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Abstract

Adversarial learning can learn fairer and less
biased models of language than standard meth-
ods. However, current adversarial techniques
only partially mitigate model bias, added to
which their training procedures are often unsta-
ble. In this paper, we propose a novel approach
to adversarial learning based on the use of mul-
tiple diverse discriminators, whereby discrimi-
nators are encouraged to learn orthogonal hid-
den representations from one another. Experi-
mental results show that our method substan-
tially improves over standard adversarial re-
moval methods, in terms of reducing bias and
the stability of training.

1 Introduction

While NLP models have achieved great successes,
results can depend on spurious correlations with
protected attributes of the authors of a given text,
such as gender, age, or race. Including protected
attributes in models can lead to problems such as
leakage of personally-identifying information of
the author (Li et al., 2018a), and unfair models, i.e.,
models which do not perform equally well for dif-
ferent sub-classes of user. This kind of unfairness
has been shown to exist in many different tasks, in-
cluding part-of-speech tagging (Hovy and Søgaard,
2015) and sentiment analysis (Kiritchenko and Mo-
hammad, 2018).

One approach to diminishing the influence of
protected attributes is to use adversarial methods,
where an encoder attempts to prevent a discrimi-
nator from identifying the protected attributes in
a given task (Li et al., 2018a). Specifically, an ad-
versarial network is made up of an attacker and
encoder, where the attacker detects protected in-
formation in the representation of the encoder, and
the optimization of the encoder incorporates two
parts: (1) minimizing the main loss, and (2) maxi-
mizing the attacker loss (i.e., preventing protected

attributes from being detected by the attacker). Pre-
venting protected attributes from being detected
tends to result in fairer models, as protected at-
tributes will more likely be independent rather than
confounding variables. Although this method leads
to demonstrably less biased models, there are still
limitations, most notably that significant protected
information still remains in the model’s encodings
and prediction outputs (Wang et al., 2019; Elazar
and Goldberg, 2018).

Many different approaches have been proposed
to strengthen the attacker, including: increasing
the discriminator hidden dimensionality; assigning
different weights to the adversarial component dur-
ing training; using an ensemble of adversaries with
different initializations; and reinitializing the adver-
sarial weights every t epochs (Elazar and Goldberg,
2018). Of these, the ensemble method has been
shown to perform best, but independently-trained
attackers can generally still detect private informa-
tion after adversarial removal.

In this paper, we adopt adversarial debiasing ap-
proaches and present a novel way of strengthening
the adversarial component via orthogonality con-
straints (Salzmann et al., 2010). Over a sentiment
analysis dataset with racial labels of the document
authors, we show our method to result in both more
accurate and fairer models, with privacy leakage
close to the lower-bound.1

2 Methodology

Formally, given an input xi annotated with main
task label yi and protected attribute label gi, a main
task model M is trained to predict ŷi = M(xi),
and an adversary, aka “discriminator”, A is trained
to predict ĝi = A(hM,i) from M ’s last hidden
layer representation hM,i. In this paper, we treat

1Source code available at https://github.
com/HanXudong/Diverse_Adversaries_for_
Mitigating_Bias_in_Training

https://github.com/HanXudong/Diverse_Adversaries_for_Mitigating_Bias_in_Training
https://github.com/HanXudong/Diverse_Adversaries_for_Mitigating_Bias_in_Training
https://github.com/HanXudong/Diverse_Adversaries_for_Mitigating_Bias_in_Training
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Figure 1: Ensemble adversarial method. Dashed
lines denote gradient reversal in adversarial learning.
The k sub-discriminators Ai are independently ini-
tialized. Given a single input xi, the main task en-
coder computes a hidden representation hM,i, which is
used as the input to the main model output layer and
sub-discriminators. From the k-th sub-discriminator,
the estimated protected attribute label is ĝAk,i =
CAk

(EAk
(hM,i)).

a neural network classifier as a combination of
two connected parts: (1) an encoder E, and (2)
a linear classifier C. For example, in the main
task model M , the encoder EM is used to compute
the hidden representation hM,i from an input xi,
i.e., hM,i = EM (xi), and the decoder is used to
make a prediction, ŷi = CM (hM,i). Similarly, for
a discriminator, ĝi = A(hM,i) = CA(EA(hM,i)).

2.1 Adversarial Learning

Following the setup of Li et al. (2018a) and Elazar
and Goldberg (2018) the optimisation objective for
our standard adversarial training is:

min
M

max
A
X (y, ŷM )− λadvX (g, ĝA),

where X is cross entropy loss, and λadv is the
trade-off hyperparameter. Solving this minimax
optimization problem encourages the main task
model hidden representation hM to be informative
to CM and uninformative to A. Following Ganin
and Lempitsky (2015), the above can be trained us-
ing stochastic gradient optimization with a gradient
reversal layer for X (g, ĝA).

