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Abstract
Typical ASR systems segment the input audio
into utterances using purely acoustic informa-
tion, which may not resemble the sentence-
like units that are expected by conventional
machine translation (MT) systems for Spoken
Language Translation. In this work, we pro-
pose a model for correcting the acoustic seg-
mentation of ASR models for low-resource
languages to improve performance on down-
stream tasks. We propose the use of subtitles
as a proxy dataset for correcting ASR acous-
tic segmentation, creating synthetic acoustic
utterances by modeling common error modes.
We train a neural tagging model for correct-
ing ASR acoustic segmentation and show that
it improves downstream performance on MT
and audio-document cross-language informa-
tion retrieval (CLIR).

1 Introduction

Typical ASR systems segment the input audio into
utterances using purely acoustic information, i.e.,
pauses in speaking or other dips in the audio signal,
which may not resemble the sentence-like units that
are expected by conventional MT systems for spo-
ken language translation (SLT) (Cho et al., 2017).
Longer utterances may span multiple sentences,
while shorter utterances may be sentence fragments
containing only a few words (see Figure 1 for exam-
ples). Both can be problematic for downstream MT
systems. In this work, we propose a model for cor-
recting the acoustic segmentation of an ASR model
to improve performance on downstream tasks, fo-
cusing on the challenges inherent to SLT pipelines
for low-resource languages.

While prior work has trained intermediate com-
ponents to segment ASR output into sentence-like
units (Matusov et al., 2007; Rao et al., 2007), these
have primarily focused on highly resourced lan-
guage pairs such as Arabic and Chinese. When
the source language is low-resource, suitable train-
ing data may be very limited for ASR and MT,

and even nonexistent for segmentation. Since typ-
ical low-resource language ASR datasets crawled
from the web do not have hand-annotated segments,
we propose deriving proxy segmentation datasets
from film and television subtitles. Subtitles typi-
cally contain segment boundary information like
sentence-final punctuation, and while they are not
exact transcriptions, they are closer to transcribed
speech than many other large text corpora.

Our proposed model takes as input a sequence of
tokens and segmentation boundaries produced by
the acoustic segmentation of the ASR system and
returns a corrected segmentation. While subtitles
are often similar to speech transcripts, they lack
an existing acoustic segmentation for our model to
correct. To account for this, we generate synthetic
acoustic segmentation by explicitly modeling two
common error modes of ASR acoustic segmenta-
tion: under- and over-segmentation.

We evaluate the downstream MT performance
in a larger SLT pipeline, and show improvements
in translation quality when using our segmenta-
tion model to correct the acoustic segmentation
provided by ASR. We also extrinsically evaluate
our improved SLT pipeline as part of a document-
level cross-lingual information retrieval (CLIR)
task, where we show that improvements in ASR
segmentation also lead to improved relevance of
search results. We report results for nine transla-
tion settings: Bulgarian (BG) to English, Lithua-
nian (LT) to English, and Farsi (FA) to English,
and when using either phrase-based, statistical MT
(SMT) or one of two neural MT (NMT) models.
We finally perform an ablation study to examine
the effects of our synthetic acoustic boundaries and
our over- and under-segmentation noise.

This paper makes the following contributions.
(i) We propose the use of subtitles as a proxy dataset
for correcting ASR acoustic segmentation and (ii) a
method for adding synthetic acoustic utterance seg-
mentations to a subtitle dataset, as well as (iii) a
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Acoustic Segmentation (Over-segmentation):

ARE YOU OKAY � AGENT SCULLY � YOU KIND OF SOUNDED A � LITTLE SPOOKY �

Corrected Sentence Segmentation:

ARE YOU OKAY AGENT SCULLY � YOU KIND OF SOUNDED A LITTLE SPOOKY �

Acoustic Segmentation (Under-segmentation):
NO IS HE IN SOME KIND OF TROUBLE �

Corrected Sentence Segmentation:

NO � IS HE IN SOME KIND OF TROUBLE �

Figure 1: Example acoustic segmentation errors and their corrections. � indicates a segment boundary.

simple neural tagging model for correcting ASR
acoustic segmentation before use in an MT pipeline.
(iv) Finally, we show downstream performance in-
creases on MT and document-level CLIR tasks, es-
pecially for more syntactically complex segments.

