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Abstract
An in-depth analysis of the level of language
understanding required by existing Machine
Reading Comprehension (MRC) benchmarks
can provide insight into the reading capabili-
ties of machines. In this paper, we propose
an ablation-based methodology to assess the
extent to which MRC datasets evaluate the
understanding of explicit discourse relations.
We define seven MRC skills which require the
understanding of different discourse relations.
We then introduce ablation methods that ver-
ify whether these skills are required to succeed
on a dataset. By observing the drop in per-
formance of neural MRC models evaluated on
the original and the modified dataset, we can
measure to what degree the dataset requires
these skills, in order to be understood correctly.
Experiments on three large-scale datasets with
the BERT-base and ALBERT-xxlarge model
show that the relative changes for all skills
are small (less than 6%). These results imply
that most of the answered questions in the ex-
amined datasets do not require understanding
the discourse structure of the text. To specif-
ically probe for natural language understand-
ing, there is a need to design more challenging
benchmarks that can correctly evaluate the in-
tended skills1.

1 Introduction

Machine Reading Comprehension (MRC) is con-
cerned with the automatic extraction and genera-
tion of answers over unstructured textual data. Due
to its complexity, the task is seen as suitable for
evaluating Natural Language Understanding (NLU)
(Chen, 2018). While neural MRC systems achieve
impressive performance (Devlin et al., 2019; Lan
et al., 2020), it has been revealed by some research
efforts that existing MRC benchmarks might be in-
sufficient to establish model performance, i.e., that

1Our code is available at https://github.com/
Yulong-W/mrcdr.

the models are not being assessed for their capabil-
ities to read and comprehend (Jia and Liang, 2017;
Mudrakarta et al., 2018; Min et al., 2018; Sugawara
et al., 2018; Feng et al., 2018; Jiang and Bansal,
2019; Min et al., 2019; Chen and Durrett, 2019;
Schlegel et al., 2020; Sugawara et al., 2020). These
analyses provide insights into the weaknesses of
modern MRC gold standards. Nonetheless, to stim-
ulate the development of robust MRC systems with
generalisable NLU capabilities, it is necessary to
investigate the strengths and weaknesses of MRC
datasets on a deeper level.

In the task of MRC, it is assumed that ques-
tions test a cognitive process which involves var-
ious skills, such as retrieving stored information
and performing inferences (Sutcliffe et al., 2013).
Therefore, considering metrics that reflect skills
required to answer questions is useful for analysing
the capabilities of MRC datasets to benchmark
NLU (Sugawara et al., 2020). This leads to the
following intuition: if a question is solvable even
after removing features (e.g., specific words) as-
sociated with an MRC skill, the question does not
require the skill. Sugawara et al. (2020) examined
10 datasets with regard to multiple requisite skills
for answering questions. One of the identified 12
skills is the understanding of adjacent discourse
relations, which relies on information given by the
sentence order in a passage. By randomly shuffling
the order of the sentences in the context and com-
paring model performance on the original and the
modified dataset, they concluded that most existing
MRC datasets might be inadequate for benchmark-
ing adjacent discourse relations understanding.

Discourse relations describe how two segments
of discourse are logically connected to one another.
Understanding them is key to answering reading
comprehension questions correctly. Though the
findings in Sugawara et al. (2020) are useful to un-
derstand MRC datasets with respect to discourse

https://github.com/Yulong-W/mrcdr
https://github.com/Yulong-W/mrcdr
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relations understanding, we argue that it is not
enough to only consider inter-sentential relations
as discourse relations also widely exist within sen-
tences2. Furthermore, there also exist various types
of relations and senses. Hence, to comprehensively
assess the capacity of MRC datasets to benchmark
discourse relations understanding, we assert that
further research is needed.

In this paper, our aim is to provide a fine-grained
analysis of the level of discourse relations under-
standing that is needed to answer questions in ex-
isting MRC datasets. Specifically, we focus on
explicit discourse relations, which are expressed us-
ing explicit connectives. This allows us to perform
analysis that goes beyond shuffling sentence order.
In our work, we identify seven MRC skills that rep-
resent different aspects of understanding explicit
discourse relations. With these, we examine three
datasets using two strong MRC models. Our results
show that these datasets might be insufficient for
evaluating the understanding of explicit discourse
relations. This work can potentially encourage the
development of more challenging benchmarks that
evaluate MRC models with respect to NLU capabil-
ities that require discourse relations understanding.

2 Requisite Skills

As mentioned above, we identified a set of seven
reasoning-related skills that require the understand-
ing of explicit discourse relations, as shown in Ta-
ble 1.

Skill s1 is inspired by Sugawara et al. (2020),
which aims to evaluate whether the understanding
of adjacent explicit discourse relations is required
in answering questions. Different from their pro-
posed method (i.e., randomly shuffling the order of
the sentences in a passage), we only shuffle those
containing explicit connectives.

