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Abstract
Natural language processing (NLP) tasks
(e.g. question-answering in English) benefit
from knowledge of other tasks (e.g., named
entity recognition in English) and knowledge
of other languages (e.g., question-answering in
Spanish). Such shared representations are typ-
ically learned in isolation, either across tasks
or across languages. In this work, we pro-
pose a meta-learning approach to learn the in-
teractions between both tasks and languages.
We also investigate the role of different sam-
pling strategies used during meta-learning. We
present experiments on five different tasks and
six different languages from the XTREME
multilingual benchmark dataset (Hu et al.,
2020). Our meta-learned model clearly im-
proves in performance compared to competi-
tive baseline models that also include multi-
task baselines. We also present zero-shot eval-
uations on unseen target languages to demon-
strate the utility of our proposed model.

1 Introduction

Multi-task and multilingual learning are both prob-
lems of long standing interest in natural language
processing. Leveraging data from multiple tasks
and/or additional languages to benefit a target task
is of great appeal, especially when the target task
has limited resources. When it comes to multiple
tasks, it is well-known from prior work on multi-
task learning (Liu et al., 2019b; Kendall et al., 2018;
Liu et al., 2019a; Yang and Hospedales, 2017) that
jointly learning a model across tasks can benefit
the tasks mutually. For multiple languages, the
ability of deep learning models to learn effective
embeddings has led to their use for joint learning
of models across languages (Conneau et al., 2020;
Conneau and Lample, 2019; Artetxe and Schwenk,
2019); learning cross-lingual embeddings to aid
languages in limited resource settings is of grow-
ing interest (Kumar et al., 2019; Wang et al., 2017;

Adams et al., 2017). Let us say we had access to
M tasks across N different languages - c.f. Table 1
that outlines such a matrix of tasks and languages
from the XTREME benchmark (Hu et al., 2020).
How do we perform effective joint learning across
tasks and languages? Are there specific tasks or
languages that need to be sampled more frequently
for effective joint training? Can such sampling
strategies be learned from the data?

In this work, we adopt a meta-learning approach
for efficiently learning parameters in a shared pa-
rameter space across multiple tasks and multiple
languages. Our chosen tasks are question an-
swering (QA), natural language inference (NLI),
paraphrase identification (PA), part-of-speech tag-
ging (POS) and named entity recognition (NER).
The tasks were chosen to enable us to employ a
gamut of different types of language representa-
tions needed to tackle problems in NLP. In Fig-
ure 1, we illustrate the different types of representa-
tions by drawing inspiration from the Vauquois Tri-
angle (Vauquois, 1968), well-known for machine
translation, and situating our chosen tasks within
such a triangle. Here we see that POS and NER
are relatively ‘shallower’ analysis tasks that are
token-centric, while QA, NLI and PA are ‘deeper’
analysis tasks that would require deeper seman-
tic representations. This representation suggests a
strategy for effective parameter sharing. For the
deeper tasks, the same task in different languages
could have representations that are closer and hence
benefit each other, while for the shallower tasks,
keeping the language unchanged and exploring dif-
ferent tasks might be more beneficial. Interestingly,
this is exactly what we find with our meta-learned
model and is borne out in our experimental results.
We also find that as the model progressively learns,
the meta-learning based models for the tasks re-
quiring deeper semantic analysis benefit more from
joint learning compared to the shallower tasks.
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Figure 1: Illustration derived from Vauquois Triangle to linguistically motivate our setting. POS and NER being lower down in
the representations (and are thus ‘shallower’) are further away from the same task in another language. QA, XNLI and PAWS
being higher up in the representations (and are thus ‘deeper’) are closer to the same task in another language.

With access to multiple tasks and languages dur-
ing training, the question of how to sample effec-
tively from different tasks and languages also be-
comes important to consider. We investigate dif-
ferent sampling strategies, including a parameter-
ized sampling strategy, to assess the influence of
sampling across tasks and languages on our meta-
learned model.

Our main contributions in this work are three-
fold:

• We present a meta-learning approach that en-
ables effective sharing of parameters across
multiple tasks and multiple languages. This is
the first work, to our knowledge, to explore the
interplay between multiple tasks at different
levels of abstraction and multiple languages
using meta-learning. We show results on the
recently-released XTREME benchmark and
observe consistent improvements across dif-
ferent tasks and languages using our model.
We also offer rules of thumb for effective
meta-learning that could hold in larger settings
involving additional tasks and languages.

• We investigate different sampling strategies
that can be incorporated within our meta-
learning approach and examine their benefits.

