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Abstract

Recent advances in deep transformer models
have achieved state-of-the-art in several natu-
ral language processing (NLP) tasks, whereas
named entity recognition (NER) has tradition-
ally benefited from long-short term memory
(LSTM) networks. In this work, we present a
Transformers based Transfer Learning frame-
work for Named Entity Recognition (T2NER)
created in PyTorch for the task of NER with
deep transformer models. The framework is
built upon the Transformers library as the core
modeling engine and supports several trans-
fer learning scenarios from sequential transfer
to domain adaptation, multi-task learning, and
semi-supervised learning. It aims to bridge the
gap between the algorithmic advances in these
areas by combining them with the state-of-the-
art in transformer models to provide a unified
platform that is readily extensible and can be
used for both the transfer learning research
in NER, and for real-world applications. The
framework is available at: https://github.
com/suamin/t2ner.

1 Introduction

Named entity recognition (NER) is an impor-
tant task in information extraction, benefiting the
downstream applications such as entity linking
(Cucerzan, 2007), relation extraction (Culotta and
Sorensen, 2004) and question answering (Krishna-
murthy and Mitchell, 2015). NER has been a chal-
lenging task in NLP due to large variations in entity
names and flexibility in how entities are mentioned.
These challenges are further enhanced in cross-
lingual and cross-domain NER settings, where the
added difficulty comes from the difference in text
genre and entity names across languages and do-
mains (Jia et al., 2019).

Furthermore, NER models have shown relatively
high variance even when trained on the same data

(Reimers and Gurevych, 2017). These models gen-
eralize poorly when tested on data from different
domains and languages, and even more so when
they contain unseen entity mentions (Augenstein
et al., 2017; Agarwal et al., 2020; Wang et al.,
2020). These challenges make transfer learning re-
search an important and well studied area in NER.

Recent successes in transfer learning have
mainly come from pre-trained language models
(Devlin et al., 2019; Radford et al., 2019) with con-
textualized word embeddings based on deep trans-
former models (Vaswani et al., 2017). These mod-
els achieve state-of-the-art in several NLP tasks
such as named entity recognition, document classi-
fication, and question answering. Due to their wide
success and the community adoption, successful
frameworks like Transformers have emerged. In
NER, the existing frameworks like NCRF++ (Yang
and Zhang, 2018) lack the core infrastructure to
support such models directly with state-of-the-art
transfer learning algorithms.

In this paper, we present an adaptable and user-
friendly development framework for growing re-
search in transfer learning with deep transformer
models for NER, with underexplored areas such
as semi-supervised learning. This is in contrast to
the standard LSTM based approaches which have
largely and successfully dominated the NER re-
search. Our framework is aimed to bridge several
gaps with core design principles that are discussed
in next section.

2 Design Principles

T2NER is divided into several components as shown
in Figure 1. The core design principle is to seam-
lessly integrate the Transformers (Wolf et al., 2020)
library as the backend for modeling, while extend-
ing it to support different transfer learning scenar-
ios with a range of existing algorithms. Trans-

https://github.com/suamin/t2ner
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Figure 1: Overview of the T2NER framework.

formers offer optimized implementations of several
deep transformer models, including BERT (Devlin
et al., 2019), GPT (Radford et al., 2019), RoBERTa
(Liu et al., 2019), and XLM (Conneau and Lample,
2019) among others, with multi-GPU, distributed,
and mixed precision training.

The second design principle is inspired by
previous pre-trained models in the computer vi-
sion: Dassl.pytorch (Zhou et al., 2020)1 and
Trans-Learn (Jiang et al., 2020)2 that unify do-
main adaptation, domain generalization, and semi-
supervised learning, thus allowing easy benchmark-
ing, fair comparisons, and reproducibility. T2NER
is the unification of these major algorithmic ap-
proaches to bridge the gap between the algorithms
and advance transfer learning research in NER.