The selection of skills s2 to s7 is informed by
the annotation scheme of the PDTB 3.0 corpus,
which is annotated with information on discourse
relations (Webber et al., 2019). The scheme de-
fines 36 different senses of discourse relations. In
the corpus, more than 24, 000 explicit connectives
were annotated and categorised according to these
senses. Based on this, we obtained a distribution
of explicit connectives over the 36 senses (see Ap-
pendix A). Afterwards, we selected a subset of

2In the Penn Discourse Treebank (PDTB) 3.0 corpus (Web-
ber et al., 2019), 24,369 and 29,818 tokens were annotated as
connectives for intra-sentential and inter-sentential discourse
relations, respectively.

them (6 senses) based on the number of unique
explicit connectives, total number of explicit con-
nectives for which each sense was recorded, and
the exclusiveness of these explicit connectives. The
identification process is detailed in Appendix B. In
the following, we provide an overview of skills s2
to s7.

Skills s2 and s3 are for the understanding of
asynchronous temporal relations. Specifically, s2
focuses on precedence while s3 tests succession.
Skill s4 evaluates the understanding of causal rela-
tions, which are explicitly marked in the passage
by connectives such as because and due to. Mean-
while, our motivation for selecting skill s5 is to
reveal whether explicit conditional reasoning is re-
quired to answer questions. Different from s4, s6
is for the understanding of negative causality, in
which a causal relation expected on the basis of the
first argument is negated by the situation described
in the other. Finally, s7 assesses expansions which
provide further detail to an argument.

3 Methodology

For each of the seven identified skills, we defined
an ablation method, as shown in Table 1. The

Skill NLU Tested Ablation Method
shuffling method

s1 Explicit discourse
relations between
adjacent sentences

Shuffle the order
of the sentences
that contain ex-
plicit connectives
in the context

masking methods
(Drop all occurrences of corresponding

explicit connectives)
s2 Temporal reason-

ing (precedence)
Drop e.g. after-
ward, later, . . .

s3 Temporal reason-
ing (succession)

Drop e.g. earlier,
since before, . . .

s4 Explicit causality
reasoning

Drop e.g. because
of, due to . . .

s5 Explicit condi-
tional reasoning

Drop e.g. only if,
depending on, . . .

s6 Negative causality
reasoning

Drop e.g. albeit,
but then again, . . .

s7 Expansion of ex-
plicit discourse re-
lations

Drop e.g. addition-
ally, moreover, . . .

Table 1: Requisite skills and ablation methods.
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design of these methods is based on the fact that
explicit discourse relations are expressed using ex-
plicit discourse connectives (Webber et al., 2019).
The scope of the proposed methodology hence cap-
tures only relations represented by explicit con-
nectives, rather than all discourse relations-related
features of the datasets. We assume that through
shuffling the order of the sentences with connec-
tives in the context, as well as through dropping
these connectives, the corresponding relations will
be broken. After applying the ablation method on
the development set of an MRC dataset, if the per-
formance of the model did not change significantly,
we can say that most of the questions in the dataset
are solvable even without the given skill; hence,
the dataset does not sufficiently evaluate models
with respect to the said skill. On the contrary, if the
performance gap between the original and the mod-
ified dataset is large, we might infer that a substan-
tial proportion of the questions require that skill.
Nonetheless, should the model perform badly on
the ablated dataset, we cannot take this as evidence
that the model in fact acquired the investigated
reasoning capabilities as the bad performance can
stem from many different factors (e.g., distribution
shift induced by dropping numerous words).

4 Experiments

In this section, we describe our experimental set-
tings, present the results of our experiments and
provide insights drawn from experimentation under
an extreme setting whereby all explicit connectives
were dropped.

4.1 Experimental Settings

Datasets. We examined three datasets with two
answering styles. For span prediction datasets in
which the goal is to identify a span in the passage as
the answer, we used SQuAD 1.1 (Rajpurkar et al.,
2016) and SQuAD 2.0 (Rajpurkar et al., 2018). For
multiple choice datasets in which the correct an-
swer is chosen from a candidate set of answers, we
used SWAG (Zellers et al., 2018). We applied the
ablation methods on the development set of each
dataset. Sentence segmentation and tokenisation
are performed as part of the pre-processing step.

Models. In the main experiment, we used the
BERT-base (uncased) model (Devlin et al., 2019).
Our goal is to analyse whether there exists at least
one model architecture that can solve the MRC task
without the understanding of explicit discourse re-

lations; hence, it is enough to use a single model
(Sugawara et al., 2020). Then, from the perspective
of testing the effectiveness of the proposed MRC
skills, we employed a stronger model, ALBERT-
xxlarge (Lan et al., 2020). We fine-tuned the
pre-trained BERT-base (uncased) and ALBERT-
xxlarge model on the training set of each dataset
and evaluated them on the original and the modi-
fied development sets by making use of the Hug-
gingFace’s Transformers library (Wolf et al., 2020).
The hyperparameters of the models are reported in
Appendix C.

