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Abstract

Transformer-based “behemoths” have grown
in popularity, as well as structurally, shat-
tering multiple NLP benchmarks along the
way. However, their real-world usability
remains a question. In this work, we em-
pirically assess the feasibility of applying
transformer-based models in real-world
ad-hoc retrieval applications by comparison to
a “greener and more sustainable” alternative,
comprising only 620 trainable parameters.
We present an analysis of their efficacy and
efficiency and show that considering limited
computational resources, the lighter model
running on the CPU achieves a 3 to 20 times
speedup in training and 7 to 47 times in
inference while maintaining a comparable
retrieval performance. Code to reproduce the
efficiency experiments is available on https:

//github.com/bioinformatics-ua/

EACL2021-reproducibility/.

1 Introduction

The Natural Language Processing (NLP) field has
been revolutionised by the simple, yet extremely
successful idea of transfer learning allied to the
transformer neural architecture capability of ex-
ploring long sequences, while being computa-
tionally more efficient than the recurrent counter-
parts. More precisely, Dai and Le (2015) and later
Howard and Ruder (2018) introduced the transfer
learning approach to the NLP field by pre-training a
language model and then fine-tuning it to multiple
NLP tasks. However, it was Radford (2018) who
applied the same technique to a large transformer
encoder, shattering the SOTA in 9 of 12 NLP tasks.

Since then, the NLP field became dominated by
works that use, explore or improve, in some way,
the transformer-based architecture. Although their
performance is undeniable, these are large models
that comprise millions of parameters and require

large computational resources to use and maintain,
making them inoperable for the majority of smaller
institutions. Furthermore, it also gives the impres-
sion that the NLP field was reduced to throwing a
lot of computation power (money) to continually
achieve SOTA results in multiple benchmarks, leav-
ing behind the careful process of designing a neural
solution that follows the human intuition to solve
some specific task. Moreover, given their running
costs and the consequent impact on the environ-
ment, their real-world virtues remain questionable,
i.e., “is it really feasible to use these models in
real-world applications, such as search engines or
question answering systems to aid a broader range
of people in their day-to-day tasks?”. As an exam-
ple, biomedical experts need to routinely search
an unprecedented amount of scientific literature to
keep updated with their research, which could be
facilitated by an intelligent system.

In contradiction with this trend, this work exam-
ines a lightweight interaction-based model, with
only 620 trainable parameters, carefully designed
by considering years of research in ad-hoc retrieval
systems and interaction-based architectures. This
system was evaluated in two ad-hoc retrieval com-
petitions where it was able to compete with the
state-of-the-art transformer-based models. In this
paper, we demonstrate a “greener and more sustain-
able” alternative to the transformer-based architec-
ture, by thoroughly testing such a system against
the most popular transformer behemoths in a series
of performance experiments.

Following this section, we frame our work in the
current literature, we then present the lightweight
model, and finally detail and discuss the evaluation
performed.

https://github.com/bioinformatics-ua/EACL2021-reproducibility/
https://github.com/bioinformatics-ua/EACL2021-reproducibility/
https://github.com/bioinformatics-ua/EACL2021-reproducibility/
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2 Related Work

The Information Retrieval (IR) field is nowadays
considered as being divided into traditional IR
(Baeza-Yates and Ribeiro-Neto, 2011) and neural
IR (Mitra and Craswell, 2018). The former ex-
plores exact match signals, i.e., the co-occurrence
of query terms in the document, to derive hand-
crafted rules and formulas to directly compute
the query-document importance, with the BM25
(Robertson and Zaragoza, 2009) ranking function
being the most popular example. On the other end,
neural IR explores the increasing success of neural
networks to approximate a (sub)optimal ranking
function by exploiting labelled examples. In the
literature, the most successful neural IR architec-
tures are Interaction Based, which measure multi-
ple matching signals to create a joint representation
of the query and the documents. Moreover, con-
sidering that the transformer architecture is now
widely adopted in interaction-based architectures,
we further propose to subdivide the works into shal-
low interaction-based and transformer interaction-
based models.