2 Related Work

Segmentation in SLT has been studied quite ex-
tensively in high-resource settings. Early work
used kernel-based SVM models to predict sen-
tence boundaries using language model probabil-
ities along with prosodic features such as pause
duration (Matusov et al., 2007; Rao et al., 2007)
and part-of-speech features derived from a fixed
window size (Rangarajan Sridhar et al., 2013).
Other work has modeled the problem using hidden
markov models (Shriberg et al., 2000; Gotoh and
Renals, 2000; Christensen et al., 2001; Kim and
Woodland, 2001) and conditional random fields
(Liu et al., 2005; Lu and Ng, 2010).

More recent segmentation work uses neural ar-
chitectures, such as LSTM (Sperber et al., 2018)
and Transformer models (Pham et al., 2019). These
models benefit from the large training data avail-
able for high-resource languages. For example, the
TED corpus (Cettolo et al., 2012) for SLT from En-
glish to German includes about 340 hours of well-
transcribed data. To our knowledge, such datasets
do not exist for the languages we are interested in.
Wan et al. (2020) develop a segmentation model
in our setting using subtitles; however, they do not
take into account explicit modeling of segmenta-
tion errors and show only minimal and intermittent
improvements in downstream tasks.

Recent work has increasingly focused on end-
to-end models of SLT in a high-resource setting,
since these systems reduce error propagation and
latency when compared to cascaded approaches

(Weiss et al., 2017; Cross Vila et al., 2018; Sper-
ber et al., 2019; Gaido et al., 2020; Bahar et al.,
2020; Lakumarapu et al., 2020). In spite of these
advantages, end-to-end systems have only very re-
cently achieved competitive results due to the lim-
ited amount of parallel data for speech translation
as compared to the data that is available to train
ASR systems and translation systems separately
(Gaido et al., 2020; Ansari et al., 2020).

3 Problem Definition

We treat the ASR acoustic segmentation prob-
lem as a sequence tagging problem (Stolcke and
Shriberg, 1996). Unlike a typical tagging prob-
lem, which aims to tag a single input sequence,
our input is a pair of aligned sequences of n items,
x = [x1, . . . , xn] and γ = [γ1, . . . , γn] where x
and γ are the ASR tokens and acoustic segmen-
tation respectively. The tokens xi belong to a fi-
nite vocabulary V , while the acoustic segmentation
boundary tags are binary, i.e., γi ∈ {0, 1}, where
γi = 1 indicates that the ASR acoustic segmen-
tation placed a boundary between tokens xi and
xi+1. The goal is to predict a corrected segment
boundary tag sequence y = [y1, . . . , yn] ∈ {0, 1}n
from x and γ.

We do this by learning a probabilistic map-
ping from token/segmentation sequences to cor-
rected segmentation p(·|x,γ; θ) : {0, 1}n → (0, 1)
where p is a neural tagging model with parameters
θ. While γ are produced solely from acoustic cues,
p can take advantage of both the acoustic infor-
mation (via γ) as well as syntactic/semantic cues
implicit in x.
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Reference Segmentation:

YEAH � THE HOLIDAY MARKET IS TOO BUSY � YES �

Synthetic Acoustic Segmentation Generation:
Model Output: y = 1 0 0 0 0 0 1 1

(Under-seg.) γ̌ = 1 − − − − − 0 1
(Over-seg.) γ̂ = − 0 0 1 0 1 − −

Model Input:
γ = 1 0 0 1 0 1 0 1
x = Y EAH THE HOLIDAY MARKET IS TOO BUSY Y ES

Synthetic Acoustic Segmentation (γ):

YEAH � THE HOLIDAY MARKET � IS TOO � BUSY YES �

Figure 2: Example of synthetic acoustic segmentation (γ) creation. For each training datapoint, we have as model
input the tokens x and the corresponding model output sentence boundary labels y. To generate the synthetic
acoustic segmentation (γ), we apply under-segmentation (γ̌) and over-segmentation (γ̂) noise to y. Dashes indicate
the tokens where the particular noise is not applicable. Bold indicates the changed labels due to the noise. We
generate the additional input γ by combining both γ̌ and γ̂.

4 Generating Training Data from
Subtitles

One of our primary contributions is a method for
converting subtitle data into suitable training data
for an ASR segmentation correction model. The
subtitle data contains speech-like utterances of di-
alogue between characters in film and television
shows. For the purposes of this paper, we do not
use information about speaker identity, only the
text and information about segmentation. We ob-
tain the ground truth output label segmentation y
by segmenting the subtitle text on sentence final
punctuation.1 We remove the punctuation but keep
the implied label sequence to obtain the input token
sequence x and ground truth output label segmenta-
tion y. However, we do not have acoustic segmen-
tation available for x,y pairs derived from subtitle
data, which we will need as additional input if our
model is to learn to correct acoustic segmentation
provided by an ASR component. We thus create a
synthetic acoustic segmentation sequence γ as in-
put by adding two types of noise to y. Specifically,
we imitate two common ASR system errors, under-
segmentation noise and over-segmentation, so that
at test time the model can correct those errors.

