
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 1519–1533
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1519

The Source-Target Domain Mismatch Problem in Machine Translation

Jiajun Shen�† Peng-Jen Chen�† Matt Le† Junxian He•∗ Jiatao Gu†
Myle Ott† Michael Auli† Marc’Aurelio Ranzato†

†Facebook AI Research
•Carnergie Mellon University

{jiajunshen,pipibjc,mattle,jgu}@fb.com
{myleott,michaelauli,ranzato}@fb.com junxianh@cs.cmu.edu

Abstract

While we live in an increasingly intercon-
nected world, different places still exhibit strik-
ingly different cultures and many events we
experience in our every day life pertain only
to the specific place we live in. As a result,
people often talk about different things in dif-
ferent parts of the world. In this work we
study the effect of local context in machine
translation and postulate that this causes the
domains of the source and target language to
greatly mismatch. We first formalize the con-
cept of source-target domain mismatch, pro-
pose a metric to quantify it, and provide em-
pirical evidence for its existence. We con-
clude with an empirical study of how source-
target domain mismatch affects training of
machine translation systems on low resource
languages. While this may severely affect
back-translation, the degradation can be allevi-
ated by combining back-translation with self-
training and by increasing the amount of target
side monolingual data.

1 Introduction

The use of language greatly varies with the ge-
ographic location (Firth, 1935; Johnstone, 2010).
Even within places where people speak the same
language (Britain, 2013), there is a lot of lexical
variability due to change of style and topic distribu-
tion, particularly when considering content posted
on social media, blogs and news outlets. For in-
stance, while a primary topic of discussion between
British sport fans is cricket, American sport fans
are more likely to discuss other sports such as base-
ball (Leech and Fallon, 1992).

The effect of local context in the use of language
is even more extreme when considering regions
where different languages are spoken. Despite the
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increasingly interconnected world we live in, peo-
ple in different places tend to talk about different
things. There are several reasons for this, from
cultural differences due to geographic separation
and history, to the local nature of many events we
experience in our every day life.

This phenomenon has not only interesting socio-
linguistic aspects but it has also strong implica-
tions in machine translation (MT) (Bernardini and
Zanettin, 2004). In particular, machine translation
aims at automatically translating content in two
languages that are often spoken in very distant ge-
ographic locations by people with rather different
cultures.

As of today, most MT research has been based
on the often implicit assumption that content in
the two languages is comparable. Sentences com-
prising the parallel dataset used for training are
assumed to cover the same topic distribution, re-
gardless of the originating language. Even when
there exist a mismatch between the source and the
target domain, the dataset creator is assumed to
have made the effort to equalize the two distribu-
tions.

The major contribution of this work is to raise
awareness in the MT community that this assump-
tion may not hold in many real world settings of in-
terest, which often involve distant and low-resource
language pairs and for content produced every day
on the Internet by means of blogs, social platforms
and news outlets. The goal of an MT system is to
translate source sentences sampled from the source
domain to the target language. Training an MT
system on a comparable corpus may lead to poor
generalization unless the test domain matches the
domain of the training data. Likewise, training on
an uncurated corpus exhibiting mismatch between
the source and the target domain may also work
poorly when naïvely applying popular methods like
back-translation (Sennrich et al., 2015).
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Notice that there may very well be several fac-
tors contributing to such mismatch, such as change
of register, different functional use of the text in
the two languages, and difference in the quality of
the data generation process of the two languages.
Regardless of what is contributing to the observed
mismatch, it is important to be aware of its exis-
tance and effect on MT algorithms.

The source-target domain mismatch (STDM)
can be understood as an instance of multi-domain
MT (see Fig. 1 for an illustration and §3 for a for-
mal definition), whereby part of the parallel dataset
and the source monolingual dataset are “in-domain”
because they originate from the source domain, and
the remaining part of the parallel dataset as well as
the target monolingual data are “out-of-domain”.
There already exist several techniques for domain
adaptation, like domain tagging (Caswell et al.,
2019) and dataset weighting (Edunov et al., 2018;
Wang et al., 2017; van der Wees et al., 2017), which
are applicable and which we also employ in this
work. However, these may not be enough to im-
prove generalization on low resource languages
because STDM effectively decreases the already
scarce amount of useful (in-domain) parallel data,
hindering good generalization. It is therefore im-
portant to quantify STDM (§4) and consider how
STDM affects methods that leverage monolingual
data (§5).

For instance, STDM may negatively impact the
effectiveness of back-translation because, even
if the backward model was perfect, the back-
translated data is out-of-domain relative to the
source domain from which we aim to translate.
Empirically we found that this is the case both in
a controlled setting (§6.1) as well as in realistic
datasets (§6.2). However, this issue can be com-
pensated by adding more target-side monolingual
data and by combining back-translation with self-
training (Yarowski, 1995).

2 Related Work

The observation that topic distributions and var-
ious kinds of lexical variabilities depend on the
local context has been known and studied for a
long time (Firth, 1935). For instance, Firth (1935)
says “Most of the give-and-take of conversation in
our everyday life is stereotyped and very narrowly
conditioned by our particular type of culture”. In
her seminal work, Johnstone (2010) analyzed the
role of place in language, focusing on lexical vari-

ations within the same language, a subject further
explored by Britain (2013). Some of these works
were the basis for later studies that introduced com-
putational models for how language changes with
geographic location (Mei et al., 2006; Eisenstein
et al., 2010).