2.1 Shallow Interaction-Based Models

In this subsection, we address some relevant
interaction-based neural models proposed before
the transformer revolution, and briefly present their
intuition to tackle the ad-hoc retrieval challenge.
Guo et al. (2016) proposed the DRMM model,
which was one of the first neural models to achieve
improvements over strong traditional IR solutions,
and showed the importance of individually weigh-
ing each query term’s contributions. Likewise,
Pang et al. (2016); Hui et al. (2017); Dai et al.
(2018) showed that 2D convolutions directly ap-
plied over the interaction matrix are capable of
extracting strong hierarchical n-gram matching pat-
terns. Pang et al. (2017) built an end-to-end neural
solution, inspired by the human process of select-
ing relevant documents. Allied to the semantic
matching signals, Fan et al. (2018) added, in paral-
lel, exact matching signals and discussed ways of
combining them.

2.2 Transformer Interaction-Based Models

Despite representing a recent trend, there is already
an extensive literature on transformer architectures.
Here we briefly introduce this architecture and its
most adopted variants.

Models that follow a transformer-based architec-

ture are composed of a fixed set of stacked trans-
former blocks (Vaswani et al., 2017), hence their
name, and learn useful word representations from
large text corpora. Since the first appearance (Rad-
ford, 2018), multiple other variants emerged, ar-
guably the most notable and widely adopted being
BERT (Devlin et al., 2019), which uses bidirec-
tional self-attention and requires being trained as
a masked language model. However, this model
has some limitations. One of them is its large size,
which is addressed by distillation models, such as
distilBERT (Sanh et al., 2020), or by factorisation
tricks to reduce the number of trainable parameters,
as in Lan et al. (2020). Another limitation is their
short input length (512 tokens), which derives from
the quadratic complexity and associated memory
requirements imposed by the self-attention mech-
anism. Beltagy et al. (2020); Wang et al. (2020b);
Katharopoulos et al. (2020); Zaheer et al. (2020) ad-
dress this issue by reducing this complexity order,
hence increasing the input length.

Regarding the information retrieval field, some
works tried to apply these models to the ad-hoc
retrieval task with varying approaches. Yang et al.
(2019) proposed to perform “best” relevance sen-
tence inference and then linearly interpolate with
the original document score (BM25). Dai and
Callan (2019b) discuss different strategies to ap-
proximate the document relevance by aggregating
the relevance across sentences. Nogueira et al.
(2019) proposed a three-stage retrieval pipeline and
introduced monoBERT and duoBERT, two BERT
models aimed at addressing pointwise and pairwise
ranking problems, respectively. Finally, MacA-
vaney et al. (2019) proposed to use the context-
aware embedding produced by these models as
the input embedding to the well studied shallow
interaction-based models. Furthermore, and also
acknowledged by MacAvaney et al. (2019), these
models are still not suitable to be used or imple-
mented as real-world solutions given their slow
inference times and expensive costs.

Some notable works address the issue of compu-
tational costs by introducing precomputation, i.e.,
compute and store for later reuse. Dai and Callan
(2019a) propose to precompute term weights that
are then used by efficient traditional retrieval sys-
tems such as BM25. MacAvaney et al. (2020), on
the other hand, precompute the term representation
of the document at index time to be later merged
with the query representation at query time.
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Figure 1: Lightweight neural model data and operation flow.

3 Proposed neural interaction based
model

Our neural interaction-based model is an enhance-
ment of Almeida and Matos (2020a) and was al-
ready used in the two international competitions,
namely BioASQ (Almeida and Matos, 2020b; Tsat-
saronis et al., 2015) and TREC-Covid (Almeida
and Matos, 2020c; Roberts et al., 2020). However,
in order to keep this paper self-contained, we will
now introduce its insight and architecture.

From a general perspective, our model follows
the successful ideas presented over years of re-
search in the neural IR field, taking into its imple-
mentation key concepts of previous works. More
precisely, it follows the DeepRank (Pang et al.,
2017) intuition to mimic the human judgment pro-
cess with neural networks; adopts the extraction ca-
pabilities, based on 2D convolution, of the PACRR
(Hui et al., 2017) and MatchPyramid (Pang et al.,
2016) models; explores the same assumption of
independently scoring each sentence as addressed
by McDonald et al. (2018); and finally, uses the
DRMM (Guo et al., 2016) query term gating mech-
anism to consider the importance of different query
terms. Overall, the model was designed with the
intuition of weighting the importance of the docu-
ment sentences in terms of the query by considering
the context where the exact match occurs, i.e., this
model produces a more refined judgment of the
initial exact match signal evaluated by the BM25.