Under-segmentation Noise In the ASR model,
under-segmentation occurs when pauses between
words are brief, and the resulting ASR output is an
utterance that could ideally be split into multiple
sentence-like segments. We simulate this by adding

1Set of sentence final punctuation: { ( ) : - ! ? . }.

under-segmentation noise which converts ground
truth segmentation boundaries yi = 1, to yi = 0
with probability α̌ and leaves yi = 0 unchanged.

Over-segmentation Noise Over-segmentation
occurs in an ASR model when a speaker takes a
longer pause in the middle of what could be in-
terpreted as a contiguous sentence-like utterance.
Over-segmentation noise is simulated by insert-
ing random segment boundaries within an utter-
ance. That is, with probability α̂ we convert a
non-boundary tag yi = 0 to yi = 1, while leaving
all yi = 1 unchanged.

Synthetic Segmentation Input Generation We
can then sample a synthetic acoustic segmentation
sequence γ from the following distribution,

γi ∼

{
Bernoulli(α̌) if yi = 1

Bernoulli(α̂) otherwise

for i ∈ {1, . . . , n}. This can be thought of as
dropout applied to the correct label sequence y.
See Figure 2 for an example. Our proposed seg-
mentation correction model will learn to denoise
the input segmentation sequence γ and produce the
corrected sequence y.

5 Model

We employ a Long Short-Term Memory (LSTM)-
based model architecture for this task (Hochre-
iter and Schmidhuber, 1997). Given an input se-
quence of ASR tokens x = [x1, . . . , xn] along
with corresponding ASR segmentation sequence
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γ = [γ1, . . . , γn], we first get an embedding repre-
sentation ei ∈ R316 for each token as follows:

ei = G(xi)⊕ F (γi)

where G ∈ R|V|×300 and F ∈ R2×16 are embed-
ding lookup tables, and ⊕ is the concatenation op-
erator. We initialized G with FastText embeddings
pre-trained on Common Crawl data (Mikolov et al.,
2018). F is randomly initialized.

We pass the embedding sequence through a two-
layer bi-directional LSTM, with 512 hidden units
each, to get the contextual representation hi ∈
R1024 for each token as follows:

hi =
−−−−→
LSTM(ei)⊕

←−−−−
LSTM(ei)

where
−−−−→
LSTM and

←−−−−
LSTM are the forward direction

and backward direction LSTMs respectively.
Each output state hi is then passed through

a linear projection layer with a logistic sigmoid
to compute the probability of a segment bound-
ary p(yi = 1|hi; θ). The log-likelihood of
a corrected segmentation boundary sequence is
log p(y|x,γ; θ) =

∑n
i=1 log p(yi|hi; θ). We fit

the parameters, θ, by approximately minimizing
the negative log-likelihood on the training set D,
L(θ) = − 1

|D|
∑

(x,γ,y)∈D log p (y|γ,x; θ), using
mini-batch stochastic gradient descent.

6 Datasets

6.1 Subtitles Dataset
We obtain monolingual subtitle data from the
OpenSubtitles 2018 corpus (Lison and Tiedemann,
2016). OpenSubtitles contains monolingual subti-
tles for 62 languages drawn from movies and tele-
vision. The number of subtitle documents varies
considerably from language to language. LT has
only 1,976 documents, while BG and FA have
107,923 and 12,185 respectively. We randomly
down-sample from the larger collection to 2,000
documents to ensure our segmentation correction
models are all trained with similar amounts of data.

Treating the subtitles for a complete television
episode or movie as the source of a single training
instance (x,γ,y) introduces some complications
because they are usually quite long relative to typi-
cal SLT system input. To better match our evalua-
tion conditions, we arbitrarily split each document
into M instances, where the length l in tokens for
each instance m is sampled from L ∼ U(1, 100),
i.e. uniformly from 1 to 100 tokens. This range

was determined to to approximate the length distri-
bution of our evaluation datasets.