• We evaluate our meta-learned model in zero-
shot settings for every task on target languages
that never appear during training and show its
superiority compared to competitive zero-shot
baselines.

2 Related Work

We summarize three threads of related research that
look at the transferability in models across differ-
ent tasks and different languages: multi-task learn-
ing, meta-learning and data sampling strategies for
both multi-task learning and meta-learning. Multi-
task learning (Caruana, 1993) has proven to be
highly effective for transfer learning in a variety of
NLP applications such as question answering, neu-
ral machine translation, etc. (McCann et al., 2018;
Hashimoto et al., 2017; Chen et al., 2018; Kiper-
wasser and Ballesteros, 2018). Some multi-task
learning approaches (Jawanpuria et al., 2015) have
attempted to identify clusters (or groups) of related
tasks based on end-to-end convex optimization
formulations. Meta-learning algorithms (Nichol
et al., 2018) are highly effective for fast adapta-
tion and have recently been shown to be beneficial
for several machine learning tasks (Santoro et al.,
2016; Finn et al., 2017). Gu et al. (2018) use a
meta-learning algorithm for machine translation to
leverage information from high-resource languages.
Dou et al. (2019) investigate multiple model agnos-
tic meta-learning algorithms for low-resource nat-
ural language understanding on the GLUE (Wang
et al., 2018) benchmark.

Data sampling strategies for multi-task learn-
ing and meta-learning form the third thread of
related work. A good sampling strategy has
to account for the imbalance in dataset sizes
across tasks/languages and the similarity between
tasks/languages. A simple heuristic-based solu-
tion to address the issue of data imbalance is to
assign more weight to low-resource tasks or lan-
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guages (Aharoni et al., 2019). Arivazhagan et al.
(2019) define a temperature parameter which con-
trols how often one samples from low-resource
tasks/languages. The MultiDDS algorithm, pro-
posed by Wang et al. (2020b), actively learns a
different set of parameters for sampling batches
given a set of tasks such that the performance on a
held-out set is maximized. We use a variant of Mul-
tiDDS as a sampling strategy in our meta-learned
model. Nooralahzadeh et al. (2020) is most similar
in spirit to our work in that they study a cross-
lingual and cross-task meta-learning architecture
but only focus on zero-shot and few-shot transfer
for two natural language understanding tasks, NLI
and QA. In contrast, we study many tasks in many
languages, in conjunction with sampling strategies,
and offer concrete insights on how best to guide
the meta-learning process when multiple tasks are
in the picture.

3 Methodology

Our setting is pivoted on a grid of tasks and
languages (with some missing entries as shown
in Table 1). Each row of the grid corresponds
to a single task. A cell of the grid corre-
sponds to a Task-Language pair which we re-
fer to as a TL pair (TLP). We denote by qi =
|Ditrain|/

(∑n
k=1 |Dktrain|

)
, the fraction of the

dataset size for the ith TLP and by PD(i), the prob-
ability of sampling a batch from the ith TLP during
meta training. The distribution over all TLPs, viz.,
is a Multinomial (sayM) over PD(i)s.

3.1 Our Meta-learning Approach
The goal in the standard meta learning setting is
to obtain a model that generalizes well to new
test/target tasks given some distribution over train-
ing tasks. This can be achieved using optimization-
based meta-learning algorithms that modify the
learning procedure in order to learn a good ini-
tialization of the parameters. This can serve as a
useful starting point that can be further fine-tuned
on various tasks. Finn et al. (2017) proposed a gen-
eral optimization algorithm called Model Agnostic
Meta Learning (MAML) that can be trained using
gradient descent. MAML aims to minimize the
following objective

min
θ

∑
Ti∼M

Li
(
Uki (θ)

)
(1)

where M is the Multinomial distribution over
TLPs, Li is the loss andUki a function that returns θ

after k gradient updates both calculated on batches
sampled from Ti. Minimizing this objective using
first order methods involves computing gradients
of the form ∂

∂θU
k
i (θ), leading to the expensive com-

putation of second order derivatives. Nichol et al.
(2018) proposed an alternative first-order meta-
learning algorithm named “Reptile” with simple
update rule:

θ ← θ + β
1

|{Ti}|
∑
Ti∼M

(θ
(k)
i − θ) (2)

where θ(k)i is Uki (θ). Despite its simplicity, a recent
study by Dou et al. (2019) showed that Reptile is
atleast as effective as MAML in terms of perfor-
mance. We therefore employed Reptile for meta
learning in all our experiments.

