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Abstract
Learning disentangled representations of real-
world data is a challenging open problem.
Most previous methods have focused on either
supervised approaches which use attribute la-
bels or unsupervised approaches that manipu-
late the factorization in the latent space of mod-
els such as the variational autoencoder (VAE)
by training with task-specific losses. In this
work, we propose polarized-VAE, an approach
that disentangles select attributes in the latent
space based on proximity measures reflecting
the similarity between data points with respect
to these attributes. We apply our method to dis-
entangle the semantics and syntax of sentences
and carry out transfer experiments. Polarized-
VAE outperforms the VAE baseline and is
competitive with state-of-the-art approaches,
while being more a general framework that is
applicable to other attribute disentanglement
tasks.

1 Introduction

Learning representations of real-world data us-
ing deep neural networks has accelerated research
within a number of fields including computer vi-
sion and natural language processing (Zhang et al.,
2018). Previous work has advocated for the im-
portance of learning disentangled representations
(Bengio et al., 2013; Tschannen et al., 2018). Al-
though attempts have been made to formally define
disentangled representations (Higgins et al., 2018),
there is no widely accepted definition of disentan-
glement. However, the general consensus is that
a disentangled representation should separate the
distinct factors of variation that explain the data
(Bengio et al., 2013). Intuitively, a greater level of
interpretability can be achieved when independent
latent units are used to encode different attributes
of the data (Burgess et al., 2018).

However, recovering and separating all the dis-
tinct factors of variation in the data is a challenging

problem. For real-world datasets, there may not
be a way to separate each factor of variation into
a single dimension in the learnt fixed-size vector
representation. An easier problem would be to sep-
arate complex factors of interest into distinct sub-
spaces of the learnt representation. For instance,
a representation for text could be separated into
content and style subspaces, which then enables
style transfer.

Unsupervised disentanglement of underlying fac-
tors using variational autoencoders (Kingma and
Welling, 2014) has been explored in previous work
(Higgins et al., 2017; Kim and Mnih, 2018). How-
ever, Locatello et al. (2019) argue that completely
unsupervised disentanglement of the underlying
factors may be impossible without supervision or
inductive biases. Disentangling textual attributes in
a completely unsupervised manner has been shown
to be especially difficult, but attempts have been
made to leverage it for controllable text generation
(Xu et al., 2020).

In this work, we propose an approach referred to
as polarized-VAE1 to disentangle the latent space
into subspaces corresponding to different factors of
variation. We control the relative location of repre-
sentations in a particular latent subspace based on
the similarity of their respective input data points
according to a defined criterion (that corresponds
to an attribute in the input space, e.g., syntax). This
encourages similar points to be grouped together
and dissimilar points to be farther away from each
other in that subspace. Figuratively, we polarize
the latent subspaces, and hence the name.

Most previous work on supervised disentangle-
ment for text has focused on adversarial training
(John et al., 2019; Yang et al., 2018). Recently,
the task of disentangling textual semantics and syn-
tax into distinct subspaces has received attention

1The code is available at https://github.com/
vikigenius/prox_vae

https://github.com/vikigenius/prox_vae
https://github.com/vikigenius/prox_vae
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from researchers. For instance, Chen et al. (2019b)
use a sentence VAE model with several multitask
losses such as paraphrase loss and word position
loss for this disentanglement task. Bao et al. (2019)
incorporate adversarial training and make use of
syntax trees along with specific multitask losses to
disentangle semantics and syntax.

In polarized-VAE, we achieve disentanglement
through distance based learning. In contrast to
previous approaches, our method does not require
the use of several multitask losses or adversarial
training, both of which can result in optimization
challenges. Furthermore, we do not need precise at-
tribute labels, and we show that using proxy labels
based on the concept of similarity is sufficient.

In summary, the main contributions of this paper
are three-fold: (1) We propose a general framework
for learning disentangled representations. Even
though we test our method on an NLP task, the
underlying concept is very general and can be ap-
plied to other domains such as computer vision; (2)
We provide a method for disentanglement that does
not rely on adversarial training or specialized mul-
titask losses; (3) We demonstrate an application of
our method by disentangling the latent space into
subspaces corresponding to syntax and semantics.
Such a setting can be used to perform controlled
text decoding such as generating a paraphrase with
a desired sentence structure.