See Table 1 for statistics on the number of train-
ing instances created as well as the average number
of sentence segments per instance. Note that even
though the number of subtitle documents is close
to equal, the documents can vary considerably in
length. As result, the BG dataset has more than
twice the training instances of FA or LT. In some
cases, an instance may contain only a few words
that do not constitute a sentence, and such instances
would have no segment boundaries; this helps pre-
vent the model from learning pathological solutions
such as always inserting a segment boundary at the
end of the sequence.

Since we do not evaluate the segmentation di-
rectly on OpenSubtitles, we split the available data
into training and development partitions, with 90%
of the instances in the training set.

6.2 Speech Retrieval Dataset

For extrinsic evaluation of ASR segments, we use
the speech retrieval dataset from the MATERIAL2

program. The goal of MATERIAL is to develop
systems that can retrieve text and speech documents
in low-resource languages that are relevant to a
given query in English. To bootstrap speech re-
trieval systems in low-resource languages, MATE-
RIAL collects BG, FA, and LT speech training data
for ASR systems, as well as additional separate
collections of BG, FA, and LT speech documents
along with their relevance judgments for a set of
English language queries. Since the retrieval of
speech documents requires a cascade of ASR, MT,
and CLIR systems, the MATERIAL data allows
us to measure the impact of ASR segmentation on
both the translation quality, as well as the down-
stream retrieval system. The data partitions in MA-
TERIAL are numerous and to avoid confusion, we
briefly describe them here.

The BUILD partition contains a small amount
of ASR training and development data for BG, FA,
and LT, i.e. audio files paired with reference tran-
scripts. We use the BUILD data for fine-tuning our
subtitle trained model. We apply the same synthetic
acoustic segmentation generation procedure to this
collection as we do to the subtitle data when using
it for fine-tuning. See Table 1 for dataset statistics.

The Test (Small) partition contains audio docu-

2www.iarpa.gov/index.php/
research-programs/material

www.iarpa.gov/index.php/research-programs/material
www.iarpa.gov/index.php/research-programs/material
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Lang.
OpenSubtitles BUILD Train BUILD Valid

D I S D I S D I S

BG 2000 459,301 3.95 352 7,723 3.22 108 2,472 3.14
FA 2000 120,039 3.88 302 6,707 3.52 120 2,679 3.53
LT 1977 165,751 12.99 484 11,782 3.40 112 2,893 3.31

Table 1: Segmentation model training dataset statistics. We report number of documents (D), number of instances
(I) in each dataset and average number of segments per instance (S).

Lang. Test (Small) Test (Large)

Q D Q D

BG 300 634 – –
FA 221 528 – –
LT 300 496 1,000 3,297

Table 2: Number of queries (Q) and documents (D) in
the speech retrieval test collections.

ments and a set of English language queries and
relevance judgements for those queries. At test
time, we use the acoustic segmentation provided by
the ASR system as the input γ instead of generat-
ing acoustic label sequences. Additionally, roughly
half of the audio documents in this collection in-
clude ground-truth transcriptions and translations
to English, which allows us to evaluate MT.

The Test (Large) partition is similar to the Test
(Small) partition, but much bigger in size. There
are no transcripts or translations, so it can be used
only to evaluate CLIR. The Test (Large) partition
is available only for LT.

We use the translated portion of Test (Small)
as a test set for MT and both Test (Small) and
Test (Large) as extrinsic test sets for CLIR. The
statistics of the MATERIAL partitions can be found
in Table 2.3

The speech retrieval datasets come from three
domains: news broadcast, topical broadcast such as
podcasts, and conversational speech from multiple
low-resource languages. Some speech documents
have two speakers, with each speaker on a separate
channel, i.e., completely isolated from the other
speaker. When performing segmentation we treat
each channel independently, creating a separate (re-
segmented) ASR output for each channel. To create
the document transcript for MT, we merge the two

3The official MATERIAL collections are named ANAL-
YSIS+DEV and EVAL, but we refer to them as Test (Small)
and Test (Large) to avoid confusion.

output sequences by sorting the token segments
based on their wall-clock start time.

7 Experiments

7.1 Segmentation Model Training

For all datasets, we tokenize all data with Moses
(Koehn et al., 2007). To improve performance
on out of vocabulary words, we use Byte-Pair-
Encoding (Sennrich et al., 2016) with 32,000 merge
operations to create subwords for each language.

We then train the segmentation model on the
subtitle dataset. When creating γ sequences on the
subtitles data, we set under- and over-segmentation
noise to α̌ = 0.25 and α̂ = 0.25 respectively.4 We
use the Adam optimizer (Kingma and Ba, 2015)
with learning rate of 0.001. We use early stopping
on the validation loss of the OpenSubtitles valida-
tion set to select the best stopping epoch for the
segmentation model.