Algorithm 1 Our Meta-learning Approach
Input: Dtrain set of TLPs for meta training

(Also Ddev for parametrised sampling)
Sampling Strategy (Temperature / Mul-

tiDDS)
Output: The converged multi-task multilingual

model parameters θ∗

1: Initialize PD(i) depending on the sampling
strategy

2: while not converged do
3: . Perform Reptile Updates
4: Sample m TLPs T1, T2, . . . , Tm fromM
5: for i = 1,2,. . . ,m do
6: θ

(k)
i ← Uki (θ), denoting k gradient up-

dates from θ on batches of TLP Ti
7: end for
8: θ ← θ + β

m

∑m
i=1(θ

(k)
i − θ)

9: if Sampling Strategy←MultiDDS then
10: for Ditrain ∈ Dtrain do
11: R(i; θ) ← cos(gdev, gtrain), gdev is

gradient on {Ddev} and gtrain is gra-
dient on Ditrain

12: end for
13: . Update Sampling Probabilities
14: dψ ←

∑n
i=1R(i; θ) · ∇ψlog(PD(i;ψ))

15: ψ ← GradientUpdate(ψ, dψ)
16: end if
17: end while

3.2 Selection and Sampling Strategies
3.2.1 Selection
The choice of TLPs in meta-learning plays a vital
role in influencing the model performance, as we
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will see in more detail in Section 5. Apart from
the use of all TLPs across both tasks and languages
during training, selecting all languages for a given
task (Gu et al., 2018) and selecting all tasks for
a given language (Dou et al., 2019) are two other
logical choices. We refer to the last two settings
as being Task-Limited and Lang-Limited,
respectively.

3.2.2 Heuristic Sampling
Once the TLPs for meta training (denoted by D)
have been selected, we need to sample TLPs from
M. We investigate temperature-based heuristic
sampling (Arivazhagan et al., 2019) which defines
the probability of any dataset as a function of its
size. PD(i) = q1/τi /

(∑n
k=1 q

1/τ
k

)
where PD(i) is

the probability of the ith TLP to be sampled and
τ is the temperature parameter. τ = 1 reduces to
sampling TLPs proportional to their dataset sizes
and τ →∞ reduces to sampling TLPs uniformly.

3.2.3 Parameterized Sampling
The sampling strategy defined in Section 3.2.2 re-
mains constant throughout meta training and only
depends on dataset sizes. Wang et al. (2020b) pro-
posed a parameterized sampling technique called
MultiDDS that builds on Differential Data Selec-
tion (DDS) (Wang et al., 2020a) for weighing multi-
ple datasets. The PD(i) are parameterized using ψi
as PD(i) = eψi/

∑
j e

ψj with the initial value of ψ
satisfying PD(i) = qi. The optimization for ψ and
θ is performed in an alternating manner (Colson
et al., 2007)

ψ∗ = argmin
ψ

J(θ∗(ψ),Ddev) (3)

θ∗(ψ) = argmin
θ

Ex,y∼P (T ;ψ)[l(x, y; θ)] (4)

J(θ,Ddev) is the objective function which we want
to minimize over development set(s). The reward
function, R(x, y; θt), is defined as:

R(x,y;θt) ≈ ∇J(θt,Ddev)T︸ ︷︷ ︸
gdev

·∇θl(x,y;θt−1)︸ ︷︷ ︸
gtrain

(5)

≈ cos(gdev, gtrain) (6)

ψ’s are updated using the REINFORCE (Williams,
1992) algorithm.

ψt+1←ψt +R(x,y;θt) · ∇ψlog(P (x,y;ψ)) (7)

The Reptile meta-learning algorithm (along with
details of the parameterized sampling strategy) is
outlined in Algorithm 1.

4 Experimental Setup

4.1 Evaluation Benchmark
The recently released XTREME dataset (Hu et al.,
2020) is a multilingual multi-task benchmark
consisting of classification, structured prediction,
QA and retrieval tasks. Each constituent task
has associated datasets in multiple languages.
The sources of POS and NER datasets are
Universal Dependency v2.5 treebank (Nivre
et al., 2020) and WikiAnn (Pan et al., 2017)
respectively, with ground-truth labels available
for each language. Large-scale datasets for
QA, NLI and PA were originally available only
for English. The PAWS-X (Yang et al., 2019)
dataset contains machine-translated training pairs
and human-translated evaluation pairs for PA.
The authors of XTREME train a custom-built
translation system to obtain translated datasets
for QA and NLI. For the NLI task, we train using
MultiNLI (Williams et al., 2018) and evaluate on
XNLI (Conneau et al., 2018). For the QA task,
SQuAD 1.1 (Rajpurkar et al., 2016) was used
for training and MLQA (Lewis et al., 2019) for
evaluation.