In the field of topic modeling, there has been a
new sub-field emerging over the past 10 years fo-
cusing on modeling multi-lingual corpora (Mimno
et al., 2009; Boyd-Graber and Blei, 2009; Gutier-
rez et al., 2016). However, only recently had re-
searchers dropped assumptions on the use of paral-
lel and comparable corpora (Hao and Paul, 2018;
Yang et al., 2019). While some works do investi-
gate issues related to STDM (Gutierrez et al., 2016),
like how named entities receive a different distribu-
tion over words in different languages (Lin et al.,
2018), none of these works have analyzed how the
overall topic distribution of data originating in the
source and target language differ.

In MT, researchers have often made an ex-
plicit assumption on the use of comparable cor-
pora (Fung and Yee, 1998; Munteanu et al., 2004;
Irvine and Callison-Burch, 2013), i.e. corpora in
the two languages that roughly cover the same set
of topics. Unfortunately, monolingual corpora are
seldom comparable in practice. Leech and Fallon
(1992) analyzes two comparable corpora, one in
American English and the other in British English,
and demonstrate differences that reflect the cul-
tures of origin. Similarly, Bernardini and Zanettin
(2004) observes that parallel datasets built for MT
exhibit strong biases in the selection of the original
documents, making the text collection not quite
comparable.

The non-comparable nature of MT datasets is
even more striking when considering low resource
language pairs, for which differences in local con-
text and cultures are often more pronounced. Re-
cent studies (Søgaard et al., 2018; Neubig and Hu,
2018) have warned that removing the assumption
on comparable corpora strongly deteriorates perfor-
mance of lexicon induction techniques which are
at the foundation of MT.

Back-translation (Sennrich et al., 2015) has been
the workhorse of modern neural MT, enabling very
effective use of target side monolingual data. Back-
translation is beneficial because it helps regulariz-
ing the model and adapting to new domains (Burlot
and Yvon, 2018). However, the typical setting
of current MT benchmarks as popularized by re-
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Figure 1: Toy illustration of STDM in MT. There are two
domains, the source domain DS (top) and the target domain
DT (bottom). We postulate that in a latent concept space these
two domains differ because the topic distributions are differ-
ent (e.g., in the source domain politics is more popular than
travel) and because for the same topic the word distributions
are different (e.g., the word “Everest” is more common than
“Yosemite” in the travel topic of the target domain). On the
right hand side, we show how STDM manifests in machine
translation datasets. All data originating in the source lan-
guage belongs to the source domain, this includes a portion
of the parallel dataset, the source side monolingual dataset
and the test set we eventually would like to translate. Empty
boxes represent human translated data in the parallel training
dataset.

cent WMT competitions (Bojar et al., 2019) is a
mismatch between training and test sets, as op-
posed to a mismatch between source and target
domains as in this work. Self-training (Ueffing,
2006; Yarowski, 1995; He et al., 2020) has then
been employed to make better use of source side
monolingual data as this is in-domain with the text
we would like to translate at test time. Finally, there
is a vast literature on domain adaptation which has
so far mostly focused on domain shift between
training and test distribution, and presence of mul-
tiple domains. Finetuning (Freitag and Al-Onaizan,
2016), domain tagging (Caswell et al., 2019) and
various kinds of dataset weighting (Wang et al.,
2017; van der Wees et al., 2017) are among the
most popular methods to cope with domain issues,
and this is also what we use in this work.

3 The STDM Problem

In this section we formalize the definition of
Source-Target Domain Mismatch (STDM); this is
an intrinsic property of the data which is indepen-
dent of the particular MT system under considera-
tion. In practice, there might be several factors con-
tributing to STDM. Here, we are going to consider
only the difference in topic distributions, since this
is what we can easily quantify.

We assume there exists a latent concept space
shared across all languages. The process to gener-

ate a sentence follows the standard data generation
process used in topic modeling, whereby we first
sample a distribution over topics, πi ∼ Π where
i is an index over topics, and then a distribution
over words for each topic, wij ∼ πi, where j in-
dexes the words in the dictionary. Next, we assume
there are two distinct domains, the source domain
DS and the target domain DT . These two domains
differ in both the distribution over topics Π, and
the distribution over words given a certain topic
πi, as depicted in Fig. 1. For the sake of concise-
ness, we will refer to zs and zt as sentences in the
concept space generated from domain DS and DT ,
respectively.

Let’s imagine now that we have generated two
sets of sentences in each domain. What we ob-
serve in practice is their realization in each lan-
guage, src(zs) and tgt(zt), where src and tgt map
sentences from the concept space to the source and
target language, respectively. Finally, let’s denote
with hs→t and ht→s the functions representing hu-
man translations of source sentences in the target
language and vice versa.

In the simplest setting, a machine transla-
tion dataset is composed of parallel and mono-
lingual datasets. Using the notation intro-
duced above, the parallel dataset is denoted
by P = {(src(zs), hs→t(src(zs))}zs∼DS ∪
{(ht→s(tgt(zt)), tgt(zt)}zt∼DT . The first set orig-
inates in the source language and belongs to the
source domain, while the second set originates in
the target language and belongs to the target do-
main. We then have a source side monolingual
dataset,MS = {src(zs)}zs∼DS , and a target side
monolingual dataset,MT = {tgt(zt)}zt∼DT , be-
longing to the source and target domains, respec-
tively. Most importantly, the test set which we
would like to eventually translate contains sen-
tences in the source language, all belonging to the
source domain. The existence of distinct source
and target domains and datasets derived from these
two domains as described above define the STDM
problem.

While in previous MT studies, there is a mis-
match between the training and the test distribution,
STDM is a particular case of multi-domain training,
with the test set matching one of the training do-
mains. We would like to a) understand the effects
of such mismatch and b) understand how to best
leverage the out-of-domain data originating from
the target language (target monolingual dataset and
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Figure 2: Topic distribution of Wikipedia pages written in
English and Chinese.

portion of the parallel dataset originating in the
target language).