We further fine-tune this model on the BUILD
partition to expose the model to some in-domain
training data. The data is similarly prepared as
OpenSubtitles. We use early stopping on the devel-
opment loss of this partition.

7.2 ASR-Segmentation-MT-CLIR Pipeline

We evaluate our segmentation correction model in
the context of a CLIR pipeline for retrieving audio
documents in BG, FA, or LT that are relevant to
English queries. We refer to the three languages
BG, FA, and LT as source languages. This pipeline
uses ASR to convert source language audio docu-
ments to source language text transcripts, and MT
to translate the source language transcripts into En-
glish transcripts. Then a monolingual English IR
component is used to return source language docu-
ments that are relevant to the issued English queries.
We insert our segmentation correction model into

4Values for α̌ and α̂ were determined by grid-search over
{0.25, 0.5, 0.75} that minimized loss on the BUILD Valid
data.
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this pipeline between the ASR and MT compo-
nents, i.e. (i) ASR to (ii) Segmentation Correction,
to (iii) MT to (iv) IR. For clarity we reiterate, the
segmentation model takes as input a source lan-
guage transcript and returns the source language
transcript with corrected segmentation.

To implement the ASR, MT, and IR components,
we use implementations developed by MATERIAL
program participants (Oard et al., 2019).

7.2.1 ASR System

We use the ASR systems developed jointly by
the University of Cambridge and the University
of Edinburgh (Ragni and Gales, 2018; Carman-
tini et al., 2019). The ASR system uses a neural
network based acoustic model, trained in a semi-
supervised manner on web-scraped audio data, to
overcome the small amount of training data in
the BUILD data. Separate models are trained for
narrow-band audio (i.e., conversational speech) and
wide-band audio (i.e. news and topical broadcast).

7.2.2 Segmentation Correction

At test time, given a speech document, the ASR
system produces a series of acoustically derived ut-
terances, i.e. x(1), . . . ,x(m), from this input. In our
setting, the corresponding acoustic label sequence
γ(i) for each utterance would be zero everywhere
except the final position, i.e. γ(i) = [0, 0, . . . , 0, 1].
If we were to process each utterance, (x(i),γ(i)),
individually, the model may not have enough con-
text to correct under-segmentation at the ends of
the utterance. For example, when correcting the
final token position, which by definition will pre-
cede a long audio pause, the model will only
see the left-hand side of the context. To avoid
this, we run our segmentation correction model
on consecutive pairs of ASR output utterances, i.e.(
x(i) ⊕ x(i+1),γ(i) ⊕ γ(i+1)

)
. Under this formu-

lation each ASR output utterance is corrected twice
(except for the first and last utterances which are
only corrected once), therefore we have two predic-
tions ŷ(i,L)j and ŷ(i,R)

j for the j-th segment bound-
ary. We resolve these with the logical-OR opera-
tion to obtain the final segmentation correction, i.e.
ŷ
(i)
j = ŷ

(i,L)
j ∨ ŷ(i,R)

j .
Based on the segmentation corrections produced

by our model, we re-segment the ASR output to-
kens and hand the resulting segments off to the MT
component where they are individually translated.

7.2.3 MT Systems
We evaluate with three different MT systems. We
use the neural MT model developed by the Univer-
sity of Edinburgh (EDI-NMT) and the neural and
phrase-based statistical MT systems from the Uni-
versity of Maryland (UMD-NMT and UMD-SMT,
respectively). The EDI-NMT and UMD-NMT sys-
tems are Transformer-based models (Vaswani et al.,
2017) trained using the Marian Toolkit (Junczys-
Dowmunt et al., 2018) and Sockeye (Hieber et al.,
2018), respectively. UMD-NMT trains a single
model for both directions of a language pair (Niu
et al., 2018), while EDI-NMT has a separate model
for each direction. UMD-SMT is trained using the
Moses SMT Toolkit (Koehn et al., 2003), where the
weights were optimized using MERT (Och, 2003).

7.2.4 IR System
For the IR system, we use the bag-of-words lan-
guage model implemented in Indri (Strohman et al.,
2005). Documents and queries are both tokenized
and normalized on the character level to avoid po-
tential mismatch in the vocabulary. The queries
are relatively short, typically consisting of only a
few words, and they define two types of relevancy
– the conceptual queries require the relevant docu-
ments to be topically relevant to the query, while
the simple queries require the relevant document to
contain the translation of the query. However, no
specific processing is used for these two relevance
types in our experiments.