Regarding evaluation metrics, for QA we report F1
scores and for the other four tasks (PA, NLI, POS,
NER) we report accuracy scores.

4.2 Implementation Details
BERT (Devlin et al., 2019) models yield state-of-
the-art performance for many NLP tasks. Since we
are dealing with datasets in multiple languages, we
build our meta learning models on mBERT (Pires
et al., 2019; Wu and Dredze, 2019) base architec-
ture, implemented by Wolf et al. (2020), with out-
put layers specific to each task. In our experiments,
we use the AdamW (Loshchilov and Hutter, 2017)
optimizer to make gradient-based updates to the
model’s parameters using batches from a particular
TLP (Alg. 1, Line 6). This optimizer is shared
across all the TLPs. When performing the meta-
step (Alg. 1, Line 8), we use vanilla stochastic gra-
dient descent (SGD) (Robbins and Monro, 1951)
updates. Similarly, in the case of parameterized
sampling the weights are updated (Alg. 1, Line 15)
using vanilla SGD.

Meta training involves sampling a set of m tasks,
taking k gradient update steps from the initial pa-
rameter to arrive at θ(k)i for task Ti and finally up-
dating θ using the Reptile update rule. For meta-
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Task en hi es de fr zh

Natural Language Inference (NLI) 392K 392K 392K 392K

Question Answering (QA) 88.0K 82.4K 81.8K 80.0K

Part Of Speech (POS) 21.2K 13.3K 28.4K 166K 7.9K

Named Entity Recognition (NER) 20K 5K 20K 20K 20K 20K

Paraphrase Identification (PA) 49.4K 49.4K 49.4K 49.4K 49.4K

Table 1: Dataset matrix showing datasets that are available (green) from the XTREME Benchmark. The number of training
instances are also mentioned for each available dataset.

models we fix learning rate = 3e-5 and dropout
probability = 0.1 (provided by XTREME for repro-
duction of baselines). Grid search was performed
on m ∈ {4, 8, 16}, k ∈ {2, 3, 4, 5} and β ∈
{0.1, 0.5, 1.0} for All TLPs model (τ = 1). The
best setting (m = 8, k = 3, β = 1.0) was selected
based on validation score (accuracy or F1) aver-
aged over all TLPs. These hyperparameters were
kept constant for all further experiments. Each
meta-learning model is trained for 5 epochs. We
then finetune the meta model individually on each
TLP and evaluate the results. Finetuning param-
eters vary for different task and are mentioned in
Appendix B.

4.3 Data Selection and Sampling Strategies

We experiment with three different configurations
for the set of TLPs to be considered during meta-
learning: (a) using all tasks for a given language
(Lang-Limited) (b) using all languages for a
given task (Task-Limited) and (c) using all
tasks and all languages (All TLPs). Since the
dataset size varies across tasks (as also across lan-
guages), we use temperature sampling within each
setting for τ = 1, 2, 5 and∞. (In Table 4 of the
Appendix C in the supplementary material, we re-
port results for different choices of TLP selection
and different values of the temperature.)

With respect to the Input in Algorithm 1, there
are two sets of TLPs that need to be selected for
parameterized sampling: Dtrain and Ddev. In
order to analyse the effect of the choice of task
and language, we experiment with the following 4
settings -
(a) Dtrain = Lang-Limited, Ddev = Target
TLP
(b) Dtrain = Task-Limited, Ddev = Target
TLP
(c) Dtrain = All TLPs, Ddev =
Lang-Limited
(d) Dtrain = All TLPs, Ddev =

Task-Limited.
The models (a), (b) are referred to as mDDS and
(c), (d) are called mDDS-Lang and mDDS-Task
respectively. Results for these 4 models are re-
ported in Table 2 alongside temperature sampling
for comparison.

4.4 Baselines

Our first baseline system for each TLP uses
mBERT-based models trained on data specific to
each TLP, which is either available as ground-truth
or in a translated form. We follow the same hy-
perparameter settings as reported in XTREME. We
also present three multi-task learning (MTL) base-
line systems: task limited (Task-Limited), lan-
guage limited (Lang-Limited), and the use of
all TLPs during training (All TLPs MTL). Dur-
ing MTL training, we concatenate and shuffle the
selected datasets. The model is trained for 5 epochs
with a learning rate of 5e-5. We refer the reader to
Appendix A for more training details.