Regarding the architecture, the neural model is
divided into three major blocks that can be ob-
served in Figure 1. To clearly describe the model,
let us first define a query as a sequence of tokens

q = {u0, u1, ..., uQ}, where ui is the i-th token of
the query and Q the size of the query; a document
passage as p = {v0, v1, ..., vS}, where vj is the
j-th token of the passage and S the size of the pas-
sage; and a document as a sequence of passages
D = {p0, p1, ..., pN}, where N is the total number
of passages in the document. In the current imple-
mentation, a passage corresponds to a document
sentence, as described below.

The first block aims to rearrange the input, query
and document, to a suitable format for the down-
stream interaction model. More precisely, it splits
the document into passages using the Punkt algo-
rithm (Kiss and Strunk, 2006) and rearranges the
passages by query-term, so that each query-term is
associated with a set of passages where that term
occurs. At this point, the document is represented
by D(ui) = {pi0, pi1, ..., piP }, where pik corre-
sponds to the k-th passage with respect to the query
term ui, and P is the maximum number of passages
that can be associated with each query-term. Note
that it is possible to have repeated passages for dif-
ferent query-terms at this point since one passage
can contain more than one query-term.

The second block, named Interaction Network,
has the objective of scoring each passage accord-
ing to its relevance for a given query. To accom-
plish this, we employed a shallow interaction-based
model to capture the most relevant matching signals
that are present in each query-passage combination.
In more detail, for each query-term-passage pair,
we construct an interaction matrix with dimension
Q×S, also designated similarity tensor, by comput-
ing the cosine similarity between the query and the
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passage embedding. Then 3 by 3 convolutions are
applied to learn n-gram relevance signals that are
further extracted by multiple pooling layers (max,
average, and k-max-average) applied to the filter
dimension, creating a feature vector r per each
query-term-passage pair. Consequently, D(ui) at
this point is given by D(ui) = {ri0, ri1, ..., riP },
where rik corresponds to the k-th passage feature
vector with respect to the query term ui. Finally,
each resulting feature vector is linearly combined
with a trainable vector, and a sigmoid function, σ,
is applied to produce a sentence level relevance
signal (1=relevant, 0=irrelevant).

The third block, the Aggregation Network, is
responsible for producing the final document rel-
evance score for the given query. This is accom-
plished by weighting the importance of each docu-
ment passage score with respect to the importance
of each query term. More precisely, this importance
is given by a probabilistic distribution computed
(softmax) over a linear combination of each query
term embedding and a trainable vector and is de-
fined as A = {au0 , au1 , ..., auQ}, where aui repre-
sents the probabilistic importance of the query-term
ui. Each passage score is then weighted by the cor-
responding query-term importance, aui , and the re-
sulting set of weighted scores is fed to a multi-layer
perceptron to produce the final document score.

Our model is trained in a pairwise fashion and
uses word-level pre-trained embeddings, specifi-
cally word2vec embeddings (Mikolov et al., 2013)
in these experiments. More details on hyperparam-
eters, configuration, and training can be found in
previous work Almeida and Matos (2020b).

4 Evaluation

In this section, we aim to empirically demonstrate
the efficacy of the proposed model and compare its
efficiency against the state-of-the-art transformer-
based models.

4.1 Efficacy

To compare the retrieval efficacy of the lightweight
system and show that despite having only 620 train-
able parameters, it is capable of competing with
state-of-the-art models, namely transformer-based
models, we reuse the results obtained in two ad-hoc
retrieval competitions. Concretely, the results in
both challenges derive from a two-stage retrieval
pipeline, where our proposed neural model reranks
the top-N documents previously retrieved by the

BM25 (Robertson and Zaragoza, 2009) ranking
function.

4.1.1 BioASQ - Challenge
The BioASQ challenge (Tsatsaronis et al., 2015) is
an annual competition on document classification,
retrieval, and question-answering, currently in the
eighth edition. For the document retrieval task, the
objective was to retrieve the most relevant articles
from the PubMed/MEDLINE annual database.

Concerning the system, the BM25 filter was fine-
tuned with the 2700 biomedical questions provided
by the organisers as training data. Furthermore, the
neural model was trained on the same data using
a pairwise cross-entropy loss with cyclic learning
rates. We also trained the word embeddings using
word2vec (Mikolov et al., 2013) skip-gram algo-
rithm directly on the PubMed/MEDLINE articles.
For more details about our participation, we di-
rect the readers to the system description paper
(Almeida and Matos, 2020b).