7.3 MT Evaluation

Our first extrinsic evaluation measures the BLEU
(Papineni et al., 2002) score of the MT output on
the Test (Small) sets after running our segmenta-
tion correction model, where we have ground truth
reference English translations. We refer to our
model trained only on the BUILD data as Seg, and
our subtitle-trained model as Seg + Sub. As our
baseline, we compare the same pipeline using the
segmentation produced by the acoustic model of
the ASR system, denoted Acous.

Since each segmentation model produces seg-
ments with different boundaries, we are unable to
use BLEU directly to compare to the reference sen-
tences. Therefore, we concatenate all segments of
a document and treat them as one segment, which
we refer to as “document-level” BLEU score. We
use SacreBLEU5 (Post, 2018) with the lowercase

5https://github.com/mjpost/sacrebleu

https://github.com/mjpost/sacrebleu
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option due to the different casing for the reference
English translation and MT output.

We also provide BLEU scores for the MT output
using the reference transcriptions (Ref) to show the
maximum score the system can achieve when there
is no ASR or segmentation error. This represents
the theoretical upper bound for our pipeline with a
perfect ASR system.

Segmentation errors (i.e., the acoustic model in-
correctly segmented an utterance) and word errors
(i.e., the ASR system produces an incorrect word)
can both affect the downstream MT performance.
To isolate the segmentation errors from word errors,
we align the ASR output tokens to the reference
transcriptions by timecode in order to obtain a ref-
erence system that has no segmentation errors, but
does have transcription errors. This represents a
more realistic ceiling for our model because while
we can correct segmentation, we cannot correct
word errors. We refer to this system in the results
section as Align.

7.4 Document-Level CLIR Evaluation

Our second extrinsic evaluation is done on the MA-
TERIAL CLIR task. We are given English queries
and asked to retrieve audio documents in either BG,
FA, or LT. In our setup, we only search over the
English translations of the segmented transcripts
produced by our pipeline, i.e., we do not trans-
late the English query into the other languages or
search the audio signal directly. We evaluate the
performance of CLIR using the Maximum Query
Weighted Value (MQWV) from the ground-truth
query-relevance judgements for documents in the
Test (Small & Large) collections. MQWV, which
is a variant of the official MATERIAL program
metric called Actual Query Weighted Value (NIST,
2017, AQWV), is a recall-oriented rank metric that
measures how well we order the retrieval collection
with respect to query relevance.

AQWV is calculated as the average of 1− (Pm +
β∗Pfa) for each query, where Pm is the probability
of misses, Pfa is the probability of false alarms,
and β is a hyperparameter. The maximum possible
value is 1 and the minimum value is given by −β.
In our experiments β it is set to 40. AQWV thus
not only depends on the ranking of the documents
but also on β.

Additionally, AQWV is sensitive to the thresh-
old used by the IR system to determine document
relevance. To avoid the tuning of thresholds, we

Lang. Model
EDI UMD UMD

NMT NMT SMT

BG

Acous. 20.48 20.39 21.24
Seg 22.38* 23.35* 21.23
Seg + Sub 24.73* 25.92* 21.23

Align 24.98 27.81 21.29
Ref 43.75 35.40 29.50

FA
Acous. 5.35 6.26 4.54
Seg 5.32 6.22 3.28
Seg + Sub 6.47* 6.83* 4.50

Align 7.67 7.02 4.59
Ref 17.08 11.24 7.76

LT

Acous. 15.20 8.38 14.76
Seg 15.18 8.34 14.76
Seg + Sub 15.22 8.33 14.76

Align 15.60 8.71 14.84
Ref 20.40 11.94 21.30

Table 3: Document-level BLEU scores on ANALY-
SIS set. * represents statistical significance when com-
pared to Acous. at the 0.05 level. We show the re-
sult of translations using the original acoustic segmen-
tation (Acous.), our model trained only on the BUILD
dataset (Seg), and our full model (Seg + Sub). For ref-
erence, we provide the scores of translation on ASR
tokens aligned to the reference transcription segmenta-
tion (Align), and the reference transcription (Ref).

report MQWV which is calculated for the optimal
threshold; in our experiments this threshold is es-
timated over the ranks of the documents. Thus,
MQWV doesn’t depend on the ability to estimate
the threshold and only depends on the quality of
the document ranking for a given query.