5 Results and Analysis

Table 2 presents all our main results comparing dif-
ferent data selection and sampling strategies used
for meta-learning. Each column corresponds to
a target TLP; the best-performing meta-learned
models for each target TLP within each data se-
lection setting have been highlighted in colour.
(Light-to-dark gradation reflects improvements in
performance.) From Table 2, we see that our meta-
learned models outperform the baseline systems
across all the TLPs corresponding to QA, NLI and
PA. (POS and NER also mostly benefit from meta-
learning, but the margins of improvement are much
smaller compared to the other tasks given the al-
ready high baseline scores).

Task-Limited vs Lang-Limited mod-
els. For QA and NLI, we observe that the
Task-Limited models are always better than
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Figure 2: (a) Size of train dataset by language for each task (b) Proportion of dataset in meta training for different value of τ .

Model SS QA (F1) NLI (Acc.) PA (Acc.)

en hi es de en es de fr en es de fr zh

Baselines 79.94 59.94 65.83 63.17 81.39 78.37 76.82 77.30 92.35 89.75 87.45 89.61 83.32
Lang-Limited MTL 69.80 53.24 62.29 58.91 80.49 76.10 75.18 74.94 93.75 87.75 85.35 88.55 80.49
Task-Limited MTL 74.04 57.77 64.28 61.47 80.95 78.15 75.90 77.14 93.65 86.65 86.25 86.82 81.24

All TLPs MTL 63.22 42.94 54.05 51.61 80.05 76.48 74.86 76.18 93.50 90.30 88.45 89.71 82.66

Lang-Limited
Temp -0.04 -0.24 -0.27 +0.07 +0.06 +0.39 +0.03 -0.70 +0.45 +0.05 +0.35 +0.40 -0.06
mDDS +0.07 -0.12 +0.06 +0.14 +0.02 -0.61 -0.80 -0.60 -0.25 -0.05 0.00 -0.30 -1.41

Task-Limited
Temp +0.55 +0.43 +0.50 +0.40 +1.65 +1.12 +1.25 +0.79 +0.20 -0.15 -0.55 +0.85 -0.15
mDDS +0.21 +0.62 -0.67 +1.06 +1.32 +1.10 +1.39 +0.48 +0.50 -0.65 -0.35 +1.45 +1.06

All TLPs
Temp +0.53 +0.47 +0.32 +0.47 +1.90 +1.22 +1.45 +0.95 +0.35 +0.45 +1.20 +1.05 +0.85

mDDS-Lang +0.08 +0.50 -1.57 +0.08 +0.76 +0.26 -0.10 +0.32 +0.25 +0.85 +0.75 +0.75 +1.11
mDDS-Task +0.18 +0.60 +0.11 +0.54 +1.50 +0.90 +0.72 +0.72 +0.10 +0.80 +1.27 +1.10 +1.16

Model SS NER (Acc.) POS (Acc.)

en hi es de fr zh en hi es de zh

Baselines 93.23 95.72 95.84 97.32 95.48 94.34 96.15 93.57 96.02 97.37 92.60
Lang-Limited MTL 92.54 92.67 95.14 96.40 94.38 92.97 95.08 92.43 95.19 97.19 89.71
Task-Limited MTL 93.51 93.94 95.77 97.09 95.27 93.72 95.70 93.34 95.73 97.35 92.52

All TLPs MTL 92.28 91.95 94.90 96.18 94.38 92.53 94.70 91.89 95.10 97.03 89.92

Lang-Limited
Temp +0.60 +0.06 +0.09 +0.24 -0.09 -0.47 -0.06 -0.01 +0.10 +0.04 -0.17
mDDS -0.21 -0.85 -0.20 -0.10 -0.57 -0.55 -0.27 -0.02 -0.19 -0.06 -0.37

Task-Limited
Temp +0.79 -0.46 0.00 -0.07 -0.18 -0.51 -0.22 -0.05 -0.21 +0.02 -0.09
mDDS -0.10 -1.61 0.00 -0.16 -0.33 -0.69 -0.38 -0.02 -0.22 +0.05 -0.12

All TLPs
Temp -0.15 -0.70 +0.13 0.00 -0.16 -0.39 -0.22 -0.09 -0.21 +0.03 -0.16

mDDS-Lang -0.16 -0.09 +0.11 -0.08 -0.14 -0.65 -0.21 -0.10 -0.11 +0.03 -0.17
mDDS-Task -0.27 -0.42 +0.08 -0.14 -0.07 -0.58 -0.22 -0.14 -0.19 +0.02 -0.09