3.1 Empirical Evidence
In this section we first provide anecdotal evidence
that documents originating in different languages
possess different distributions over topics. We
train two topic classifiers (see Appendix A for de-
tails), one for Chinese and the other for English,
using the Wikipedia annotated data from Yuan et al.
(2018). We apply this classifier to 20,000 docu-
ments randomly sampled from English and Chi-
nese Wikipedia. Fig. 2 shows that according to this
classifier, English Wikipedia has more pages about
entertainment and religion than Chinese Wikipedia,
for instance.

Second, we refer the readers to Leech and Fal-
lon (1992)’s study to find evidence that corpora
originating in different places may have different
word distributions for the same set of topics. In that
study, Leech and Fallon (1992) analyzed a British
and an American corpus constructed using exactly
the same distribution of topics, and yet the word
distribution was different, reflecting the different
cultural biases of the two countries.

4 Metric: The STDM Score

Given the framework and assumptions introduced
in §3, in this section we are going to discuss a prac-
tical way to measure STDM. Ideally, we would like
to measure a distance between two sample distri-
butions, zs ∼ DS and zt ∼ DT . Unfortunately,
we have no access to such latent space. What we
observe are realizations in the source and target lan-
guage. However, it is also an open research ques-
tion (Hao and Paul, 2018; Yang et al., 2019) how
to compare the distribution of {src(zs)} against
{tgt(zt)}, since these are two possibly incompara-
ble corpora in different languages.

In this work, we therefore leverage the exis-
tence of a parallel corpus and compare the dis-
tribution of AT = {tgt(zt)}zt∼DT with AS =
{hs→t(src(zs))}zs∼DS . The underlying assump-
tions are a) we know the originating language of
each training example, b) the effect of the change of
the word distribution is negligible compared to the
shift in topic distribution, and c) the effect of trans-
lationese (Baker, 1993; Zhang and Toral, 2019;
Toury, 2012) is negligible compared to the actual
STDM, and therefore, we can ignore changes to
the distribution brought by the mapping hs→t (we
validate this assumption in §C).

Under these assumptions, we define the score
as a measure of the topic discrepancy between AS
and AT . Let A = AS ∪ AT be the concatenation
of the corpus originating in the source and target
language. We first extract topics using LSA. Let
A ∈ R(nS+nT )×k be the TF-IDF matrix derived
from A where the first nS rows are representations
taken from AS , the bottom nT rows are represen-
tations of AT , and k is the number of words in the
dictionary. The SVD decomposition of A yields:
A = USV = (U

√
(S))(

√
(S)V ) = Ū V̄ . Matrix

Ū collects topic representations of the original doc-
uments; let’s denote by ŪS the first nS rows corre-
sponding toAS and ŪT the remaining nT rows cor-
responding to AT . Let C = Ū Ū ′ =

[
CSS CST

CST ′ CTT

]
,

where CSS = ŪSŪS ′, CST = ŪSŪT ′ and
CTT = ŪT ŪT ′. The STDM score is defined as:

score =
sST + sTS

sSS + sTT ,with sAB =
1

nAnB

nA∑
i=1

nB∑
j=1

CABi,j (1)

where sAB measures the average similarity between
documents of set A to documents of set B. The
score measures the cross-corpus similarity normal-
ized by the within corpus similarity. In the extreme
setting where DS and DT are fully disjoint, then
we would have that the off-diagonal block CST is
going to be a zero matrix and therefore the score is
equal to 0. When the two domains perfectly match
instead, sSS = sTT = sST = sTS, and therefore, the
score is equal to 1. In practice, we expect a score
in the range [0, 1]. Note that we opted for this met-
ric because of its simplicity, but other methods to
extract topics and measure domain mismatch could
have been used.

4.1 A Controlled Setting

Similarly to Kilgarriff and Rose (1998), we intro-
duce a synthetic benchmark to finely control the
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α 0 0.25 0.5 0.75 1.0
STDM score 0.29 0.55 0.78 0.93 0.99

Table 1: STDM score as a function of the parameter α con-
trolling the STDM in the synthetic setting.

domain of the target originating data, and therefore
the amount of STDM. The objective is to assess
whether the STDM score defined in Eq. 1 captures
well the expected amount of mismatch, since we
have full control over how the data was generated
and its domain.

The key idea of this controlled setting is to use
data from two very different domains, assign the
source domain to one of them and the target domain
to a convex combination of the two. In this work
we use EuroParl (Koehn, 2005) as our source origi-
nating data, while our target originating data con-
tains a mix of data from EuroParl and OpenSubti-
tles (Lison and Tiedemann, 2016). Specifically, we
consider a French to English translation task with
a parallel dataset composed of 10,000 sentences
from EuroParl (which “originates” in French) and
10,000 sentences from the target domain (which
is “originates” in English)1. Let α ∈ [0, 1], the
domain of the target is set to: α EuroParl + (1−α)
OpenSubtitles. α controls how similar the target
domain is to the source domain.

For instance, when α = 0 then the target do-
main (OpenSubtitles) is totally out-of-domain with
respect to the source domain (EuroParl). When
α = 1 instead, the target domain matches perfectly
the source domain. For intermediate values of α,
the match is only partial. Notice that even when
α = 0, we assume that the parallel dataset is com-
prised of two halves, one originating from the Eu-
roParl domain (the “French originating” data) and
one from OpenSubtitles (the “English originating”
data).

Next, we evaluate the STDM score as a function
of α. As we can see from Table 1 and as desired,
the STDM score increases fairly linearly as we
increase the value of α. We refer the reader to
Appendix B for experimental details.