Ablation methods. Method m1: For the choice
of explicit connectives, we used the 173 explicit
connectives from the PDTB 3.0 corpus (Webber
et al., 2019) (see Appendix D). We averaged the
scores over five runs and report the mean and vari-
ance values in Appendix E. Methods m2 to m7:
we list explicit connectives dropped for each sense
in Appendix F. When a token is dropped, it is re-
placed with an [UNK] token to preserve the correct
answer span. More in-depth results are reported in
Appendix G.

4.2 Results and Discussion

In this section, we report the results for the skills
in Table 2. In this table, for each of the abla-
tion method used for skills s2 to s7, there are
two versions of experimental results, shown in
the white and shaded areas, respectively. Results
written in the white areas were obtained by apply-
ing the ablation methods detailed in Section 4.1,
i.e., by masking explicit connectives selected using
the threshold-based method (see Appendix B) for
which each sense was annotated. However, it can
be seen in the table that except for s7, the relative
differences for s2 to s6 were extremely small (less
than 1%) across all datasets. To further investigate
whether these skills are truly not required to an-
swer questions in the three datasets, we performed
additional experiments as follows.

For the senses that represent a skill under eval-
uation, we dropped every explicit connective as-
sociated with those senses according to the PTDB
3.0 annotations (Webber et al., 2019). By applying
these modified ablation methods, we obtained ad-
ditional experimental results, shown in the shaded
areas of Table 2. In the following, we discuss the
observations for all the defined skills.

s1: adjacent explicit discourse relations un-
derstanding. On all datasets, the relative changes
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Skill SQuAD 1.1 SQuAD 2.0 SWAG
(F1) (F1) (Acc.)

Orig. 88.6 76.1 79.0

s1 86.2−2.7 74.8−1.7 -

s2 88.3−0.3 76.0−0.1 79.0−0.0

88.0−0.7 75.8−0.4 79.0−0.0

s3 88.5−0.1 76.1−0.0 79.0−0.0

87.4−1.4 75.4−0.9 79.0−0.0

s4 87.9−0.8 75.6−0.7 79.0−0.0

78.6−11.3 71.0−6.7 78.6−0.5

s5 88.4−0.2 76.1−0.0 79.0−0.0

83.4−5.9 73.8−3.0 78.6−0.5

s6 88.4−0.2 76.1−0.0 79.0−0.0

87.5−1.2 75.6−0.7 78.6−0.5

s7 84.9−4.2 74.1−2.6 79.1+0.1

83.7−5.5 73.7−3.2 78.6−0.5

Table 2: The performance (%) of the BERT-base model
with the ablation tests on the development set. Values
in smaller font are changes (%) relative to the original
performance of the model. For mask-related methods
(m2 to m7), the results shown in the white areas are ob-
tained from the initial test while the results shown in
the shaded areas represent the further test, i.e., drop-
ping all explicit connectives for which each identified
sense was annotated. Acc.: accuracy as a percentage.

for s1 were small. We do not apply m1 to SWAG
because its contexts are only one sentence long.
On SQuAD 1.1 and SQuAD 2.0, the difference
was hardly noticeable (less than 3% and 2%, re-
spectively). These results indicate that most of the
questions already solved in these datasets do not
necessarily require the understanding of adjacent
explicit discourse relations and are solvable even if
the sentences appear unnaturally. This confirms the
findings of Min et al. (2018), which reported that
92% of questions in SQuAD 1.1 are solvable by
only looking at the sentence containing the answer.

s2 and s3: performing asynchronous tempo-
ral reasoning. We found that for the three ex-
amined datasets, the relative changes for s2 and
s3 were extremely small (the biggest drop was
even less than 1.5%), regardless of whether only
a part or all associated explicit connectives were
dropped. This indicates that these datasets might
not adequately benchmark the understanding of
asynchronous temporal relations.

s4: explicit causality reasoning. In the initial
experiment, the relative changes for s4 on the three
datasets were extremely small (less than 1%). How-
ever, surprisingly, after masking all explicit connec-
tives cueing causality, except for SWAG which still
featured a low drop (0.5%), the relative drops on
SQuAD 1.1 and SQuAD 2.0 increased noticeably
(from less than 1% to 11.3% and 6.6%, respec-
tively). Particularly, for SQuAD 1.1, the decrease
was the largest in all our experiments. Neverthe-
less, we cannot simply conclude that s4 is needed
to answer questions in the two datasets as the ad-
ditionally dropped explicit connectives were also
recorded as many other senses in the PDTB 3.0 cor-
pus and not associated with this sense for the ma-
jority of occurrences. As we do not know exactly
whether the decrease in model performance is due
to this sense or any other senses, further analyses
are necessary. Based on the PDTB 3.0 Annotation
Manual (Webber et al., 2019), we calculated the
percentage of each additionally dropped connec-
tive for this sense among the multiple senses for
which it was annotated, and removed those which
are rarely used for this sense from the candidate
set of the dropped explicit connectives. The experi-
ments demonstrated that the model achieved 85.1
and 74.3 (4.0% and 2.3% relative drop) F1 score on
SQuAD 1.1 and SQuAD 2.0, respectively. This im-
plies that the examined datasets might not correctly
benchmark the understanding of causal relations
and the reason why the relative drops were large
after dropping all explicit connectives is that the
other senses might be important.