System Document Retrieval
Rank MAP@10 GMAP@10

Batch 1 (total of 21 systems)
Proposed Model 1 38.23 1.63
Top Competitor (Pappas et al., 2020) 4 36.48 1.14

Batch 2 (total of 26 systems)
Proposed Model 3 37.19 6.75
Top Competitor (Kazaryan et al., 2020) 1 39.45 6.00

Batch 3 (total of 28 systems)
Proposed Model 5 52.30 7.63
Top Competitor (Pappas et al., 2020) 1 53.29 6.25

Batch 4 (total of 26 systems)
Proposed Model 3 48.10 7.96
Top Competitor (Pappas et al., 2020) 1 49.92 7.00

Batch 5 (total of 25 systems)
Proposed Model 2 50.98 6.52
Top Competitor (Kazaryan et al., 2020) 1 52.02 6.34

Table 1: Summary of the results obtained in BioASQ.
Values in bold represent the top score achieved during
the competition.

The results summarised in Table 1 show that the
system provided the best ranking overall in terms
of GMAP@10 for all five batches and achieved top
3 results in all but one batch, in terms of MAP@10.
Additionally, this challenge received an average of
25 submissions for each batch and, according to
Nentidis et al. (2020), all the other top-performing
systems used either BERT or a BERT variant.

4.1.2 TREC-Covid - Challenge
TREC-Covid (Roberts et al., 2020) was an initia-
tive to rapidly promote the development of an au-
tomatic system capable of searching the growing
literature about the 2019 novel coronavirus. The
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challenge followed a TREC style format and relied
on the CORD-19 dataset (Wang et al., 2020a) as
the collection of scientific articles about the novel
coronavirus. The objective was to retrieve the most
relevant articles from this collection for each topic
given by the organisers. The system results were
evaluated in a residual manner since, with the ex-
ception of the first round, the rounds shared top-
ics that had already been evaluated. The metrics
adopted were P@5, NDCG@10, Brepf, and MAP.
The organisers also allowed the use of the evalua-
tion feedback of previous rounds as training data
to tune/train the submitted systems. An important
note is that for the first round no training data was
available since no previous evaluation had been
performed.

Concerning the system, we utilised the BioASQ
system in the first round, which means this was
a zero-shot approach, exploiting the proximity
of the domains. The only change was on the
embeddings used, which were trained on the
PubMed/MEDLINE articles plus the CORD-19
dataset. For the remaining rounds, we kept a simi-
lar approach, but we also fine-tuned (trained) the
model with the feedback data from previous rounds.
A complete description of our participation is avail-
able in Almeida and Matos (2020c).

System Rank P@5 NCDG@10
Round 1 (total of 100 automatic runs)

Proposed Model 9 63.33 52.98
Top Competitor* 1 78.00 60.80

Round 3 (total of 79 runs)
Proposed Model 2 86.50 77.15
Top Competitor** (Zhang et al., 2020) 1 86.00 77.40
Runs description:
*https://ir.nist.gov/covidSubmit/archive/round1/sab20.1.meta.docs.pdf
**https://ir.nist.gov/covidSubmit/archive/round3/covidex.r3.t5_lr.pdf

Table 2: Summary of the two best results achieved on
TREC-Covid.

Comparatively to BioASQ, TREC-Covid was
more challenging given the high number of partic-
ipating teams. As an example, the first round had
a total of 53 teams and approximately 100 submis-
sions in the same category as our submission and
hence comparable. This large number also cov-
ers a variety of IR solutions, ranging from simple
traditional IR to transformer interaction-based mod-
els. Table 2 shows our best results, a ninth-place
out of 100 in the first round and a second-place
out of 73 in the third round. In both rounds, our
system was able to beat traditional IR techniques
and more recent transformer-based architectures,
such as BERT and its variants, T5 (Raffel et al.,

2020), among others. Additionally, our round 3
submission differed from the overall system since,
motivated by the residual nature of the evaluation,
we ended up utilising a (pseudo)-relevance feed-
back baseline instead of our BM25 baseline.