4.2 STDM Score of Various Datasets

We now evaluate the STDM score on real data.
We consider six language pairs, German-English,

1Clearly, EuroParl does not originate all in French. How-
ever, the chosen domains are so distinct that difference in
topic distribution between EuroParl and OpenSubtitles will
dominate discrepancies caused by other factors such as the
actual origin of the data.

De-En Fi-En Ru-En Ne-En Zh-En Ja-En
WMT 0.79 0.79 0.76 - 0.65 -
MTNT - - - - - 0.69
SMD 0.81 0.71 0.71 0.64 0.71 0.61

Table 2: STDM score on several language pairs using parallel
data from WMT, MTNT and from a social media platform
(SMD) test sets.

Finnish-English, Russian-English, Nepali-English,
Chinese-English and Japanese-English. We an-
alyze datasets from WMT, MTNT (Michel and
Neubig, 2018) and from a social media platform
(SMD). For each language, we sample 5000 sen-
tences from WMT newstest sets and MTNT dataset,
and 20000 sentences from SMD. We then merge all
these datasets and their English translations to com-
pute a common set of topics, making STDM scores
comparable across language pairs and datasets.

The results in Table 2 are striking. First, WMT
datasets, except for Chinese, show relatively mild
signs of STDM and negligible difference across
language pairs, suggesting that the data curation
process of WMT datasets have made source and
target originating corpora rather comparable. The
distribution of WMT Chinese originating data in-
stead is rather different because it contains much
more local news, while the other languages are
mostly about international news which are largely
language independent. Interestingly, En-De data
derived from social media data has even milder
STDM, Fi-En and Ru-En have more substantial
STDM. Instead, MTNT and SMD exhibit strong
signs of STDM for distant languages like Nepali,
Chinese and Japanese. This agrees well with our in-
tuition that STDM is more severe for more distant
languages associated to more diverse cultures.

5 Machine Translation Baselines

In this section, we turn our attention to how
STDM affects training of MT systems. We con-
sider state-of-the-art neural machine translation
(NMT) systems based on the transformer architec-
ture (Vaswani et al., 2017) with subword vocabular-
ies learned via byte-pair encoding (BPE) (Sennrich
et al., 2015). In order to adapt to the different do-
mains, we employ domain tagging (Zheng et al.,
2019) by adding a domain token to the input source
sentence, and we cross validate the weights be-
tween in-domain and out-domain data2. We also

2In the controlled setting of §6.1 we found that tagging
yields a small but consistent improvement by up to 1 BLEU
point, and dataset weighting yields an improvement of up
to 0.3 BLEU. ST and BT which are the focus of this study,
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use label smoothing (Szegedy et al., 2016) and
dropout (Srivastava et al., 2014) to improve gen-
eralization, as we focus on low resource language
pairs where models tend to severely overfit. Fi-
nally, we explore ways to leverage both target and
source side monolingual data via back-translation
and self-training which we review next.

We simplify our notation and denote with xs =
src(zs) and yt = tgt(zt) the source and target
originating sentences, ys = hs→t(x

s) and xt =
ht→s(y

t) the corresponding human translations,
and ŷs and x̂t the corresponding machine trans-
lations. The superscript always specifies the do-
main. We assume access to a parallel dataset
P = {(xs, ys)} ∪ {(xt, yt)}, a source side mono-
lingual datasetMs = {xs} and a target side mono-
lingual datasetMt = {yt}. The test side consists
of sentences from the source domain. We study
STDM by training with the following algorithms:

Back-translation (BT) (Sennrich et al., 2015)
is a very effective data augmentation technique
that leverages Mt. The algorithm proceeds in
three steps. First, a reverse MT system is trained
from target to source using the provided paral-
lel data:

←−
θ = arg maxθ E(x,y)∼P log p(x|y; θ).

Then, the reverse model is used to translate the tar-
get monolingual data: x̂t ≈ arg maxz p(z|yt;

←−
θ ),

for yt ∼ Mt. The maximization is typically ap-
proximated by beam search. Finally, the forward
model is trained over the concatenation of the
original parallel and back-translated data:

−→
θ =

arg maxθ E(x,y)∼Q log p(y|x; θ) with Q = P ∪
{x̂t, yt}yt∼Mt . In practice, the parallel data is
weighted more in the loss, with a weight selected
via hyper-parameter search on the validation set.

Self-Training (ST) (He et al., 2020) is another
method for data augmentation that instead lever-
agesMs; see Alg. 1 in Appendix D.

Also this algorithm proceeds in three steps. First,
a forward MT system is trained from source to
target using the provided parallel data:

−→
θ =

arg maxθ E(x,y)∼P log p(y|x; θ). Then, this model
is used to translate the source monolingual data:
ŷs ≈ arg maxz p(z|xs;

−→
θ ), for xs ∼Ms. Finally,

the forward model is retrained over the concatena-
tion of the original parallel and forward-translated
data:

−→
θ = arg maxθ E(x,y)∼Q log p(y|x; θ) with

Q = P ∪ {xs, ŷs}yt∼Ms . As with BT, the parallel
data is weighted more in the loss.

improve by more than 2 BLEU points instead.

Figure 3: BLEU score in Fr-En as a function of the amount
of STDM. The target domain is fully out-of-domain when
α = 0, and fully in-domain when α = 1.

ST + BT also proceeds in three steps. First, we
train an initial forward and reverse model using the
parallel dataset. Second, we back-translate target
side monolingual data using the reverse model and
iteratively forward translate source side monolin-
gual data using the forward model. We then retrain
the forward model from random initialization us-
ing the union of the original parallel dataset, the
synthetic back-translated data, and the synthetic
forward translated data at the last iteration of the
ST algorithm. This combined algorithm aims at
leveraging the strengths of both ST and BT: the use
of in-domain source monolingual data and the use
of synthetic data with correct targets, respectively.