2 Proposed Approach

In VAEs, a probabilistic encoder qφ(z|x) is used
to encode a sentence x into a latent variable z,
and a probabilistic decoder pθ(x|z) attempts to
reconstruct the original sentence x from its latent
representation z. The objective is to minimize the
following loss function:

Lvae = Lrec + λklLkl (1)

where Lrec = −Eqφ(z|x)[log pθ(x|z)] is the
sentence reconstruction loss and Lkl =
Dkl(qφ(z|x)||p(z)) is the Kullback-Leibler
(KL) divergence loss. The KL term ensures that
the approximate posterior qφ(z|x) is close to the
prior p(z), which is typically assumed to be the
standard normal N (0, I); λkl is a hyperparameter
that controls the extent of KL regularization.

The idea behind our polarized-VAE approach
is to impose additional proximity regularization
on the latent subspaces learnt by VAEs. Let
C = {c1, ..., ck} be the collection of criteria, based

on which we wish to disentangle the latent space z
of the VAE into k subspaces: z = [z(1), . . . ,z(k)].
Here z(i) denotes the latent subspace correspond-
ing to the criterion ci (see Figure 1). In this paper,
we focus on the case where the latent space is dis-
entangled into semantics (c1) and syntax (c2), i.e.,
k = 2.

2.1 Supervision based on Similarity
We assume that we have information (possibly
noisy) about pairwise similarities of the input sen-
tences. Given a pair of sentences, the similarity
information can be either a binary label (whether
both the sentences belong to the same class or not)
or an integer or continuous scalar variable (e.g.,
edit distance). In this work, the similarity criterion
is a binary label:

Sim(xi,xj |c) =


1, if xi and xj are similar

w.r.t. the criterion c ∈ C
0, otherwise

(2)
In our case, the two criteria for disentanglement
are semantics (c1) and syntax (c2). We use this ad-
ditional information to regularize the latent space
of the VAE by incorporating the proximity based
loss functions, denoted as D(z

(1)
i , z

(1)
j |c1) and

D(z
(2)
i , z

(2)
j |c2).

2.2 Training Method and Proximity Function
Extending the traditional VAE approach, we have
a set of RNN-based encoders parameterized by φc
that learn the approximate posteriors qφc(z

(c)|x).
Given two data points xi and xj , we denote the
proximity of their encodings in the latent subspace
by D(qφc(z

(c)|xi), qφc(z(c)|xj)). We experiment
with multiple forms of proximity functions and
found cosine distance to perform the best:
D(qφc(z|xi), qφc(z|xj)) = dc(zi, zj) (3)

=
1

2

(
1− zizj
||zi||||zj ||

)
Based on the above distance, we add a regulariza-
tion term to the VAE loss function as follows. For
each example (x, c), we have a positive sample
xp and m negative samples xn1 , ...,xnm , such that
Sim(x,xp|c) = 1 and Sim(x,xnj |c) = 0; j ∈
{1, ...,m}:

Lc = max(0, 1 + dc(z, zp)−
1

m

m∑
j=1

dc(z, znj ))

(4)
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Figure 1: Model Architecture Figure 2: BLEU vs. PPL trade-off

This regularization function can be viewed as a
max-margin loss over the proximity function. The
final objective then becomes

L = Lvae +
∑
c∈C

λcLc (5)

3 Experiments

To demonstrate the effectiveness of polarized-VAE
in obtaining disentangled representations, we carry
out semantics-syntax separation of textual data,
using the Stanford Natural Language Inference
dataset (SNLI, Bowman et al. (2015)). Model im-
plementation details are provided in Appendix A.

3.1 Reconstruction and Sample Quality

We evaluate our model on reconstruction and sam-
ple quality to ensure that the distance-based regu-
larization used does not adversely impact its recon-
struction or sampling capabilities. For this purpose,
we compare our model and the standard VAE on
two metrics: reconstruction BLEU (Papineni et al.,
2002) and the Forward Perplexity (PPL)2 (Zhao
et al., 2018) of the generated sentences obtained by
sampling from the model’s latent space. As seen in
Figure 2, there is a clear trade-off between recon-
struction quality and sample quality, which is ex-
pected. Overall, polarized-VAE performs slightly
better than standard VAE and this indicates that the
proximity-based regularization does not inhibit the
model capabilities.