4.2 Performance
In this section, we address the performance side
of the proposed neural model by empirically com-
paring it to the transformer-based behemoths. We
propose three dimensions of comparison, namely
the number of parameters, time to infer document
relevance, and time to train. The first dimension
has the objective of giving an idea of the model’s
size. The second dimension is especially concerned
with proving the feasibility of using these models
in real-world applications. Finally, the third dimen-
sion is concerned with the impact and resources
required to build systems with these models.

All the measures were performed on a machine
with the characteristics presented in Table 3, which
we consider a good representative of a generally
accessible setup. Additionally, all the experiments
were performed on TensorFlow 2.2.0 with CUDA
10.1, and for the transformer-based models, we
adopted the HuggingFaces (Wolf et al., 2020) li-
brary with the TensorFlow version of the mod-
els. To keep the comparison fair we utilize the
“tf.function”1 decorator to convert the model to a
static computation graph, significantly speeding up
the transformer-based models.

CPU 2x Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
GPU Nvidia Tesla K80 with 12 GB
RAM 128 GB

Table 3: Specification of the hardware used during the
experiments.

An important aspect is that we do not have ac-
cess to the systems listed in Section 4.1. To keep
a fair comparison, we implemented a simple mini-
mal working example that uses a transformer-based
model for ad-hoc retrieval. Pursuing the ideas of
(Yang et al., 2019; Nogueira et al., 2019; Dai and
Callan, 2019b), we fed to the model the following
input “[CLS] query tokens [SEP] document tokens
[SEP]”, where “[CLS]” and “[SEP]” are special
boundary tokens, with the first one being a classi-
fier token that is further fed to a multi-layer percep-
tron to compute the final document relevance. We

1https://www.tensorflow.org/versions/r2.2/api docs/python/
tf/function

https://ir.nist.gov/covidSubmit/archive/round1/sab20.1.meta.docs.pdf
https://ir.nist.gov/covidSubmit/archive/round3/covidex.r3.t5_lr.pdf


3348

set the input size to the maximum that the model
could handle and applied padding or truncation.
This implementation gives us a best-case scenario
in terms of computational performance for ad-hoc
retrieval.

We compared the following transformer-based
models against our proposed solution:

• BERT (x12): Corresponds to the original
checkpoint “bert-base-uncased” of the BERT
model and has 12 layers, 768 hidden dimen-
sion, 12 multi attention heads, totaling approx-
imately 110 million trainable parameters.

• BERT (x24): Corresponds to the original
checkpoint “bert-large-uncased” of the BERT
model and has 24 layers, 1024 hidden dimen-
sion, 16 multi attention heads, totaling approx-
imately 340 million trainable parameters.

• distilBert: Corresponds to the original check-
point “distilbert-base-uncased” of the distil-
BERT model and has 6 layers, 768 hidden
dimension, 12 multi attention heads, totaling
approximately 66 million trainable parame-
ters.

• ALBERT: Corresponds to the original check-
point “albert-base-v2” of the ALBERT model
and has 12 repeating layers, 128 size embed-
dings, 768 hidden dimension, 12 multi atten-
tion heads, totaling approximately 11 million
trainable parameters.

• Longformer: Corresponds to the original
checkpoint “allenai/longformer-base-4096” of
the Longformer model and has 12 layers, 768
hidden dimension, 12 multi attention heads,
totaling approximately 149 million trainable
parameters.

We mostly use BERT models since these are
widely adopted in the literature. Moreover, we
also include distilBERT since it is currently one
of the fastest transformer-based models available,
and ALBERT, given its comparatively small num-
ber of trainable parameters. Furthermore, all the
models had a maximum input size of 512, with the
exception of Longformer, which had an input size
of 4096.

Some final notes regarding our neural model im-
plementation are also relevant. In the first place,
this model was constructed to run on the CPU, and
so we do not consider operations and data flow that

would be easily accelerated on the GPU. Further-
more, our implementation is in a prototype phase,
which means that we have not performed any op-
timisations. For example, in the current state, the
model performs some redundant computation, and
the amount of padding data reaches approximately
90%.

4.2.1 On Inference
Regarding the inference tests, these were per-
formed both in CPU and GPU since it is well
known that the transformer architecture can achieve
a drastic speed up on the GPU. However, on the
other side, this brings more operational costs and
offers a new single point of failure that real-world
systems would need to deal with.