Table 2: Main results comparing different data selection and sampling strategies. Sampling strategy, SS=Temp refers to
the temperature-based sampling strategy and SS=mDDS refers to the multiDDS-based sampling strategy. mDDS-Task and
mDDS-Lang refer to the use of a development set for multiDDS that contains all languages for a task and all tasks for a language,
respectively. The best result among Baseline and three MTL models is highlighted using orange. For each column we present the
difference (positive or negative) of the meta models from the best baseline (highlighted in orange) of that column

the Lang-Limited models. This is in line
with our intuition that tasks like QA and NLI
(which require deeper semantic representations)
will benefit more by using data from different
languages for the same task. We see the oppo-
site seems to hold for POS and NER where the
Lang-Limited models are almost always bet-
ter than the Task-Limited models. With POS
and NER being relatively shallower tasks, it makes

sense that they benefit more from language-specific
training that relies on token embeddings shared
across tasks.

Investigating Sampling Strategies. In Table 2,
all the scores shown for the Temp sampling strat-
egy are the best scores across four different val-
ues of T , T = 1, 2, 5,∞. (The complete table
is available in Appendix C in the supplementary
material.) We also present comparisons with the
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Figure 3: Evolution of ψs and rewards as a function of training time for three Lang-Limited tasks evaluated on (a) QA-en
(b) NLI-es and (c) POS-de.

mDDS, mDDS-Lang and mDDS-Task sampling
strategies enforced within the Lang-Limited,
Task-Limited and All TLPs models, respec-
tively. For POS and NER, our best meta-learned
models are mostly Lang-Limited with Temp
sampling. It is intuitive that for these shallower
tasks, mDDS does not offer any benefits from allow-
ing to sample instances from other tasks.

To better understand the effects of mDDS sam-
pling, Figure 3 shows plots of the rewards and
sampling probabilities ψ’s computed as a function
of training time for two deeper tasks - QA-en and
NLI-es along with a shallower task - POS-de. We
note that initially all the TLPs in any mDDS setting
would start with similar rewards, thus lending ψ’s
to converge towards the T =∞ state. We highlight
the following three observations:

• We find that the mDDS strategy does not help
NLI at all. This is because the NLI task oc-
cupies the largest proportion across tasks at
the start, as shown in Figure 2, and the propor-
tion of NLI decreases substantially over time
(since all tasks start with similar rewards at the
beginning of meta training). Thus, for tasks
that are over-represented in the meta-learning
phase, temperature-based sampling is likely
to be sufficient.

• We observe that the rewards for both QA and
NLI are consistently high, irrespective of the

target TLP. This suggests that both QA and
NLI are information-rich tasks and could ben-
efit other tasks in meta-learning. This is also
apparent from the accuracies for PA in Ta-
ble 2, where all the best meta-learned models
employ mDDS sampling.

• From the sampling probabilities for QA-en,
we see that both QA and NLI are given almost
equal weightage. However, from the F1 scores
in Table 2, the best numbers for QA are in the
Task-Limited setting which suggests that
QA does not benefit from any other task. One
explanation for this could be that the sequence
length of inputs for NLI is 128 while the in-
puts for QA are of length 384, thus allowing
lesser room for QA to be benefited by NLI.

Zero-shot Evaluations. Zero-shot evaluation is
performed on languages that were not part of the
training (henceforth, we refer to them as exter-
nal languages). In the case of QA, NLI and PA
we select all external language for which datasets
were available in XTREME. For NER and POS,
the number of external languages is close to 35 so
we choose a subset of these to report the results.
For evaluation, we compare models that are ag-
nostic to the target language during meta training
(Task-Limited, All TLPs and All TLPs
mDDS-Task). Since Lang-Limited MTL is
language specific and does not offer a competitive
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Model NER (Acc.) POS (Acc.)

bn et fi ja mr ta te ur et fi ja mr ta te ur

Task-Limited MTL 81.80 93.98 94.47 81.03 90.63 83.46 87.67 69.25 85.21 83.98 58.42 72.56 73.88 79.15 86.08
All TLPs MTL 77.49 90.35 92.65 77.80 81.19 81.21 86.17 64.27 69.63 73.50 57.24 68.80 70.52 72.41 81.59