3.2 Controlled Generation and Transfer

We follow previous work (Chen et al., 2019a; Bao
et al., 2019) and analyze the performance of con-
trolled generation by evaluating syntax transfer in
generated text. Given two sentences, xsem and
xsyn, we wish to generate a third sentence that

2PPL is computed using the KenLM toolkit (Heafield et al.,
2013)

combines the semantics of xsem and the syntax of
xsyn using the following procedure:

zsem ∼ qφ1(z(1)|xsem) ; zsyn ∼ qφ2(z(2)|xsyn)

z = [zsem, zsyn] ; x ∼ pθ(x|z)

Following the evaluation methodology of Bao et al.
(2019), we measure transfer based on (1) semantic
content preservation for the semantic subspace and
(2) the tree edit distance (Zhang and Shasha, 1989)
for the syntactic subspace.

We consider pairs of sentences from the SNLI
test set for evaluation. We would like the gen-
erated sentence to be close to xsem and different
from xsyn in terms of semantics, which is mea-
sured using BLEU scores. We also report the dif-
ference to indicate the strength of transfer denoted
by ∆BLEU. Additionally, we would like the gen-
erated sentence to be syntactically similar to xsyn

and different from xsem, which is measured by av-
eraged sentence-level Tree Edit Distance (TED).
We also report ∆TED to indicate the strength of
the syntax transfer. Finally, we use the Geometric
Mean of ∆BLEU and ∆TED to report a combined
score ∆GM.

Our default variant of polarized-VAE uses the
entailment labels from SNLI dataset as a proxy for
semantic similarity based on which positive and
negative samples are chosen. For this model, we
threshold the difference in TED of syntax parses
as a proxy for syntactic similarity. As shown in
Table 1, we also evaluate three other variants of
our model. In polarized-VAE (wo) we use word
overlap (BLEU scores) as a heuristic proxy for es-
timating semantic similarity, while keeping syn-
tactic training unchanged. We also experiment
with heuristics for syntax in polarized-VAE (len)
where we use length as a heuristic proxy for syntax,
while still using ground truth entailment labels for
semantic training. Finally we combine these two
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BLEU TED Human Eval (%)
Model xsem

↑ xsyn
↓ ∆BLEU↑ xsem

↑ xsyn
↓ ∆TED↑ ∆GM↑ sem syn fluency

Standard VAE 4.75 4.67 0.08 13.70 13.60 0.10 0.28 11 11 43
Bao et al. (2019) 13.74 6.15 7.59 16.19 13.10 3.08 4.83 24 58 19
polarized-VAE 10.78 0.92 9.86 14.09 11.67 2.42 4.88 65 31 38

polarized-VAE (wo) 9.82 0.84 8.98 14.12 11.65 2.47 4.71 - - -
polarized-VAE (len) 10.10 0.76 9.34 12.68 11.44 1.44 3.67 - - -

polarized-VAE (wo, len) 9.41 0.87 8.54 12.65 11.48 1.17 3.16 - - -

Table 1: Syntax transfer results on SNLI. Bao et al. (2019) report TED after multiplying by 10, we report their
score after correction. For each model, the human evaluation scores represent percentage of instances that it was
ranked the best for a given criteria (semantics preservation/syntax transfer/fluency).

heuristics in polarized-VAE (wo, len), which can
be viewed as an unsupervised variant that does not
make use of any ground truth labels or syntax trees.

Our model outperforms the VAE baseline on
all metrics. In comparison to (Bao et al., 2019),
polarized-VAE is much better at ignoring the se-
mantic information present in xsyn during syntax
transfer, as evidenced by our lower BLEU scores
w.r.t. xsyn. On the other hand, we perform slightly
worse on BLEU w.r.t. xsem. Our model does a
better job at matching the syntax of sentence xsyn

as indicated by the lower TED score w.r.t. xsyn.
Qualitative samples of syntax transfer are provided
in Appendix C.

3.3 Human Evaluation

We carried out a human evaluation study for com-
paring outputs generated from different models.
The test setup is as follows - we provide as input
two sentences, xsem and xsyn to the model; we
wish to generate a sentence that combines the se-
mantics of xsem and the syntax of xsyn. We asked
5 human annotators to evaluate the outputs from
the 3 models: baseline-VAE, polarized-VAE and
the model from (Bao et al., 2019).