8 Results

8.1 MT

Table 3 shows the results of the MT evaluation.
The best non-reference system for each language
and MT system is in bold. We compute statisti-
cal significance against the acoustic (Acous.) seg-
mentation baseline using Welch’s T Test (Welch,
1947). Our subtitle-based segmentation model (Seg
+ Sub) consistently improves BLEU scores of NMT
models for BG and FA, while not making signif-
icant differences in SMT. This echoes prior work
(Khayrallah and Koehn, 2018; Rosales Núñez et al.,
2019) suggesting SMT models are more robust to
noisy inputs than neural models.
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Lang. Model
EDI UMD UMD

NMT NMT SMT

BG
Acous. 0.173 0.134 0.164
Seg + Sub 0.177 0.180 0.164

FA
Acous. 0.040 0.039 0.046
Seg + Sub 0.071 0.042 0.145

LT
Acous. 0.128 0.067 0.157
Seg + Sub 0.136 0.060 0.172

Table 4: MQWV scores on Test (Small) set.

In 6 out of 9 cases, we see that adding the subti-
tles data improves over using only the BUILD data.
Of the remaining cases, the scores remain similar
(i.e., it doesn’t hurt the model). Training on the
BUILD data alone improves BG NMT models, but
for SMT and the other languages, it either makes
no difference or is worse than the acoustic model.

Comparing Seg + Sub with Align in all lan-
guages, we see that there is only a small gap be-
tween the two. This suggests that our model is
nearing the ceiling on what correcting segmenta-
tion can do to improve downstream MT. Further-
more, on LT where our model offers only small
or no improvement, we see that the original acous-
tic segmentation is almost performing as well as
Align. This suggests that there is relatively little
room for improving LT MT by correcting sentence
boundaries alone.

8.2 Document-Level CLIR

MQWV on the Test (Small) and Test (Large) par-
titions are shown in Table 4 and Table 5 respec-
tively. On the Test (Small) partition, we see that
our segmentation model improves the CLIR per-
formance over the acoustic segmentation in 7 out
of 9 cases. On the Test (Large) partition, we see
that our segmentation model improves downstream
retrieval performance consistently across all three
MT systems. We note that while we measure the
downstream retrieval performance separately for
each MT system, a real-world CLIR system could
perform IR over the union of multiple MT systems,
which could yield even further improvements in
retrieval performance (Zhang et al., 2020).

8.3 Complexity Analysis

We hypothesize that the effects of improved seg-
mentation should be more pronounced for more
complex utterances with more opportunities to mis-

Lang. Model
EDI UMD UMD

NMT NTM SMT

LT
Acous. 0.292 0.175 0.328
Seg + Sub 0.293 0.179 0.399

Table 5: MQWV scores on the Test (Large) set.

ARI
Model

EDI UMD
Quartile NMT NMT

Q1
Acous. 17.78 24.70
Seg + Sub 17.92 11.62

Q2
Acous. 20.76 22.09
Seg + Sub 26.89 31.24

Q3
Acous. 22.87 20.38
Seg + Sub 29.96 33.22

Q4
Acous. 23.41 21.00
Seg + Sub 29.87 35.24

Table 6: Bulgarian BLEU scores on Test (Small) (tran-
scribed portion) when separated into quartiles by sen-
tence complexity (as measured by ARI).

place boundaries. Therefore, we calculate a mea-
sure of sentence complexity, the Automated Read-
ability Index (ARI) (Senter and Smith, 1967), for
all documents in Test (Small)6 and examine the
performance of our Sub model on MT. We separate
the documents into quartiles based on their calcu-
lated ARI, where a higher ARI (and thus a higher
quartile) indicates a more complex document, and
present the average document-level BLEU score
for each quartile in Table 6. In the interest of space,
we present results for Bulgarian and for NMT, and
defer other languages and SMT to Appendix A. We
see that the most dramatic gains in BLEU occur for
documents in the third and fourth quartiles, which
matches our intuition. In other words, our segmen-
tation model most improves the translation quality
of more syntactically complex segments.