2.2 Differentiated Adversarial Ensemble

Inspired by the ensemble adversarial method
(Elazar and Goldberg, 2018) and domain separa-
tion networks (Bousmalis et al., 2016), we present
differentiated adversarial ensemble, a novel means
of strengthening the adversarial component. Fig-
ure 1 shows a typical ensemble architecture where

k sub-discriminators are included in the adversar-
ial component, leading to an averaged adversarial
regularisation term:

−λadv

k

∑
j∈{1,...,k}

X (g, ĝAj ).

One problem associated with this ensemble ar-
chitecture is that it cannot ensure that different sub-
discriminators focus on different aspects of the rep-
resentation. Indeed, experiments have shown that
sub-discriminator ensembles can weaken the ad-
versarial component (Elazar and Goldberg, 2018).
To address this problem, we further introduce a
difference loss (Bousmalis et al., 2016) to encour-
age the adversarial encoders to encode different
aspects of the private information. As can be seen
in Figure 1, hAk,i denotes the output from the k-th
sub-discriminator encoder given a hidden represen-
tation hM,i, i.e., hAk,i = EAk

(hM,i).
The difference loss encourages orthogonality be-

tween the encoding representations of each pair of
sub-discriminators:

Ldiff = λdiff

∑
i,j∈{1,...,k}

∥∥∥hAi
ᵀhAj

∥∥∥2
F
1(i 6= j),

where‖·‖2F is the squared Frobenius norm.
Intuitively, sub-discriminator encoders must

learn different ways of identifying protected in-
formation given the same input embeddings, re-
sulting in less biased models than the standard
ensemble-based adversarial method. According
to Bousmalis et al. (2016), the difference loss has
the additional advantage of also being minimized
when hidden representations shrink to zero. There-
fore, instead of minimizing the difference loss by
learning rotated hidden representations (i.e., the
same model), this method biases adversaries to
have representations that are a) orthogonal, and b)
low magnitude; the degree to which is given by
weight decay of the optimization function.

2.3 INLP

We include Iterative Null-space Projection
(“INLP”: Ravfogel et al. (2020)) as a baseline
method for mitigating bias in trained models, in
addition to standard and ensemble adversarial
methods. In INLP, a linear discriminator (Alinear)
of the protected attribute is iteratively trained from
pre-computed fixed hidden representations (i.e.,
hM ) to project them onto the linear discriminator’s
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Model Accuracy↑ TPR Gap↓ TNR Gap↓ Leakage@h↓ Leakage@ŷ↓

Random 50.00±0.00 0.00±0.00 0.00±0.00 — —
Fixed Encoder 61.44±0.00 0.52±0.00 17.97±0.00 92.07±0.00 86.93±0.00

Standard 71.59±0.05 31.81±0.29 48.41±0.27 85.56±0.20 70.09±0.19

INLP 68.54±1.05 25.13±2.31 40.70±5.02 66.64±0.87 66.19±0.79
Adv Single Discriminator 74.25±0.39 13.01±3.83 28.55±3.60 84.33±0.98 61.48±2.17
Adv Ensemble 74.08±0.99 12.04±3.50 31.76±3.19 85.31±0.51 63.23±3.62

Differentiated Adv Ensemble 74.52±0.28 8.42±1.84 24.74±2.07 84.52±0.50 61.09±2.32

Table 1: Evaluation results ± standard deviation (%) on the test set, averaged over 10 runs with different random
seeds. Bold = best performance. “↑” and ”↓” indicate that higher and lower performance, resp., is better for the
given metric. Leakage measures the accuracy of predicting the protected attribute, over the final hidden represen-
tation h or model output ŷ. Since the Fixed Encoder is not designed for binary sentiment classification, we merge
the original 64 labels into two categories based on the results of hierarchical clustering.

null-space, h∗M = PN(Alinear)hM , where PN(Alinear)

is the null-space projection matrix of Alinear. In
doing so, it becomes difficult for the protected
attribute to be linearly identified from the projected
hidden representations (h∗M ), and any linear
main-task classifier (C∗M ) trained on h∗M can thus
be expected to make fairer predictions.

3 Experiments

Fixed Encoder Following Elazar and Goldberg
(2018) and Ravfogel et al. (2020), we use the
DeepMoji model (Felbo et al., 2017) as a fixed-
parameter encoder (i.e. it is not updated during
training). The DeepMoji model is trained over
1246 million tweets containing one of 64 common
emojis. We merge the 64 emoji labels output by
DeepMoji into two super-classes based on hierar-
chical clustering: ‘happy’ and ‘sad’.