Task-Limited +1.91 +0.63 +0.16 +0.35 -0.67 +1.34 +0.63 +2.14 +2.94 +2.15 +0.83 +8.64 +2.34 +2.82 -0.30
All TLPs +0.62 +0.35 -0.11 +0.19 -0.92 +1.25 +0.43 +9.10 +2.56 +2.01 -1.42 +8.27 +1.24 +2.51 -0.16

All TLPs mDDS-Task -0.83 +0.09 -0.20 -1.34 -1.87 +0.49 +0.05 +3.62 +1.91 +1.08 -1.74 +8.64 +1.24 +1.88 -0.72

Model QA (F1) NLI (Acc.) PA (Acc.)

ar vi ar bg el ru sw th tr ur vi ja ko

Task-Limited MTL 32.25 44.35 62.88 67.47 66.09 67.85 43.61 43.16 57.79 57.03 69.45 78.23 74.85
All TLPs MTL 40.14 54.08 64.54 67.99 66.25 70.05 43.89 45.72 56.73 56.93 72.02 77.61 73.49

Task-Limited +8.14 +6.63 +4.35 +5.15 +4.62 +2.72 +8.51 +14.42 +6.79 +5.27 +1.3 +0.21 +1.81
All TLPs +5.24 +3.62 +4.41 +4.73 +4.79 +2.94 +11.44 +13.04 +7.05 +5.67 +1.24 +3.07 +4.57

All TLPs mDDS-Task +6.89 +6.29 +3.19 +4.33 +4.09 +2.38 +8.71 +13.16 +7.09 +4.41 +1.04 +2.81 +4.92

Table 3: Results comparing Zero-shot evaluations for several external languages with competitive MTL baselines. The best
MTL model is highlighted using orange. Rows for meta models show the difference (positive or negative) of the meta model
result from the best MTL setting (orange) for that column

baseline when applied to an external language, we
compare against Task-Limited MTL and All
TLPs MTL that are more competitive.

An interesting observation from the zero shot
results in Table 3 is that for every external lan-
guage, on the ‘shallower’ NER and POS tasks,
the Task-Limited variant of meta-learning per-
forms better than both the variants of MTL, viz.,
Task-Limited MTL and All TLPs MTL. In
contrast, the ‘deeper’ tasks, viz., QA, NLI and PA
benefit more from the use of meta-learning using
All TLPs setting, presumably because, as argued
earlier, the deeper tasks tend to help each other
more.

6 Conclusion

We present effective use of meta-learning for cap-
turing task and language interactions in multi-task,
multi-lingual settings. The effective use involves
appropriate strategies for sampling tasks and lan-
guages as well as rough knowledge of the level of
abstraction (deep vs. shallow representation) of
that task. We present experiments on the XTREME
multilingual benchmark dataset using five tasks
and six languages. Our meta-learned model shows
clear performance improvements over competitive
baseline models. We observe that deeper tasks
consistently benefit from meta-learning. Further-
more, shallower tasks benefit from deeper tasks
when meta-learning is restricted to a single lan-
guage. Finally, zero-shot evaluations for several
external languages demonstrate the benefit of using
meta-learning over two multi-task baselines while
also reinforcing the linguistic insight that tasks re-
quiring deeper representations tend to collaborate

better.
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Appendices

Appendix A: Baseline Training Details
For QA learning rate is 3e-5 and sequence length
is 384 and the model is trained for 2 epochs. For
PA, NLI, POS and NER the learning rate is 2e-5
and sequence length is 128. NLI and PA mod-
els are trained for 5 epochs while POS and NER
models are trained for 10 epochs. The choice of
hyperparameters was kept constant across different
languages for the same task.

Appendix B: Finetuning Details
For finetuning we kept the same number of epochs
as the baseline of that task i.e 2 epochs for QA, 10
epochs for POS and NER, 5 epochs for NLI and
PA. For QA we finetune with learning rate 3e-5
and 3e-6 and POS/NER we finetune with learning
rate 2e-5 and 2e-6 and select the better of the two
model. For PA and NLI the results for learning rate
2e-5 were consistently worse compared to 2e-6 so
we just use lr = 2e-6 for PA and NLI.