s5: explicit conditional reasoning. In the ini-
tial test, on all datasets, the relative changes were
extremely small (less than 0.3%). Nonetheless,
after dropping all explicit connectives describing
conditional relations, except for SWAG which still
showed a low drop (0.5%), the performance on
SQuAD 1.1 and SQuAD 2.0 decreased by more
than 3%. However, similarly to s4, we cannot con-
clude whether such a decrease is due to sense rep-
resenting s5 or other senses that the explicit con-
nectives are also associated with. As a result, we
removed explicit connectives which are rarely used
for this sense from the candidate set of explicit
connectives and conducted further analyses. The
experiments demonstrated that the model achieved
88.4 and 76.1 F1 on SQuAD 1.1 and SQuAD 2.0,
respectively, both less than 0.5% relative differ-
ence. This indicates that s5 might not necessarily
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Dataset SQuAD 1.1 SQuAD 2.0 SWAG
(F1) (F1) (Acc.)

Original 94.4 87.6 89.0
Ablated 92.4−2.1 84.8−3.2 86.3−3.0

Table 3: Performance of ALBERT-xxlarge on the orig-
inal development set and on a version with all explicit
connectives dropped. Acc.: accuracy as a percentage.

be required to answer questions in these datasets
either.

s6: reasoning about negative causality. On all
datasets, the relative drops for s6 were extremely
small (less than 1.3%), whether with part of or all
explicit connectives dropped. This demonstrates
that most of the solved questions in the three MRC
datasets do not necessarily require negative causal
reasoning.

s7: recognising the expansion of explicit dis-
course relations. In the initial experiment, the rela-
tive changes for s7 on SWAG and SQuAD 2.0 were
small, while that on SQuAD 1.1 was slightly larger
(more than 4%). After dropping all explicit connec-
tives for which sense Expansion.Conjunction was
annotated, the performance of the model further
decreased moderately – up to 5.5% for SQuAD 1.1,
implying that compared to the other two datasets,
SQuAD 1.1 might have more potential for bench-
marking the understanding of the expansion of ex-
plicit discourse relations.

4.3 Further Analyses

Surprised by the moderate performance changes,
we investigated the extent to which understand-
ing of any explicit discourse relations is required
by the datasets. Therefore, we dropped all ex-
plicit connectives and employed a stronger model,
ALBERT-xxlarge (Lan et al., 2020) to generalise
our assumption from the six specific senses to all
senses. To mitigate the effect of distribution shift
between training and evaluation data introduced by
removing large parts of the context, we applied the
ablation methods on the training set as well. The re-
sults are shown in Table 3. The performance drops
no more than 3.2% for all three datasets, contribut-
ing further evidence towards the hypothesis that
understanding the discourse structure of the text is
hardly required to perform well on the investigated
benchmarks.

5 Conclusion

In this paper, we proposed a methodology to as-
sess the capabilities of MRC datasets to benchmark
the understanding of explicit discourse relations.
With seven fine-grained skills and corresponding
ablation methods, we examined three large-scale
datasets. The experimental results demonstrated
that explicit discourse relations are not sufficiently
evaluated by them, and thus there is a need to de-
velop more challenging datasets so that their ques-
tions can correctly benchmark our defined skills.
As for future work, we will develop a machine
learning-based system that can recognise various
senses of implicit discourse relations in the pas-
sage and further reveal whether the awareness of
implicit discourse relations is required to do well
on contemporary MRC benchmarks.
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Sense Explicit Connectives Total

Temporal.Synchronous as (383), as long as (4), as soon as (9), at the
same time (65), by (1), in (18), in the meantime
(11), in the meanwhile (1), meantime (2), mean-
while (120), now that (2), simultaneously (6),
still (1), then (4), upon (2), when (509), while
(163), with (5)

1306

Temporal.Asynchronous.Precedence afterward (6), afterwards (5), before (309), fi-
nally (13), in the end (3), later (92), later on (2),
next (4), since (10), still (2), subsequently (3),
then (310), thereafter (11), till (4), ultimately
(15), until (143), when (4)

936

Temporal.Asynchronous.Succession after (533), as (3), as soon as (11), before (2), by
then (6), earlier (15), in the meantime (2), once
(70), previously (53), since (83), since before
(1), until (7), when (160)