6 Machine Translation Results

In this section, we first study the effect of STDM
on NMT using the controlled setting introduced in
§4.1 which enables us to assess the influence of
various factors, such as the extent to which target
originating data is out-of-domain, and the effect of
monolingual data size. We then report experiments
on genuine low resource language pairs, namely
Nepali-English and English-Myanmar. We report
SACREBLEU (Post, 2018).

6.1 Controlled Setting

In the default setting, we have a parallel dataset
with 20,000 parallel sentences. 10,000 are in-
domain source originating data (EuroParl) and the
remaining 10,000 are target originating data from
a mix of domains, controlled by α ∈ [0, 1]: α Eu-
roParl + (1 − α) OpenSubtitles. The source side
monolingual dataset has 100,000 French sentences
from EuroParl. The target side monolingual dataset
has 100,000 English sentences from: α EuroParl +
(1− α) OpenSubtitles. Finally, the test set consists
of novel French sentences from EuroParl which we
wish to translate to English.
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Figure 4: BLEU as a function of the amount of monolingual
data when α = 0.

We tune model hyper-parameters (e.g., number
of layers and hidden state size) and BPE size on
the validation set. Based on cross-validation, when
training on datasets with less than 300k parallel
sentences (including those from ST or BT), we use
a 5-layer transformer with 8M parameters. The
number of attention heads, embedding dimension
and inner-layer dimension are 2, 256, 512, respec-
tively. When training on bigger datasets, we use a
bigger transformer with 5 layers, 8 attention heads,
1024 embedding dimension, 2048 inner-layer di-
mension and a total of 110M parameters. We find
that using bigger model can better utilize the mono-
lingual data, but we do not find the bigger model
benefits when training with less than 300k parallel
sentences. The full list of hyper-parameters can be
found in Appendix E.

Varying amount of STDM. In Fig. 3, we bench-
mark our baseline approaches while varying α (see
§4.1 and Tab. 1), which controls the overlap be-
tween source and target domain.

First, we observe improved BLEU (Papineni
et al., 2002) scores for all methods as we increase
α. Second, there is a big gap between the baseline
trained on parallel data only and methods which
leverage monolingual data. Third, combining ST
and BT works better than each individual method,
confirming that these approaches are complemen-
tary. Finally, BT works better than ST but the gap
reduces as the target domain becomes increasingly
different from the source domain (small values of
α). In the extreme case of STDM (α = 0), ST
outperforms BT. In fact, we observe that the gain
of BT over the baseline decreases as α decreases,
despite that the amount of monolingual data and
parallel data remains constant across these experi-
ments, thus showing that BT is less effective in the
presence of STDM.

Figure 5: BLEU when using only source originating in-
domain data (blue bars) or also out-of-domain target origi-
nating data (green bars) for α = 0.

Varying amount of monolingual data. We next
explore how the quantity of monolingual data af-
fects performance and if the relative gain of ST
over BT when α = 0 disappears as we provide BT
with more monolingual data. The experiment in
Fig. 4 shows that a) the gain in BLEU tapers off
exponentially with the amount of data (notice the
log-scale in the x-axis), b) for the same amount
of monolingual data ST is always better than BT
and by roughly the same amount, and c) BT would
require about 3 times more target monolingual data
(which is out-of-domain) to yield the performance
of ST. Therefore, increasing the amount of data
can compensate for domain mismatch.

Varying amount of in-domain data. Now we
explore whether, in the presence of extreme STDM
(α = 0), it may be worth restricting the training
data to only contain in-domain source originating
sentences. In this case, the parallel set is reduced
to 10,000 EuroParl sentences, the target side mono-
lingual data is removed and back-translation is per-
formed on the target side of the parallel dataset.
Fig. 5 demonstrates that in all cases it is better to
include the out-of-domain data originating on the
target side (green bars). Particularly in the low
resource settings considered here, neural models
benefit from all available examples even if these
are out-of-domain.

Finally, we investigate how to construct a paral-
lel dataset when STDM is significant (α = 0), i.e.
the target domain is OpenSubtitles. If we have a
translation budget of 20,000 sentences, is it best to
translate 20,000 sentences from EuroParl or to also
include sentences from OpenSubtitles? This is not
obvious when training with BT, since the backward
model may benefit from in-domain OpenSubtitles
data. In order to answer this question, we consider
a parallel dataset with 20,000 sentences defined as:
β EuroParl + (1−β) OpenSubtitles, with β ∈ [0, 1].
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Figure 6: BLEU score as a function of the proportion of par-
allel data originating in the source and target domain domain.
When β = 0 all parallel data originates from OpenSubtitles,
when β = 1 all parallel data originates from EuroParl. Source
and target monolingual corpora have 900,000 sentences from
EuroParl and OpenSubtitles, respectively. The blue curves
show BLEU in the forward direction (Fr-En translation of
EuroParl data). The red curves show BLEU in the reverse
direction (En-Fr translation of OpenSubtitles sentences).

When β = 0, the parallel dataset is out-of-domain;
when β = 1 the parallel data is all in-domain. The
target side monolingual dataset is fixed and con-
tains 900,000 sentences from OpenSubtitles.

Fig. 6 shows that taking all sentences from Eu-
roParl (β = 1) is optimal when translating from
French (EuroParl) to English (blue curves). At high
values of β, we observe a slight decrease in accu-
racy for models trained only on back-translated
data (dotted line), confirming that BT loses its ef-
fectiveness when the reverse model is trained on
out-of-domain data. However, this is compensated
by the gains brought by the additional in-domain
parallel sentences (dashed line). In the more nat-
ural setting in which the model is trained on both
parallel and back-translated data (dash-dotted line),
we see monotonic improvement in accuracy with β.
A similar trend is observed in the other direction
(English to French, red lines). Therefore, if the
goal is to maximize translation accuracy in both
directions, an intermediate value of β (≈ 0.5) is
more desirable.