Appendix C: Temperature Sampling
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Model T QA (F1) NLI (Acc.) PA (Acc.)

en hi es de en es de fr en es de fr zh

Baselines 79.94 59.94 65.83 63.17 81.39 78.37 76.82 77.30 92.35 89.75 87.45 89.61 83.32
Lang-Limited MTL 69.80 53.24 62.29 58.91 80.49 76.10 75.18 74.94 93.75 87.75 85.35 88.55 80.49
Task-Limited MTL 74.04 57.77 64.28 61.47 80.95 78.15 75.90 77.14 93.65 86.65 86.25 86.82 81.24

All TLPs MTL 63.22 42.94 54.05 51.61 80.05 76.48 74.86 76.18 93.50 90.30 88.45 89.71 82.66

Lang-Limited

T = 1 79.49 59.42 64.67 63.04 81.13 78.76 76.23 76.51 93.85 89.15 87.83 89.63 82.56
T = 2 78.81 59.68 65.10 63.24 80.87 77.56 76.85 76.60 93.85 90.15 87.70 89.41 83.10
T = 5 79.90 58.74 65.56 62.12 81.19 78.17 76.10 76.56 93.65 90.35 88.60 90.11 83.20

T = ∞ 79.71 59.70 65.29 62.89 81.45 78.45 76.74 76.46 94.20 89.65 88.80 89.56 83.26

Task-Limited

T = 1 80.30 60.37 66.32 63.57 82.91 79.49 77.96 78.02 93.95 90.15 87.50 90.56 82.66
T = 2 79.95 59.94 66.33 63.50 83.03 79.41 77.94 78.08 93.05 89.85 87.90 89.66 83.17
T = 5 80.49 60.17 65.94 62.74 82.75 79.33 77.98 78.00 93.90 89.80 87.65 90.21 83.12

T = ∞ 79.77 59.86 66.01 62.96 83.03 79.39 78.07 78.09 93.60 89.75 87.75 89.61 82.42

All TLPs

T = 1 80.20 59.89 66.10 63.64 83.29 79.59 77.84 78.19 93.90 89.95 88.70 90.41 83.57
T = 2 80.47 60.41 66.04 63.56 82.71 78.83 77.96 78.04 93.50 90.75 89.65 90.71 84.02
T = 5 80.01 59.38 66.15 63.53 83.19 79.51 78.10 78.21 94.10 90.05 88.70 90.26 84.17

T = ∞ 80.27 59.82 64.41 63.08 83.27 79.43 78.27 78.25 94.05 90.75 88.70 90.76 83.42

Model T NER (Acc.) POS (Acc.)

en hi es de fr zh en hi es de zh

Baselines 93.23 95.72 95.84 97.32 95.48 94.34 96.15 93.57 96.02 97.37 92.60
Lang-Limited MTL 92.54 92.67 95.14 96.40 94.38 92.97 95.08 92.43 95.19 97.19 89.71
Task-Limited MTL 93.51 93.94 95.77 97.09 95.27 93.72 95.70 93.34 95.73 97.35 92.52
All TLPs MTL 92.28 91.95 94.90 96.18 94.38 92.53 94.70 91.89 95.10 97.03 89.92

Lang-Limited

T = 1 93.14 95.36 95.40 97.21 95.39 93.63 95.96 93.33 95.81 97.32 92.32
T = 2 93.24 94.76 95.80 97.56 95.07 93.53 95.87 93.53 95.93 97.39 92.40
T = 5 94.03 95.78 95.93 97.24 94.99 93.60 96.09 93.56 95.85 97.33 92.43

T = ∞ 94.11 95.40 95.75 96.89 95.35 93.87 95.99 93.28 96.12 97.41 92.35

Task-Limited

T = 1 94.30 95.26 95.82 97.25 95.26 93.62 95.93 93.36 95.81 97.31 92.38
T = 2 93.30 94.92 95.82 97.07 95.30 93.63 95.84 93.52 95.78 97.31 92.38
T = 5 93.29 95.02 95.73 96.98 95.19 93.56 95.92 93.34 95.75 97.39 92.43

T = ∞ 93.37 94.70 95.84 96.95 95.20 93.83 95.77 93.33 95.76 97.33 92.51

All TLPs

T = 1 93.14 93.63 95.91 97.30 95.32 93.53 95.90 93.35 95.76 97.36 92.43
T = 2 93.35 95.02 95.78 97.30 95.29 93.58 95.92 93.48 95.81 97.39 92.44
T = 5 93.36 94.51 95.93 97.26 95.28 93.95 95.92 93.35 95.78 97.40 92.42

T = ∞ 93.35 94.95 95.97 97.32 95.28 93.63 95.93 93.31 95.80 97.30 92.43

Table 4: Detailed results of temperature based heuristic sampling for different selections settings. The best result among
Baseline and three MTL models is highlighted using orange. For each column we present the difference (positive or negative) of
the meta models from the best baseline (highlighted in orange) of that column