946

Contingency.Cause.Reason about (2), and (4), as (180), because (833), be-
cause of (12), by (10), due to (1), for (34), from
(2), given (6), in (1), indeed (1), insofar as (1),
not only because of (1), now that (10), on (1),
since (96), ultimately (1), when (21), with (109),
without (1)

1327

Contingency.Cause.Result accordingly (5), and (5), as a result (78), con-
sequently (10), for (1), hence (5), in the end
(2), so (222), so that (10), then (7), thereby (9),
therefore (26), thus (111), without (1)

492

Contingency.Cause.NegResult — 0

Contingency.Cause+Belief.Reason+Belief as (3), because (2), from (2), given (3), in (1),
indeed (4), with (5)

20

Contingency.Cause+Belief.Result+Belief so (1), thus (1) 2

Contingency.Cause+SpeechAct.Reason+
SpeechAct but (1) 1

Contingency.Cause+SpeechAct.Result+
SpeechAct and (1) 1

Contingency.Condition.Arg1-as-cond and (22), then (1) 23

Contingency.Condition.Arg2-as-cond as long as (13), by (2), depending on (3), de-
pending upon (1), for (7), if (1084), if and when
(2), if only (4), if+then (37), in (8), in case (6),
in order (4), once (4), only if (13), so long as (4),
until (17), when (116), whenever (9), where (2),
with (2)

1338

Contingency.Condition+SpeechAct because (2), if (56), if+then (1), or (2), when
(12)

73

Continued on next page
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Table 4 – Continued from previous page
Sense Explicit Connectives Total

Contingency.Negative-condition.Arg1-as-
negCond

either+or (2), else (1), lest (2), or (7), otherwise
(4)

16

Contingency.Negative-condition.Arg2-as-
negCond

till (1), unless (98), without (9) 108

Contingency.Negative-
condition+SpeechAct

— 0

Contingency.Purpose.Arg1-as-goal — 0

Contingency.Purpose.Arg2-as-goal and (128), for (16), if only (1), in (2), in order
(51), so (44), so as (3), so that (21)

266

Comparison.Concession.Arg1-as-denier although (206), as (7), as much as (2), by (1),
despite (9), even as (2), even if (87), even though
(69), even when (8), even with (2), for (1), how-
ever (5), if (6), no matter (8), regardless of (6),
though (91), whatever (4), when (3), whether
(7), while (203), with (2)

729

Comparison.Concession.Arg2-as-denier albeit (1), although (105), as if (4), but (3063),
but then (3), but then again (1), even so (9), even
though (26), however (390), if (3), if only (1), in
any case (3), in fact (4), in the end (1), indeed
(1), meanwhile (2), nevertheless (32), nonethe-
less (25), nor (1), not only+but (1), on the one
hand+on the other hand (1), on the other hand
(4), only (2), or (1), regardless (2), still (115),
though (128), when (1), while (2), without (19),
yet (96)

4047

Comparison.Concession+SpeechAct.Arg2-
as-denier+SpeechAct

and (2), but (2), if (1), or (11) 16

Comparison.Contrast although (14), and (16), as (5), but (618), by
comparison (11), by contrast (28), conversely
(2), however (95), if (2), in contrast (12), in
fact (7), in the end (1), like (1), meanwhile (7),
neither+nor (1), nevertheless (12), nonetheless
(2), not only+but also (1), on the contrary (4),
on the one hand+on the other (1), on the one
hand+on the other hand (1), on the other hand
(32), only (1), still (75), though (16), when (1),
whereas (5), while (140), with (1), yet (4)

1116

Comparison.Similarity as (65), as though (1), as well (6), like (3), simi-
larly (18), while (1)

94

Continued on next page
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Table 4 – Continued from previous page
Sense Explicit Connectives Total

Expansion.Conjunction additionally (7), along with (2), also (1736), and
(6189), as much as (1), as well (12), as well as
(7), besides (19), beyond (1), both+and (6), but
(42), but also (1), finally (18), further (7), fur-
thermore (12), in addition (165), in fact (36), in
the end (1), indeed (54), likewise (8), meanwhile
(27), moreover (103), much less (3), neither+nor
(2), nor (31), not just+but (1), not just+but+also
(1), not only (5), not only+also (1), not only+but
(18), not only+but also (9), or (71), plus (1), sep-
arately (72), then (11), ultimately (1), while (43),
with (41), yet (2)

8767

Expansion.Disjunction alternatively (4), and then (1), as an alternative
(2), either+or (36), nor (1), or (258), or otherwise
(2)

304

Expansion.Equivalence in other words (17), indeed (2), or (6), that is (2) 27

Expansion.Exception.Arg1-as-excpt otherwise (15) 15

Expansion.Exception.Arg2-as-excpt although (2), but (3), except (12), only (3) 20