6.2 Low-Resource MT

We now measure STDM on two low-resource lan-
guage pairs and verify whether in practice BT’s per-
formance deteriorates as expected when the STDM
score is low, while the combination of ST+BT of-
fers better generalization. We consider two low-
resource language pairs, Nepali-English (Ne-En)
and English-Myanmar (En-My). Nepali and Myan-
mar are spoken in regions with unique local context
that is very distinct from English-speaking regions,
and thus these make good language pairs for study-

Model Ne→ En En→My
STDM score=0.64 STDM score=0.27

baseline 20.4 28.1
BT 22.3 30.0
ST 22.1 31.9
ST + BT 22.9 32.4

Table 3: BLEU scores for the Nepali to English and English
to Myanmar translation task.

ing the STDM setting in real life.

Data. The Ne-En parallel dataset is composed of
40,000 sentences originating in Nepali and only
7,500 sentences originating in English. There are
5,000 sentences in the validation and test sets all
originating in Nepali. We also have 1.8M mono-
lingual sentences in Nepali and English, collected
from public posts from a social media platform.
This dataset closely resembles our idealized set-
ting of Fig. 1. The STDM score of this dataset is
0.64 (see Tab. 2) and is analogous to our synthetic
setting (§6.1) where α is low but β is large.

The En-My parallel data is taken from the Asian
Language Treebank (ALT) corpus (Thu et al., 2016;
Ding et al., 2018, 2019) with 18,088 training sen-
tences all originating from English news. The val-
idation and test sets have 1,000 sentences each,
all originating from English. Following Chen
et al. (2019), we use 5M English sentences from
NewsCrawl as source side monolingual data and
100K Myanmar sentences from Common Crawl as
target side monolingual data. The STDM Score is
even lower on this dataset, only 0.27. Comparing
to our controlled setting this dataset would have β
equal to 1 and presumably a small value of α, an
ideal setting for ST.

Models. We run model hyper-parameter sweep
on the validation set and pick the best-performing
model architecture (e.g., number of layers and hid-
den layer sizes). On both datasets, the parallel
data baseline is a 5-layer transformer with 8 atten-
tion heads, 512 embedding dimensions and 2048
inner-layer dimensions, which consists of 42M pa-
rameters. When training with BT and ST, we use
a 6-layer transformer with 8 attention heads, 1024
embedding dimensions, 2048 inner-layer dimen-
sions, resulting in 186M parameters. The detailed
hyper-parameters search range can be found in Ap-
pendix §E.
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Results. In Table 3, we observe that on the Ne-
En task augmenting the parallel dataset with ei-
ther forward- or back-translated monolingual data
achieves almost 2 BLEU points improvement over
the supervised baseline. On the En-My task where
STDM is more severe (with a value of 0.27 which
is similar to α = 0 in Tab. 1), BT outperforms
the baseline by 1.9 BLEU, while ST improves by
twice as much. This is perhaps not surprising since
source side monolingual data is in-domain and
abundant, while target side monolingual data is
scarce and out-of-domain. On both tasks, com-
bining ST and BT outperforms each individual
method.

7 Conclusions

While the commonly used WMT datasets exhibit
mild STDM, we find that less curated datasets, of-
ten in more distant and lower resource language
pairs (§4.2), exhibit much stronger STDM. How
can these findings inform us on how to better set
up a MT system in practice? Our first recommen-
dation is to be aware of possible STDM, and (i)
check whether origin language information is avail-
able. If this is available, then it may be possible
to (ii) quantitatively measure STDM as described
in §4. Next, (iii) be aware that when STDM is se-
vere (STDM score is low), BT performance suffers
(Fig. 3). However, (iv) we may be able to combat
this by increasing the amount of target side (out-
of-domain) monolingual data (Fig. 4) and (v) by
combining BT with ST (Fig. 3).

Of course, the relative ratio of monolingual data
in the source and target side and the actual degra-
dation brought by STDM depend on the particular
language pair. The more distant two languages, the
more difficult the learning task and the more data is
needed to learn it. And finally, the less parallel data
there is, the more monolingual data will be needed
to compensate. The intricate dependency between
all these factors merits future investigation.
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A Topic Classifiers

In this section we provide the experimental details
of the findings reported in §3.1.

Dataset We use the WIKISHORT dataset provided
by Yuan et al. (2018) 3. The dataset contains thou-
sands of English and Chinese wikipedia articles,
and each article is labeled with one of the six cate-
gories, film, music, animals, politics, religion, and
food. We use the train split in the dataset for train-
ing, validate with test split. The train split includes
7730 and 7095 English and Chinese articles respec-
tively. To make the classifier better differentiate
articles that is not one of the six categories, we uni-
formly sample 1500 wikipedia articles from both
English and Chinese wikidump 4 and add them into
the training data with ’other’ label.

Preprocessing WIKISHORT provides shortened
text of Wikipedia articles. To generate the short-
ened text of articles with ’other’ label, we use the
text from the first paragraph of the articles and fol-
low similar preprocessing as in Yuan et al. (2018).
For English articles, we lowercase the paragraph,
tokenize by word, filter out stop words, lemmatize
the words and remove all the punctuations. For
Chinese articles, we apply Stanford CoreNLP Tok-
enizer 5 to segment the Chinese text.