Models The encoder EM consists of a fixed pre-
trained encoder (DeepMoji) and two trainable fully
connected layers (“Standard” in Table 1). Every lin-
ear classifier (C) is implemented as a dense layer.

For protected attribute prediction, a discrimina-
tor (A) is a 3-layer MLP where the first 2 layers are
collectively denoted as EA, and the output layer is
denoted as CA.

TPR-GAP and TNR-GAP In classification
problems, a common way of measuring bias is
TPR-GAP and TNR-GAP, which evaluate the gap
in the True Positive Rate (TPR) and True Nega-
tive Rate (TNR), respectively, across different pro-
tected attributes (De-Arteaga et al., 2019). This
measurement is related to the criterion that the
prediction ŷ is conditionally independent of the

protected attribute g given the main task label
y (i.e., ŷ⊥g|y). Assuming a binary protected
attribute, this conditional independence requires
P{ŷ|y, g = 0} = P{ŷ|y, g = 1}, which implies
an objective that minimizes the difference (GAP)
between the two sides of the equation.

Linear Leakage We also measure the leakage of
protected attributes. A model is said to leak infor-
mation if the protected attribute can be predicted
at a higher accuracy than chance, in our case, from
the hidden representations the fixed encoder gener-
ates. We empirically quantify leakage with a linear
support vector classifier at two different levels:
• Leakage@h: the accuracy of recovering the

protected attribute from the output of the fi-
nal hidden layer after the activation function
(hM ).
• Leakage@ŷ: the accuracy of recovering the

protected attribute from the output ŷ (i.e., the
logits) of the main model.

Data We experiment with the dataset of Blodgett
et al. (2016), which contains tweets that are either
African American English (AAE)-like or Standard
American English (SAE)-like (following Elazar
and Goldberg (2018) and Ravfogel et al. (2020)).
Each tweet is annotated with a binary “race” label
(on the basis of AAE or SAE) and a binary senti-
ment score, which is determined by the (redacted)
emoji within it.

In total, the dataset contains 200k instances, per-
fectly balanced across the four race–sentiment com-
binations. To create bias in the dataset, we fol-
low previous work in skewing the training data
to generate race–sentiment combinations (AAE–



2763

happy, SAE–happy, AAE–sad, and SAE–sad) of
40%, 10%, 10%, and 40%, respectively. Note that
we keep the test data unbiased.

Training Details All models are trained and eval-
uated on the same training/test split. The Adam
optimizer (Kingma and Ba, 2015) is used with
learning rates of 3× 10−5 for the main model and
3 × 10−6 for the sub-discriminators. The mini-
batch size is set to 1024. Sentence representations
(2304d) are extracted from the DeepMoji encoder.
The hidden size of each dense layer is 300 in the
main model, and 256 in the sub-discriminators. We
train M for 60 epochs and each A for 100 epochs,
keeping the checkpoint model that performs best
on the dev set. Similar to Elazar and Goldberg
(2018), hyperparameters (λadv and λdiff) are tuned
separately rather than jointly. λadv is tuned to 0.8
based on the standard (single-discriminator) adver-
sarial learning method, and this setting is used for
all other adversarial methods. When tuning λadv,
we considered both overall performance and bias
gap (both over the dev data). Since adversarial
training can increase overall performance while de-
creasing the bias gap (see Figure 2), we select the
adversarial model that achieves the best task perfor-
mance. For adversarial ensemble and differentiated
models, we tune the hyperparameters (number of
sub attackers and λdiff) to achieve a similar bias
level while getting the best overall performance.
To compare with a baseline ensemble method with
a similar number of parameters, we also report re-
sults for an adversarial ensemble model with 3 sub-
discriminators. The scalar hyperparameter of the
difference loss (λdiff) is tuned through grid search
from 10−4 to 104, and set to 103.7. For the INLP
experiments, fixed sentence representations are ex-
tracted from the same data split. Following Ravfo-
gel et al. (2020), in the INLP experiments, both the
discriminator and the classifier are implemented in
scikit-learn as linear SVM classifiers (Pedregosa
et al., 2011). We report Leakage@ŷ for INLP based
on the predicted confidence scores, which could be
interpreted as logits, of the linear SVM classifiers.

Results and Analysis Table 1 shows the results
over the test set. Training on a biased dataset with-
out any fairness restrictions leads to a biased model,
as seen in the Gap and Leakage results for the Stan-
dard model. Consistent with the findings of Rav-
fogel et al. (2020), INLP can only reduce bias at
the expense of overall performance. On the other

hand, the Single Discriminator and Adv(ersarial)
Ensemble baselines both enhance accuracy and re-
duce bias, consistent with the findings of Li et al.
(2018a).