Each annotator was shown the input sentences
(xsem and xsyn) and the outputs from the 3 models
(randomized so that the evaluator is unaware of
which output corresponds to which model). They
were then asked to pick the one best output for
each of the following three criteria: (1) semantic
preservation — level of semantic similarity with
respect to xsem, (2) syntactic transfer — level of
syntactic similarity with respect to xsyn and (3)
fluency. We obtained annotations on 100 test set
examples from SNLI dataset. To aggregate the
annotations, we used majority voting with manual
tie breaking to find the best model for each test
example (and for each test criteria).

For each model, we report the percentage of in-
stances where it was voted as best for each criteria.

From the human evaluation results in Table 1, we
note that polarized-VAE is better at semantic trans-
fer and worse at syntactic transfer in comparison to
(Bao et al., 2019). The human evaluation results are
consistent with the automatic evaluation metrics,
where polarized-VAE scores higher on ∆BLEU
(indicator of semantic transfer strength) and (Bao
et al., 2019) is better at ∆TED (indicator of syntax
transfer strength). With respect to fluency criterion,
polarized-VAE ranks higher than (Bao et al., 2019).
However, the most fluent sentences are produced
by the baseline VAE. We hypothesise this to be due
to the presence of additional regularization terms
in the loss functions of both (Bao et al., 2019) and
polarized-VAE, which in turn affects the fluency of
their generated text (due to the deviation from the
reconstruction objective).

4 Conclusion and Future Work

We proposed a general approach for disentangling
latent representations into subspaces using prox-
imity functions. Given a pair of data points, a
predefined similarity criterion in the original input
space determines their relative distance in the cor-
responding latent subspace, which is modelled via
a proximity function. We apply our approach to
the task of disentangling semantics and syntax in
text. Our model substantially outperforms the VAE
baseline and is competitive with the state-of-the-
art approach while being more general as we do
not use specific multitask losses or architectures
to encourage preservation of semantic or syntactic
information. Our methodology is orthogonal to
the multitask learning approaches by Chen et al.
(2019b) and Bao et al. (2019) and can be naturally
combined with their methods. We would further
like to investigate this approach on disentanglement
applications outside of NLP. Another interesting
research direction would be to further explore suit-
able proximity functions and identify their proper-
ties that could facilitate disentanglement.



420

Acknowledgements

We would like to thank Dr. Pascal Poupart for his
valuable insights and ideas. We would also like to
thank Compute Canada (www.computecanada.ca)
for their support and GPU resourcees.

This Research was funded by the MITACS Ac-
celerate program in collaboration with Borealis AI.

References

Hareesh Bahuleyan. 2018. Natural language gen-
eration with neural variational models. CoRR,
abs/1808.09012.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,
Olga Vechtomova, Xinyu Dai, and Jiajun Chen.
2019. Generating sentences from disentangled syn-
tactic and semantic spaces. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6008–6019.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, pages 632–642.
Association for Computational Linguistics (ACL).

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous
space. Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loı̈c
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in β-vae. CoRR, abs/1804.03599.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019a. Controllable paraphrase gen-
eration with a syntactic exemplar. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5972–5984, Florence,
Italy. Association for Computational Linguistics.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019b. A multi-task approach for
disentangling syntax and semantics in sentence rep-
resentations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2453–2464.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696,
Sofia, Bulgaria.

Irina Higgins, David Amos, David Pfau, Sébastien
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Appendix

Polarized-VAE: Proximity Based
Disentangled Representation
Learning for Text Generation

A Model and Training Details

Both the semantic and syntactic encoders are bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997) with hidden size of 128, followed by two
feed-forward layers to parameterize the Gaussian
mean (µ) and standard deviation (σ) parameters
similar to standard VAE formulations used by (Bao
et al., 2019). The latent space dimensions were
taken to be dim(z1) = 64 and dim(z2) = 16. The
decoder is a unidirectional LSTM with a hidden
size of 128. We train the model for 30 epochs in
total using the ADAM optimizer (Kingma and Ba,
2015) with the default parameters and a learning
rate of 0.001.

We adopt the standard tricks for VAE training
including dropout and KL annealing followed by
(Bowman et al., 2016). We anneal both seman-
tic and syntactic KL weights (λkl) upto 0.3 (5000
steps) using the same sigmoid schedule (Bahu-
leyan, 2018).

B Proximity Functions

We provide results for the other proximity functions
that we explored for the polarized-VAE model.