Expansion.Instantiation.Arg1-as-instance as if (1), in (1) 2

Expansion.Instantiation.Arg2-as-instance as (4), for example (200), for instance (98), in
fact (3), in particular (6), indeed (2), like (1),
such as (2), with (7)

323

Expansion.Level-of-detail.Arg1-as-detail as (8), in (17), in fact (1), in short (4), in sum (2),
in the end (2), indeed (1)

35

Expansion.Level-of-detail.Arg2-as-detail and (4), as though (2), by (2), for (1), in (2),
in fact (34), in particular (9), in that (1), in the
end (1), indeed (37), insofar as (1), only (1),
specifically (10), that is (2), with (111), without
(2)

220

Expansion.Manner.Arg1-as-manner thereby (3) 3

Expansion.Manner.Arg2-as-manner and (19), as (3), as if (1), by (174), in (13), when
(2), with (6), without (62)

280

Expansion.Substitution.Arg1-as-subst from (1), instead of (43), rather than (40) 84

Expansion.Substitution.Arg2-as-subst alternatively (2), as much as (1), instead (112),
more accurately (1), not so much as (1), rather
(17), so much as (1)

135

Table 4: Senses and their associated explicit connec-
tives annotated in the PDTB 3.0 corpus (Webber et al.,
2019).
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B Identification of the Senses of Explicit
Discourse Relations

Table 4 provides the distribution of the 36 senses
and their associated explicit connectives. To de-
termine which kind of senses to focus on, we
first defined two metrics: “uniqueness” and “in-
stances” to measure the 36 senses. The first
metric “uniqueness” measures the number of
unique explicit connectives in each sense. For
instance, as can be seen from Table 4, the sense
“Contingency.Condition.Arg1-as-cond” was anno-
tated for two unique explicit connectives: “and (22),
then (1)”. Therefore, its uniqueness is equal to 2.
The second metric “instances” measures the total
number of connectives for which each sense was
annotated. Take the same example, we can see that
the connective “and” was annotated 22 times as
the sense “Contingency.Condition.Arg1-as-cond”
and the connective “then” was annotated once as
the same sense. Under this circumstance, there is
a total of 23 (22+1) explicit connectives for which
the sense “Contingency.Condition.Arg1-as-cond”
was annotated, and thus its instances is equal to 23.

We propose that the two metrics can reflect the
breadth and importance of these senses in a pas-
sage of text as Table 4 was developed from the
large-scale PDTB 3.0 corpus (Webber et al., 2019),
which provides a certain degree of representation.
In this context, the higher “uniqueness” and “in-
stances” a sense features, the more widely it might
spreads in the context. Consequently, choosing
such a sense to focus on is more likely to reveal
whether the existing MRC benchmarks test the
model’s understanding of it.

Besides the two defined metrics, we also noticed
that in the PDTB 3.0 corpus (Webber et al., 2019),
many different senses were recorded for the same
connective. For example, the connective “in the
end” was annotated as seven types of senses. In
this case, we cannot exactly examine which kind of
senses the MRC datasets assessed by dropping their
associated non-exclusive explicit connectives. This
indicates that there is a need to consider the issue of
managing explicit connectives for which multiple
senses were annotated. To this end, we introduced
the third metric: “exclusiveness”, which measures
the degree of semantic overlap of explicit connec-
tives in each sense. Ideally, to ensure that there are
no overlapping explicit connectives among these
senses, we can just remove all of the explicit con-
nectives for which multiple senses were annotated

and keep those that represent only one type of sense.
However, after doing this, the “uniqueness” and “in-
stances” of most senses are greatly decreased (see
Figure 1a and Figure 1b). Based on this, we posit
that the cost, i.e., most senses losing a considerable
number of explicit connectives, is too high when
attempting to retain their exclusiveness. Though
the senses with only exclusive explicit connectives
could meet the three metrics, they might not be
enough for our data ablation purposes, as most of
the explicit connectives were eliminated. Consider-
ing this, we need to find a balance between preserv-
ing the number and types of explicit connectives in
each sense and maintaining its exclusiveness.

To minimise the loss in terms of “uniqueness”
and “instances” of each sense while preserving “ex-
clusiveness”, we propose that if a connective C
was annotated with multiple senses and it is used
for sense X majority of the time, then we could
include it in sense X . To identify the exact value of
the “majority”, we calculated the percentage of the
distinct senses annotated for each non-exclusive
connective and selected the sense with the high-
est percentage. Subsequently, we averaged these
highest values and obtained the threshold, which is
about 69%. Finally, we chose explicit connectives
where the highest proportion of the sense for which
they were annotated exceeds 69% and eliminated
those below the threshold. From Figure 2a and Fig-
ure 2b, one can see that both the “uniqueness” and
“instances” of the most senses with some retained
non-exclusive explicit connectives increased, com-
pared with those that only contain the exclusive
connectives. This demonstrates that our method
has effectively increased the number and types of
explicit connectives in the most senses while main-
taining their exclusiveness.