9 Ablation Study

We perform an ablation study on two components
in our proposed model, (i) the use of acoustic
segmentation boundary labels γ as input and (ii)
training with a combination of over- and under-
segmentation noise. We use the same training and

6Only the transcribed portion with reference translations.
For each MT system, we compute ARI on the document trans-
lation using the reference transcription.
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Model
EDI UMD UMD

NMT NMT SMT

Acous. 20.48 20.39 21.24
Lex. 23.96 24.97 21.58
Lex. + Under 24.27 25.84 21.48
Lex. + Over 24.69 25.88 21.23
Full 24.73 25.92 21.23

Table 7: Document-level BLEU score for the models
in ablation studies. We provide the acoustic model
(Acous.) and our proposed model (Full).

evaluation process and only modify the affected
component. We perform our ablation on the BG
MT task, since it had a wider range of improve-
ments than the other languages.

Use of Acoustic Segmentation Boundaries.
We train a segmentation model using only ASR
output tokens x as input without the the ASR seg-
mentation sequence γ. For this model, we modify
the embedding representation ei so that we do not
use F :

ei = G(xi)

This model, which we refer to as Lex., must exclu-
sively use the lexical information of the ASR token
sequence x to make predictions.

Over-segmentation and Under-segmentation.
The two segmentation problems of the system may
have different impact on the MT system. To see
their individual effects, we train two models where
the synthetic acoustic segmentation boundary se-
quence γ is created using only under-segmentation
or over-segmentation noise. We refer to those mod-
els as Lex. + Under and Lex. + Over respectively.

Results Table 7 shows the effects of the model
ablations on MT system BLEU score. On both
NMT systems, we see that there is a roughly
1 point improvement on BLEU when includ-
ing the ASR segmentation boundaries as input.
For both NMT models we also find that over-
segmentation noise helps slightly more than adding
under-segmentation noise, but that these additions
are complementary, i.e. the full model does best
overall. For SMT, we surprisingly find that model
without acoustic segmentation boundary input does
best. The overall difference between the acoustic
(Acous.) baseline and any of the segmentation cor-
rection models is small compared to the gains had

on NMT. This again suggests that SMT is more
robust to changes in segmentation.

10 Conclusion

We propose an ASR segmentation correction model
for improving SLT pipelines. Our model makes use
of subtitles data as well as a simple model of acous-
tic segmentation error to train an improved ASR
segmentation model. We demonstrate downstream
improvements on MT and CLIR tasks. In future
work, we would like to find a better segmentation
error model that works well in conjunction with
SMT systems in addition to NMT systems.
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A Full Complexity Analysis

We present the full results of our complexity analy-
sis as described in subsection 8.3. Bulgarian (Ta-
ble 8, Lithuanian (Table 9), and Farsi (Table 10)
results are shown for all three MT models as well
as both the acoustic segmentation and our Seg +
Sub segmentation correction model. The best score
for each MT system and quartile is bolded.

ARI
Model

EDI UMD UMD
Quartile NMT NMT SMT

Q1
Acous. 17.78 24.70 22.26
Seg + Sub 17.92 11.62 22.58

Q2
Acous. 20.76 22.09 23.35
Seg + Sub 26.89 31.24 23.43

Q3
Acous. 22.87 20.38 22.45
Seg + Sub 29.96 33.22 21.68

Q4
Acous. 23.41 21.00 22.97
Seg + Sub 29.87 35.24 23.25

Table 8: Bulgarian BLEU scores on Test (Small) (tran-
scribed portion) when separated into quartiles by sen-
tence complexity (as measured by ARI).

ARI
Model

EDI UMD UMD
Quartile NMT NMT SMT

Q1
Acous. 4.24 3.13 5.14
Seg + Sub 4.32 2.76 5.11

Q2
Acous. 14.07 7.18 13.45
Seg + Sub 14.01 6.83 13.39

Q3
Acous. 15.95 7.81 14.85
Seg + Sub 16.39 8.13 14.87

Q4
Acous. 15.41 7.94 15.85
Seg + Sub 14.60 7.78 15.87

Table 9: Lithuanian BLEU scores on Test (Small) (tran-
scribed portion) when separated into quartiles by sen-
tence complexity (as measured by ARI).

ARI
Model

EDI UMD UMD
Quartile NMT NMT SMT

Q1
Acous. 3.46 3.40 3.21
Seg + Sub 6.05 4.49 3.43

Q2
Acous. 3.55 3.87 3.22
Seg + Sub 5.06 5.41 3.66

Q3
Acous. 4.71 5.33 5.19
Seg + Sub 7.44 7.29 5.54

Q4
Acous. 5.88 6.15 3.90
Seg + Sub 7.81 7.59 4.47

Table 10: Farsi BLEU scores on Test (Small) (tran-
scribed portion) when separated into quartiles by sen-
tence complexity (as measured by ARI).