Metric ∆BLEU↑ ∆TED↑ ∆GM↑

Cosine Distance 9.86 2.42 4.88
Hellinger Distance 4.12 0.86 1.42

MMD 5.21 1.17 1.91
KL Divergence 4.32 0.75 1.28
JS Divergence 5.81 1.46 2.33

Table 2: Comparison of polarized-VAE with different
proximity functions.

We note that since there is no closed form expres-
sion for the JS divergence between two Normal
Random variables we used the generalized JS Di-
vergence proposed by (Nielsen, 2020).

C Transfer Examples

We provide qualitative examples of our transfer
experiments, where we generate a sentence with
the semantics of xsem and the syntactic structure
of xsyn in Table 4. We also provide the sentences
generated by a standard-VAE for comparison.

D Disentanglement of Latent Subspaces

We test if there a possibility that the two latent sub-
spaces encode similar information. This is only
likely to happen if the attributes themselves are
highly correlated (e.g., if we want to disentangle
syntax from length). For such cases, even exist-
ing methods based on adversarial disentanglement
(John et al., 2019) may fail to completely separate
out correlated information.

However, if the attributes are different enough
(or ideally independent) for e.g., syntax and seman-
tics, this is less problematic. Note that we apply
our proximity loss independently to each of the sub-
spaces (i.e., leaving the other space(s) untouched
for a given input). This encourages the semantic
encoder to encode semantically similar sentences
close together and dissimilar ones far apart in the
semantic space (same applies for the syntax en-
coder).

We empirically compute correlations between
the semantic and syntax latent vectors for 1000 test
sentences as a way to check whether the two en-
coders learn similar information. By feeding 1000
sentences from the test set to the Polarized-VAE,
we obtain their corresponding semantic (zsem) and
syntax (zsyn) latent vectors. We then empirically
compute the correlation between zsem and zsyn. To
analyze the level of similarity of information rep-
resented in zsem and zsyn, we report the maximum
absolute correlation (max across all pairs of di-
mensions) and also the mean absolute correlation.
A higher value of correlation would indicate that
there is more overlapping information learnt by the
semantic and syntactic encoders. As illustrated in
Table 3, the analysis indicates that the semantic and
syntax latent vectors in polarized-VAE encodes less
correlated information than standard-VAE (due to
the proximity-based regularization). This demon-
strates that the 2 latent spaces learned by our model
encode sufficiently different information.

Model Max Abs Corr↓ Mean Abs Corr↓

standard-VAE 0.62 0.1
polarized-VAE 0.25 0.05

Table 3: Maximum Absolute Correlation and Mean Ab-
solute Correlation between the semantic and syntactic
latent vectors.
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xsem xsyn polarized-VAE standard-VAE
A man works near a ve-
hicle.

A woman showing her
face from something to
her friend.

A man directing traffic
on a bicycle to an emer-
gency vehicle.

A woman works on a
loom while sitting out-
side.

A family in a party
preparing food and en-
joying a meal.

Man reading a book. A person enjoying
food.

A man plays his guitar.

Two young boys are
standing around a cam-
era outdoors.

Three kids are on stage
with a vacuum cleaner.

Two young boys are
standing around a cam-
era outdoors.

Two people are stand-
ing on a snowy hill.

There are a group of peo-
ple sitting down.

They are outside. There are people. They are outside

a woman wearing a hat
and hat is chopping co-
conuts with machete.

The person is in a blue
shirt playing with a
ball.

a woman with a hat is
hanging upside down
over utensils.

A girl in a pink shirt
and elbow pads is
swirling bubbles.

The young girl and a
grownup are standing
around a table , in front
of a fence.

A guy stands with cane
outdoors.

The young girl is out-
side.

The little boy is doing
a show.

A person is sleeping on
bed.

A man and his son are
walking to the beach ,
looking for something.

A man and a child sit
on the ground covered
in bed with rocks.

A man is wearing blue
jeans and a blue shirt
walking.

The men and women are
enjoying a waterfall.

A dog is holding an ob-
ject.

The man and woman
are outdoors.

The two men are work-
ing on the roof.

a man dressed in uni-
form.

There is a man with a
horse on it.

A man dressed in black
clothing works in a
house.

A man dressed in black
and white holding a
baby.

Table 4: Examples of transferred sentences that use the semantics of xsem and syntax of xsyn