Compared to the Adv Ensemble baseline, incor-
porating the difference loss in our method has two
main benefits: training is more stable (results have
smaller standard deviation), and there is less bias
(the TPR and TNR Gap are smaller). Without the
orthogonality factor, Ldiff, the sub-discriminators
tend to learn similar representations, and the en-
semble degenerates to a standard adversarial model.
Simply relying on random initialization to ensure
sub-discriminator diversity, as is done in the Adv
Ensemble method, is insufficient. The orthogo-
nality regularization in our method leads to more
stable and overall better results in terms of both
accuracy and TPR/TNR Gap.

As shown in Table 1, even the Fixed Encoder
model leaks protected information, as a result of
implicit biases during pre-training. INLP achieves
significant improvement in terms of reducing linear
hidden representation leakage. The reason is that
Leakage@h is directly correlated with the objec-
tive of INLP, in minimizing the linear predictability
of the protected attribute from the h. Adversar-
ial methods do little to mitigate Leakage@h, but
substantially decrease Leakage@ŷ in the model
output. However, both types of leakage are well
above the ideal value of 50%, and therefore none
of these methods can be considered as providing
meaningful privacy, in part because of the fixed
encoder. This finding implies that when applying
adversarial learning, the pretrained model needs
to be fine-tuned with the adversarial loss to have
any chance of generating a truly unbiased hidden
representation. Despite this, adversarial training
does reduce the TPR and TNR Gap, and improves
overall accuracy, which illustrates the utility of the
method for both bias mitigation and as a form of
regularisation.

Overall, our proposed method empirically out-
performs the baseline models in terms of debiasing,
with a better performance–fairness trade-off.

Robustness to λadv We first evaluate the influ-
ence of the trade-off hyperparameter λadv in ad-
versarial learning. As can be seen from Figure 2,
λadv controls the performance–fairness trade-off.
Increasing λadv from 10−2 to around 10−0, TPR
Gap and TNR Gap consistently decrease, while the
accuracy of each group rises. To balance up accu-



2764

60

70

80

A
cc

ur
ac

y
(%

)

−2 −1 0 1 2

0

20

40

log10 λadv

G
A

P
(%

)

Figure 2: λadv sensitivity analysis, averaged over 10
runs for a single discriminator adversarial model. Main
task accuracy of group SAE (blue) and AAE (orange),
TPR-GAP (green), and TNR-GAP (red) are reported.
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Figure 3: λdiff sensitivity analysis for differentiated ad-
versarial models with 3 (“ ”), 5 (“ ”), and 8
(“ ”) sub-discriminators, in terms of the main task
accuracy of group SAE (blue) and AAE (orange), and
TPR-GAP (green) and TNR-GAP (red).

racy and fairness, we set λadv to 10−0.1. We also
observe that an overly large λadv can lead to a more
biased model (starting from about 101.2).

Robustness to λdiff Figure 3 presents the results
of our model with different λdiff values, for N ∈
{3, 5, 8} sub-discriminators.

First, note that when λdiff is small (i.e., the
left side of Figure 3), our Differentiated Adv En-
semble model generalizes to the standard Adv

Ensemble model. For differing numbers of sub-
discriminators, performance is similar, i.e., increas-
ing the number of sub-discriminators beyond 3
does not improve results substantially, but does
come with a computational cost. This implies
that an Adv Ensemble model learns approximately
the same thing as larger ensembles (but more ef-
ficiently), where the sub-discriminators can only
be explicitly differentiated by their weight initial-
izations (with different random seeds), noting that
all sub-discriminators are otherwise identical in
architecture, input, and optimizer.

Increasing the weight of the difference loss
through λdiff has a positive influence on results, but
an overly large value makes the sub-discriminators
underfit, and both reduces accuracy and increases
TPR/TNR Gap. We observe a negative correla-
tion between N and λdiff, the main reason being
that Ldiff is not averaged over N and as a result, a
large N and λdiff force the sub-discriminators to
pay too much attention to orthogonality, impeding
their ability to bleach out the protected attributes.

Overall, we empirically show that λdiff only
needs to be tuned for Adv Ensemble, since the
results for different Differentiated Adv models for
a given setting achieve similar results. I.e., λdiff
can safely be tuned separately with all other hyper-
parameters fixed.

4 Conclusion and Future Work

We have proposed an approach to enhance sub-
discriminators in adversarial ensembles by intro-
ducing a difference loss. Over a tweet sentiment
classification task, we showed that our method sub-
stantially improves over standard adversarial meth-
ods, including ensemble-based methods.

In future work, we intend to perform experimen-
tation over other tasks. Theoretically, our approach
is general-purpose, and can be used not only for
adversarial debiasing but also any other application
where adversarial training is used, such as domain
adaptation (Li et al., 2018b).
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