Training We train two multi-nomial logistic re-
gression models, one for English and one for Chi-
nese. To extract features from the shortened text,
we compute tf-idf weights from the training data.
We use the LogisticRegression implementation of
SCIKIT-LEARN (Pedregosa et al., 2011) with de-
fault setting to train the models. We tune the regu-
larization term C on validation set. However, we
do not observe significant accuracy difference be-
tween different C values, therefore we use default
setting C = 1.0. The accuracy on the test set of
the English and Chinese classifiers are 92.5% and
77.9%, respectively.

Prediction on Wikipedia articles To estimate
the category distribution of English and Chinese
Wikipedia articles, we uniformly sampled 8500 ar-
ticles from wikidump for each language, follow the
same preprocessing and feature extraction as how

3https://github.com/forest-snow/
mtanchor_demo#data

4https://dumps.wikimedia.org/
5https://stanfordnlp.github.io/stanza/

tokenize.html

we does for the training data, and we use the classi-
fiers to predict the category of each article. After
removing articles labeled “other”, we re-normalize
the distribution of the prediction of the main six
categories and report the values in 2.

B Computing STDM score

In this section we provide the experimental details
of the STDM evaluations performed in §4.1 and
§4.2.

Dataset In §4.1, we have described the details
for constructing datasets from EuroParl and Open-
Subtitles with different amount of STDM.

For the experiments in §4.2, we evaluate the
STDM score on datasets with known language ori-
gins. We use three different data sources, including
WMT newstest sets, MTNT (Michel and Neubig,
2018) and a social media platform (SMD). For the
WMT newstest sets, we combine datasets from year
2014 to 2019 and sample 5000 sentences for each
language. For the analysis on MTNT dataset, we
use the train split in the dataset and sample 5000
sentences for each language. For SMD, 20000 sen-
tences are sampled for each language.

Preprocessing We use SentencePiece (Kudo and
Richardson, 2018) to learn a BPE vocabulary of
size 10000 over the combined English text corpus
of all datasets. We preprocess sentences from all
datasets with BPE and remove sentences with less
than 10 BPE tokens.

Topic Learning and STDM Score Computing
For each dataset, we derive the TF-IDF matrix from
the preprocessed sentences and perform an SVD
decomposition of the matrix. We retain the top 400
eigenvalues and collect the corresponding topic rep-
resentations of the original sentences. The topic
representations of the sentences are used to calcu-
late the STDM score as described in §4.

C The Effect of Translationese

In §3 we have made the assumption that the ef-
fect of translationese is negligible when estimating
STDM. However, there are previous studies show-
ing clear artifacts in (human) translations (Baker,
1993; Zhang and Toral, 2019; Toury, 2012). In this
section we aim at assessing whether our STDM
score is affected by translationese.

We consider the WMT’17 De-En dataset
from Ott et al. (2018) which contains double trans-
lations of source and target originating sentences.

https://github.com/forest-snow/mtanchor_demo#data
https://github.com/forest-snow/mtanchor_demo#data
https://dumps.wikimedia.org/
https://stanfordnlp.github.io/stanza/tokenize.html
https://stanfordnlp.github.io/stanza/tokenize.html
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From this, we construct paired inputs and labels,
{(hs→t(ht→s(tgt(zt))), 1)} ∪ {(tgt(zt), 0)}, and
train two classifiers to predict whether or not the
input is translationese. The first classifier takes as
input a TF-IDF representation w of the sentence,
while the second classifier takes only the corre-
sponding topic distribution: V̄ w. On this binary
task a linear classifier achieves 58% accuracy on
the test set with TF-IDF input representations, and
only 52% when given just the topic distribution.
If we apply the same binary classifier in the topic
space to discriminate between sentences originat-
ing in the source and target domain (tgt(zt) VS.
hs→t(src(zs))), the accuracy increases to 64%.

We conclude that once we control for domain
effect (by discriminating the same set of sentences
in their original form versus their double transla-
tionese form), the accuracy is much lower than
previously reported (Zhang and Toral, 2019), and
working in the topic space further removes trans-
lationese artifacts. Therefore, the STDM score
computed in the topic space is unlikely affected by
such artifacts and captures the desired discrepancy
between the source and the target domains.

D Self-Training

1 Data: Given a parallel dataset P and a source
monolingual datasetMs with Ns examples;

2 Noise: Let n(x) be a function that adds noise to the
input by dropping, swapping and blanking words;

3 Hyper-params: Let k be the number of iterations
and A1 < · · · < Ak ≤ NS be the number of
samples to add at each iteration;

4 Train a forward model:
−→
θ = arg maxθ E(x,y)∼P log p(y|x; θ);

5 for t in [1 . . . k] do
6 forward-translate data:

(ŷs, v) ≈ arg maxz p(z|xs;
−→
θ ), for xs ∈Ms,

where v is the model score;
7 Let M̄s ⊂Ms containing the top-At highest

scoring examples according to v;
8 re-train forward model:

−→
θ = arg maxθ E(x,y)∼Q log p(y|x; θ) with
Q = P ∪ {n(xs), ŷs}xs∼M̄s .

end
Algorithm 1: Self-Training algorithm.

Alg. 1 describes self-training, a data augmenta-
tion method that leveragesMs, using the notation
of §5. First, a baseline forward model is trained on
the parallel data (line 4). Second, this initial model
is applied to the source monolingual data (line 6).
Finally, the forward model is re-trained from ran-
dom initialization by augmenting the original par-
allel dataset with the forward-translated data. As

with BT, the parallel dataset receives more weight
in the loss. In order to increase robustness to pre-
diction mistakes, we make the algorithm iterative
and add only the examples for which the model
was most confident (line 3, loop in line 5 and line
7). In our experiments we iterate three times. We
also inject noise to the input sentences, in the form
of word swap and drop (Lample et al., 2018), to
further improve generalization (line 8).