Finally, to select the candidate senses from the
36 senses, we visualised them in terms of their
“uniqueness” and “instances”, as shown in Figure
3a and Figure 3b, respectively. As can be seen
in Figure 3a, there are a total of 12 senses with
the number of unique explicit connectives above
the mean value (sense 24, 2, 20, 12, 19, 5, 22, 3,
4, 1, 25, 36). Furthermore, it can be seen from
Figure 3b that there are a total of 6 senses with
the total number of explicit connectives larger than
the average (sense 24, 20, 12, 2, 4, 3). Then, we
took the intersection of these two sets of senses
and obtained a sense set whereby “uniqueness” and
“instances” of each sense is above the mean, and its
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(a) (b)

Figure 1: Visualisation of the number of unique explicit connectives and total number of explicit connectives for
each sense in the PDTB 3.0 sense hierarchy (Webber et al., 2019). The blue bar represents the original senses,
while the red one represents the senses after removing the non-exclusive explicit connectives.

(a) (b)

Figure 2: Visualisation of the number of unique explicit connectives and total number of explicit connectives for
each sense in the PDTB 3.0 sense hierarchy (Webber et al., 2019). The purple bar represents the senses with some
retained non-exclusive connectives.

(a) (b)

Figure 3: Number of unique explicit connectives and total number of explicit connectives for which each sense
(processed) was annotated (sorted from largest to smallest).
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“exclusiveness” is retained to a certain extent:3

• Sense 2:
Temporal.Asynchronous.Precedence

• Sense 3:
Temporal.Asynchronous.Succession

• Sense 4:
Contingency.Cause.Reason

• Sense 12:
Contingency.Condition.Arg2-as-cond

• Sense 20:
Comparison.Concession.Arg2-as-denier

• Sense 24:
Expansion.Conjunction

C Hyperparameters of the BERT-base
and ALBERT-xxlarge Model

Hyperparameters used in the BERT-base and
ALBERT-xxlarge model are shown in Table 5.

Dataset d b lr ep

BERT-base

SQuAD 1.1 384 12 3e-5 2.0
SQuAD 2.0 384 12 3e-5 2.0
SWAG 80 8 5e-5 3.0

ALBERT-xxlarge

SQuAD 1.1 384 12 3e-5 2.0
SQuAD 2.0 384 12 3e-5 4.0
SWAG 80 128 5e-5 3.0

Table 5: The hyperparameters used to fine-tune
the BERT-base and ALBERT-xxlarge model on each
dataset. d is the size of the token sequence fed into the
model, b is the training batch size, lr is the learning
rate, and ep is the number of training epochs. We used
stride = 128 for documents longer than d tokens.

D A Set of Explicit Connectives

We list the set of explicit connectives used in this
work in Figure 4.

E Performance Means and Variances in
Shuffle-Based Method

We report the means and variances for the shuffling
ablation method for skill s1 in Table 6.

3A detailed introduction of these senses is avail-
able at https://catalog.ldc.upenn.edu/docs/
LDC2019T05/PDTB3-Annotation-Manual.pdf.

F The Six Identified Senses and Their
Associated Explicit Connectives

Table 7 shows the six identified senses and their
associated explicit connectives. For each sense, the
associated explicit connectives were selected using
the threshold-based method detailed in Appendix
B.

G Detailed Results of SQuAD 2.0

We report the ablation results for has-answer and
no-answer questions in SQuAD 2.0 in Table 8.

https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
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Continuous explicit connectives (One token):
about, accordingly, additionally, after, afterward, afterwards, albeit, also, alternatively, although, and,
and/or, as, because, before, besides, beyond, but, by, consequently, conversely, despite, earlier, else,
except, finally, for, from, further, furthermore, given, hence, however, if, in, indeed, instead, later, lest,
like, likewise, meantime, meanwhile, moreover, nevertheless, next, nonetheless, nor, on, once, only, or,
otherwise, plus, previously, rather, regardless, separately, similarly, simultaneously, since, so,
specifically, still, subsequently, then, thereafter, thereby, therefore, though, thus, till, ultimately, unless,
until, upon, whatever, when, whenever, where, whereas, whether, while, with, without, yet

Continuous explicit connectives (Two tokens):
along with, and then, as if, as though, as well, because of, but also, but then, by comparison, by
contrast, by then, depending on, depending upon, due to, even after, even as, even before, even if, even
so, even then, even though, even when, even while, even with, for example, for instance, if only, in
addition, in case, in contrast, in fact, in order, in particular, in short, in sum, in that, insofar as, instead
of, later on, more accurately, much less, no matter, not only, now that, only if, or otherwise, rather than,
regardless of, since before, so as, so that, such as, that is

Continuous explicit connectives (Three tokens):
as a result, as an alternative, as long as, as much as, as soon as, as well as, before and after, but then
again, even before then, if and when, in any case, in other words, in the end, in the meantime, in the
meanwhile, on the contrary, so long as, so much as, when and if

Continuous explicit connectives (Four tokens):
at the same time, not only because of, not so much as, on the other hand

Discontinuous explicit connectives:
both+and, either+or, if+then, neither+nor, not just+but, not just+but+also, not only+also, not only+but,
not only+but also, on the one hand+on the other, on the one hand+on the other hand

Figure 4: A set of 173 explicit connectives from the annotation scheme of the PDTB 3.0 corpus (Webber et al.,
2019).

