edge retrieval tasks.

Scaling with number of passages. In Figure 3,
we report the performance with respect to the

github.com/huggingface/transformers
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NaturalQuestions TriviaQA
Training Passages w/o finetuning w/ finetuning w/o finetuning w/ finetuning

5 37.8 45.0 58.1 64.2
10 42.3 45.3 61.1 63.6
25 45.3 46.0 63.2 64.2
50 45.7 46.0 64.2 64.3
100 46.5 - 64.7 -

Table 2: Performance depending on the number of passages used during training. Exact Match scores are reported
on dev sets.

number of retrieved passages. In particular, we
observe that increasing the number of passages
from 10 to 100 leads to 6% improvement on Trivi-
aQA and 3.5% improvement on NaturalQuestions.
On the other hand, the performance of most ex-
tractive models seems to peak around 10 to 20
passages (Wang et al., 2019; Yang et al., 2019).
We believe that this is evidence that sequence-to-
sequence models are good at combining informa-
tions from multiple passages.

Impact of the number of training passages. In
the previous section, the model was trained and
evaluated with the same number of passages. To
reduce the training computational budget, a simple
solution consists in training the model with fewer
passages. In Table 2, we report the performance
obtained by training with different numbers of pas-
sages, while testing with 100 passages. We observe
that reducing the number of training passages leads
to a decrease of accuracy. Further, we propose to
finetune the previous models using 100 passages
for 1000 steps. This allows to reduce the accuracy
gap, while using significantly less computational
resources: we can reach 46.0 EM on NaturalQues-
tions, using 147 GPU hours, compared to 425 GPU
hours when training on 100 passages.

5 Conclusion

In this paper, we study a simple approach to open
domain question answering, which relies on retriev-
ing support passages before processing them with a
generative model. We show that while conceptually
simple, this approach is competitive with existing
methods, and that it scales well with the number
of retrieved passages. In future work, we plan to
make this model more efficient, in particular when
scaling to large number of support passages. We
also plan to integrate the retrieval in our model, and
to learn the whole system end-to-end.
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