With respect to the experiment, it consists of
computing the document relevance score for a
BioASQ test set that contains 100 queries and a
pool of 250 documents for each question, making
a total of 25000 query document pairs. We fed this
to the models in a systematic way, only varying
the batch size and measured the elapsed time in
seconds. We discarded the time taken on the first
and last batch since the first batch may perform
some initialization operations and the last batch
has fewer documents than the others. Moreover, in
the column “Tokens seen”, we show the number of
tokens fed to the model per sample.

Model Tokens seen Time elapsed (on a batch of 16)
CPU(s) GPU(s)

Mean ± std Mean ± std
Proposed model 4500 0.074± 0.006 0.824± 0.093

distilBERT 512 2.421± 0.038 0.551± 0.007

BERT (x12) 512 4.967± 0.072 1.133± 0.011

ALBERT 512 5.144± 0.081 1.198± 0.027

BERT (x24) 512 15.729± 0.185 3.511± 0.052

LongFormer 4096 102.051± 1.009 *11.188± 0.035

*Measured on a batch size of 8

Table 4: Inference times in seconds measured over
25000 query document pairs using a batch size of 16
on a CPU and GPU.

Table 4 presents the measured times using a
batch size fixed at 16. As illustrated, our sim-
ple model can run 32 times faster on the CPU
compared to the fastest transformer-based solution
while processing almost 9 times the amount of to-
kens. Compared with a model that processes al-
most the same amount of data, in our experiments
the LongFormer, the time difference becomes more
evident, with our proposed model being 1379 times
faster.

Regarding the behaviour when running on the
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GPU, our proposed model is not able to achieve
a speedup when compared to the CPU time and
to the transformer-based models. However, we
believe the main reason for this is related to the time
needed to transfer the data to the GPU since the
proposed model needs to send 9 times more data,
which also gives us an indication that it may not be
worth to run on the GPU due to the small number of
operations that the model performs compared to the
amount of data that it needs to send. Furthermore,
the results that we show for the LongFormer were
obtained with a batch size of 8, since we could not
fit the model with a batch of 16 on the GPU, due to
memory constraints.

Figure 2 presents the models inference time for
four different batch sizes, {16, 32, 64, 258}. On the
left, which corresponds to the experiments on the
CPU, the models seem to scale with the increase
of the batch size linearly. Additionally, only our
proposed model is capable of keeping an inference
time under one second, which can be viewed as
an acceptable query latency time. Similarly, on
the right side, corresponding to the experiments
performed on the GPU, we observe the same linear
behaviour for the transformer models. However,
the proposed model shows an almost constant time,
which reinforces the idea that when executed in the
GPU, the most time-consuming operation is data
transfer.

4.2.2 On Training
The training experiments were performed on both
CPU and GPU, similarly to the inference. Regard-
ing this experiment, we follow a pairwise training
approach, which may be a computationally heavier
option when combined with the transformer archi-
tecture, since these are usually trained as a binary
classification problem, i.e., a document is relevant
to a question or not. However, we decided to keep
the pairwise approach since the proposed model
was designed to use it, this way keeping a more fair
comparison and also demonstrating the burden of
training transformer-based models in a pairwise set-
ting. Moreover, the transformer-based model can
be entirely finetuned, i.e., training the classification
layer and all layers, or just training the classifica-
tion layer, which we also evaluate, since it should
speed up the training.

Concerning the training data, we used 100 ques-
tions from the BioASQ training dataset each as-
sociated with a list of relevant documents and a
list of negative documents randomly sampled from

the BM25 ranking order, producing a total of 1104
training samples.

After the sampling process, we store this data
to ensure that every model processes exactly the
same set of triplets (query, positive document and
negative document). To further ensure homogene-
ity among the experiments, we fixed every random
seed that we were aware of.

Model Tokens seen Time elapsed
(on a batch of 16) (on a batch of 1)

CPU(s) GPU(s)
Mean ± std Mean ± std

Proposed model 4500 0.350± 0.011 1.204± 0.234

distilBERT 512 9.700± 0.055 1.116± 0.007

BERT (x12) 512 19.727± 0.280 0.484± 0.005

ALBERT 512 19.835± 0.414 0.451± 0.003

BERT (x24) 512 66.536± 0.724 1.582± 0.040

Table 5: Complete training times, i.e., training all the
layers, in seconds measured over 1104 samples on a
CPU and GPU.