Ablation Method The ith Run SQuAD 1.1 SQuAD 2.0
Has-Ans No-Ans Total

1. Randomly shuf-
fle the order of the
sentences with ex-
plicit connectives in
the context

1 86.1 74.5 75.6 75.0

2 86.0 74.4 75.3 74.9

3 86.3 74.4 75.3 74.8

4 86.2 73.9 75.7 74.8

5 86.2 74.4 75.1 74.7

mean (variance) —
86.2
(0.0)

74.3
(0.0)

75.4
(0.0)

74.8
(0.0)

Table 6: Ablation results with means and variances (in parentheses) for the shuffling-based method for skill s1 over
five different runs.
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Sense Explicit Connectives Retention Rate
(Uniqueness)

Retention Rate
(Instances)

Temporal.
Asynchronous.

Precedence
afterward (6), afterwards (5), before
(309), later (92), later on (2), next
(4), subsequently (3), then (310),
thereafter (11), till (4), ultimately
(15), until (143)

70.59% 96.58%

Temporal.
Asynchronous.

Succession
after (533), by then (6), earlier (15),
once (70), previously (53),
since before (1)

46.15% 71.67%

Contingency.
Cause.
Reason

about (2), because (833),
because of (12), due to (1),
not only because of (1), on (1)

28.57% 64.05%

Contingency.
Condition.

Arg2-as-cond
depending on (3),
depending upon (1), if (1084),
if+then (37), in case (6), only if (13),
so long as (4), whenever (9),
where (2)

45% 86.62%

Comparison.
Concession.

Arg2-as-denier
albeit (1), but (3063), but then (3),
but then again (1), even so (9), how-
ever (390), in any case (3), nev-
ertheless (32), nonetheless (25),
regardless (2), though (128), yet (96)

38.71% 92.74%

Expansion.
Conjunction

additionally (7), along with (2), also
(1736), and (6189), as well as (7),
besides (19), beyond (1),
both+and (6), but also (1),
further (7), furthermore (12),
in addition (165), likewise (8),
moreover (103), much less (3),
nor (31), not just+but (1),
not just+but+also (1), not only (5),
not only+also (1), not only+but
(18), not only+but also (9), plus (1),
separately (72)

61.54% 95.87%

Table 7: The six identified senses and their associated explicit connectives. Exclusive connectives are underlined.
The fourth and last column provides the retention rate with respect to the “uniqueness” and “instances” of each
sense, respectively.
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Ablation Method
Subset Has-Ans

5928
No-Ans

5945
Total
11873

Original dataset 78.4 73.9 76.1

1. Randomly shuffle the order of the
sentences with explicit connectives

74.3−5.2 75.4+2.0 74.8−1.7

2. Drop explicit connectives associated
with asynchronous temporal reasoning
(precedence)

77.8−0.8 74.1+0.3 76.0−0.1

77.5−1.1 74.2+0.4 75.8−0.4

3. Drop explicit connectives associated
with asynchronous temporal reasoning
(succession)

78.3−0.1 73.9−0.0 76.1−0.0

76.8−2.0 74.0+0.1 75.4−0.9

4. Drop explicit connectives associated
with causality reasoning

77.3−1.4 73.9−0.0 75.6−0.7

64.7−17.5 77.4+4.7 71.0−6.7

5. Drop explicit connectives associated
with conditional reasoning

78.1−0.4 74.0+0.1 76.1−0.0

71.3−9.1 76.4+3.4 73.8−3.0

6. Drop explicit connectives associated
with negative causality reasoning

78.1−0.4 74.0+0.1 76.1−0.0

77.0−1.8 74.2+0.4 75.6−0.7

7. Drop explicit connectives associated
with the expansion of explicit discourse
relations

73.6−6.1 74.5+0.8 74.1−2.6

72.2−7.9 75.1+1.6 73.7−3.2

Table 8: Results (%) on the development set of SQuAD 2.0 for subsets with normal (Has-Ans) and no-answer
(No-Ans) questions. Values in smaller font are changes (%) relative to the original performance of the model. For
mask-related methods (m2 to m7), the results shown in the white areas are obtained from the initial test while the
results shown in the shaded areas represent the further test, i.e., dropping all explicit connectives for which each
identified sense was annotated.