E Hyper-parameters Used in MT
Experiments

In this section, we report the hyper-parameters used
in Sec. 6.

In all our experiments we use the standard
machine learning methodology of model cross-
validation to select hyper-parameters. We train
models with several random combination of hyper-
parameters and select the best configuration based
on the performance on the validation set. We finally
report results on the test set.

Data The full list of datasets we have considered
in this work with some basic statistics is reported
in Tab. 4

We jointly learn BPEs on both source and target
languages. First, we train an MT system on the par-
allel data for each BPE setting, with values in the
set {3000, 5000, 10000, 20000}. Then, we select
the number of BPE tokens by selecting the setting
that yields the best performance on the validation
set. We report below the value that worked best in
each experiment.

Loss and Optimizer All models are trained
using cross-entropy loss with label smooth-
ing (Szegedy et al., 2016) equal to 0.2. The op-
timizer is Adam (Kingma and Ba, 2015) with beta1
= 0.9, beta2 = 0.98 and warm-up steps 4000. We
share embeddings across encoder and decoder, and
input and output lookup tables. We use fixed
batch size with 4000 tokens per GPU, and we train
with 4 GPUs in fp16. Other optimization hyper-
parameters are reported below.

Model Architecture and Training To decide
the model architecture hyper-parameters for dif-
ferent amount of parallel and monolingual data, we
use random search to find the setting that yields the
best performance on validation set. The range of
values that we used in our random hyper-parameter
search are:
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MT Experiments Language Pair BPE size Origin Parallel data Monolingual data

Domain # sents
(train/valid/test) Domain # sents

Controlled Setting Fr->En 5000 source Europarl 10K / 10K / 10K Europarl 900K
target OpenSubtitle 10K / 10K / 10K OpenSubtitle 900K

Low-Resource MT
Ne->En 5000 source Social Media 40K / 5K / 5K Social Media 1.8M

target Social Media 7.5K / 5K / 5K Social Media 1.8M

En-My 10000 source ALT(News) 18K / 1K / 1K NewsCrawl 5M
target - - CommonCrawl 100K

Table 4: Datasets used for the machine translation experiments of Sec. 6

• Layers: {4, 5, 6}

• Embedding dimension: {256, 512, 1024}

• Inner-layer dimension: {512, 1024, 2048,
4096}

• Attention Heads: {2, 4, 8, 16}

We report the model architecture of each experi-
ment in §E.1.

For each data point which corre-
sponds to a particular combination of
(P,Ms,St, α, β, training procedure), we use
random search to sweep over hyper-parameters.
The hyper-parameters are dropout rate, learning
rate, source side noise level for ST experiments
and upsample ratio between parallel data, back-
translated data and self-translated data. For all
experiments, the dropout rates are {0.1, 0.2, 0.3,
0.4, 0.5}, and the learning rate takes values in
{0.0007, 0.001, 0.003, 0.005}.

E.1 Hyper-parameter for Controlled Setting
Experiments

We use the same BPEs for all the experiments in
the controlled setting of §6.1. The BPE size is 5000
and it is shared between English and French.

Varying amount of STDM. We use embedding
dimension 256, inner-layer dimension 512, 2 at-
tention heads. We sweep the upsampling ratio of
parallel data, back-translated data and self-training
data in a range between 1 and 8.

We train the ST system with 2 iterations (k = 2),
where A1 = 30K and A2 = 100K. In each itera-
tion, we use random search to sweep over different
source side noise, and we report the model with
the best performance based on validation set. The
values of input noise are as follows: Word shuffling
{0, 2, 3}, word dropout {0.0, 0.1, 0.2}, word blank
{0.0, 0.1, 0.2}.

Varying amount of monolingual data. When
the monolingual data has less than 300k sentences,
we use embedding dimension 256, inner-layer di-
mension 512 and 2 attention heads. For bigger
monolingual datasets, we use embedding dimen-
sion 1024, inner-layer dimension 2048 and 8 at-
tention heads. We sweep the upsampling ratio of
parallel data, back-translated data and self-training
data in a range between 1 and 8.

We train the ST system with 5 iterations (k =
5), where A1 = 10K, A2 = 30K, A3 = 100K,
A4 = 300K and A5 = 900K. The values of input
noise are as follows: Word shuffling {0, 2, 3}, word
dropout {0.0, 0.1, 0.2}, word blank {0.0, 0.1, 0.2}.

Varying amount of in-domain data. When
training only with parallel data, we use embed-
ding dimension 256, inner-layer dimension 512,
and 2 attention heads. For models trained with
BT-only and parallel + BT instead, we use embed-
ding dimension 1024, inner-layer dimension 2048
and 8 attention heads. We sweep the parallel data
upsampling ratio in a range between 1 and 16.

E.2 Hyper-parameter for Low-Resource MT
Experiments

We use a joint BPE tokenization with 5000 tokens
for En→ Ne and 10000 tokens for En→My.

On both datasets (Ne→ En and En→My), the
baseline trained only on the parallel dataset is a
5-layer transformer model with 512 embedding
dimensions, 2048 inner-layer dimensions and 8 at-
tention heads. For models trained with BT and ST,
we use a 6-layer transformer with 1024 embedding
dimensions, 2048 inner-layer dimensions and 8 at-
tention heads. We sweep the parallel data and ST
data ratio between 1 and 32.

For both language pairs, we train the ST systems
with 3 iterations (k = 3). For Ne → En, we use
A1 = 600K, A2 = 1M, A3 = 1.8M. For En →
My, we use A1 = 1M, A2 = 3M and A3 = 5M.
The values of input noise are as follows: Word
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shuffling {0, 2, 3}, word dropout {0.0, 0.1, 0.2},
word blank {0.0, 0.1, 0.2}.