Table 5 shows the time required to fully train
the transformer-based models, i.e., training all the
layers plus the classifier layer, in a pairwise set-
ting. Similarly to the inference, we also adopted
a batch of 16 for the CPU and a batch of 1 for
the GPU, since we could not perform the training
on the GPU due to memory issues for some mod-
els. Additionally, we did not measure results for
the LongFormer, neither in CPU or GPU, since we
were unable to store the model plus all the gradients
on memory (128GB) for the given batch size.

Regarding the results, all the models seem to be
four times slower at training time when compared
with the inference times. As expected, the proposed
model presented the fastest training time, being
10 times faster than the fastest transformer model.
Also note that, for all the models, training with a
batch of 1 on GPU does not bring any advantages
over training on the CPU, which is approximately 3
times slower (per batch) but for a batch size that is
16 times larger. Finally, regarding the performance
of the proposed model on the GPU, it also seems to
support the previously enunciated problem related
to data transfer to the GPU.

Table 6, presents the measured time, in seconds,
required only to train the classification layer in the
transformer-based models. In this case, both the
CPU and GPU experiments could be done on a
batch size of 16, since it is only necessary to store
gradients for the classification layer.

Looking at the results, if we only update the clas-
sifier layers weights, the transformer-based models
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Figure 2: Inference times on the CPU, left side, and on the GPU, right side, as a function of the batch size.

Model Tokens seen Time elapsed (on a batch of 16)
CPU(s) GPU(s)

Mean ± std Mean ± std
Proposed model 4500 0.350± 0.011 1.008± 0.094

distilBERT 512 3.696± 0.098 1.108± 0.011

BERT (x12) 512 7.513± 0.098 2.266± 0.012

ALBERT 512 7.867± 0.202 2.400± 0.011

BERT (x24) 512 24.699± 0.377 7.042± 0.033

Table 6: Training times, in seconds, only for the clas-
sification layer measured over 1104 samples on a CPU
and GPU.

training becomes 2.5 times faster. Additionally, us-
ing the GPU further improves this speed up to 8.7
times. However, even using the GPU, the fastest
transformer based model, distilBERT, is still 3.1
times slower than our proposed model.

5 Discussion

In this section, we take into consideration the
presented results, both in terms of efficacy and
performance, and present an overall overview of
the comparison of our lightweight model and the
transformer-based approaches.

First of all, we acknowledge some limitations
of the proposed model, which are all related to
the current implementation that processes a large
portion of padding data, increasing the number
of tokens that the model sees and thus injuring
the performance of the current solution. However,
this is something that can be addressed in future
work by rearranging the model data flow and better
understanding the required maximum input size of
the query and document tokens. Moreover, to get a
sense of speed up that we could achieve, we made
a comparison with a transformer-based model that
is able to encode up to 4096 tokens, which is close
to the 4500 tokens of the proposed model. In this
case, the lightweight model ends up being 1379

times faster, which gives an idea that the expected
speedup may be in the order of a thousand.

Recalling the three proposed dimensions of com-
parison, the proposed model excels in all of them.
First of all, it is a model with 10 thousand times
fewer trainable parameters when compared to dis-
tilBERT. In the efficacy evaluation, the results show
that the proposed model could achieve close to state
of the art performance in both biomedical ad-hoc
retrieval tasks. Finally, according to the presented
inference times, more precisely, with the times pre-
sented in Figure 2, it is observable that the proposed
model was the only one to perform inference under
one second even with a batch size of 256, which is
more than enough to adopt in real-world ad-hoc re-
trieval applications. Furthermore, this observation
enables us to conclude that the transformer-based
model solution is currently not suitable for a real-
world ad-hoc retrieval application unless large scale
computational resources are available.

Moreover, our results also show that the pro-
posed model was always the fastest model by a sig-
nificant margin, even though using only the CPU.
This, in our view, ends up to be a preferable char-
acteristic, since it facilitates the deployability and
scalability of systems that implement this model.

6 Conclusion

In this paper, we discuss the feasibility of us-
ing transformer-based models in real-world ad-
hoc retrieval applications and show an extreme
lightweight solution, with only 620 trainable pa-
rameters.

We evaluate the solution against the transformer-
based models, in terms of efficacy and performance,
and show that this model is capable of matching the
efficacy offered by the transformer-based models in
two biomedical ad-hoc retrieval challenges while
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being considerably faster by just using the CPU
compared to the best GPU runs of the transformer-
based models.
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