Lastly, the cross-lingual and cross-domain re-
search in NER has itself proposed several advances,
including multi-task and joint learning (Pan et al.,
2017; Peng and Dredze, 2017; Lin et al., 2018; Jia
et al., 2019; Wang et al., 2020), adversarial learn-

1https://github.com/KaiyangZhou/Dassl.
pytorch

2https://github.com/thuml/
Transfer-Learning-Library

ing (Zhou et al., 2019; Keung et al., 2019), feature
transfer (Daumé III, 2007; Kim et al., 2015; Wang
et al., 2018), newer architectures (Lin et al., 2018;
Jia and Zhang, 2020), parameter sharing (Lee et al.,
2018; Yang et al., 2018; Lin and Lu, 2018), parame-
ter generation (Jia et al., 2019), mixture-of-experts
(Chen et al., 2018), and usage of external resources
(Xie et al., 2018; Wang et al., 2019). Therefore,
our final design principle aims to unify these re-
searches and offer a framework to test them with
deep transformer models, wherever such an algo-
rithmic abstraction is possible, while exploring new
paradigms.

3 The T2NER Framework

3.1 Data Sources

The main data source is the NER data, which is
expected to be labeled or unlabeled in the CoNLL
format. We adopt widely used BIO tagging scheme.
In practice, the differences in results which arise
due to different schemes are negligible (Ratinov
and Roth, 2009). A simple preprocessing routine
is provided to standardize the data files, along
with the required metadata, that is used through-

https://github.com/KaiyangZhou/Dassl.pytorch
https://github.com/KaiyangZhou/Dassl.pytorch
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Figure 2: Transfer learning scenarios supported in T2NER. The adaptation scenarios apply to the cross-domain,
cross-lingual, or a mix of both. These scenarios can further be complemented with multi-task learning. (a) Single
source supervised or unsupervised domain or language adaptation (b) Multi-source supervised or unsupervised
domain or language adaptation (c) Single source semi-supervised learning with partially labeled data. Further new
directions in NER, such as multi-source adaptation with semi-supervised or few-shot learning of the target, are
possible.

out the framework. In particular, for a given
named collection as domain.datasetname
(possibly split into train, development and test
files), T2NER creates output data files named
as lang.domain.datasetname-split
and lang.domain.datasetname.labels,
where language information is provided by the
user. In case of missing metadata, a place-
holder xxx can be used. For preprocessing,
we tokenize via Transformers and split the
sentences which are longer than the user-defined
maximum length. An example output file could
be en.news.conll-train, referring to the
CoNLL 2003 data set (Tjong Kim Sang and
De Meulder, 2003).

Besides NER data, additional task data can also
be provided, such as that for language modeling,
POS tagging, and alignment resources (e.g. bilin-
gual dictionaries or parallel sentences).

3.2 Data Readers

These are classes that are designed to serve
the data needs of a given transfer learn-
ing scenario in a modular and extensible
way. The framework provides SimpleData,
SimpleAdaptationData, MultiData, and
SemiSupervisedData which are suitable for
single dataset NER, cross- lingual and domain
NER, multi-dataset NER, and single dataset semi-
supervised NER, respectively. Each class is
derived from a base class BaseData and can
be extended for further scenarios. As a con-
crete example, consider a dataset reader class

SimpleAdaptationData in T2NER, which
can provide training data for source and target
language or domain up to a requested number of
copies.

3.3 Models
A model is composed of three main components:
a base encoder from the Transformers (Wolf et al.,
2020), any additional networks (X-nets) on top of
the encoder, and the prediction layer(s).

Encoder is the main model component that
takes as input tokenized text and returns hidden
states such as those from BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019). There are
five encoder modes that we support:

• finetune: Fine-tunes the encoder and uses
the last layer hidden states.

• freeze: Freezes the encoder and uses the
last layer hidden states.

• firstn: Freezes only the first n layers of the
encoder and uses the last layer hidden states
(Wu and Dredze, 2019).

• lastn: Freezes the encoder and uses the ag-
gregated hidden states by summing the out-
puts from the last n layers (Wang et al., 2019).

• embedonly: Uses and fine-tunes the embed-
ding layer only of the encoder.

X-nets are additional neural architectures that
can be used on top of the encoder to further func-
tion on the encoder hidden states. T2NER provides
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Figure 3: Class hierarchies in T2NER for two main class concepts: (Left) Main model architectures in single
and multi-task settings with the adoption of Auto classes concepts from Transformers (Wolf et al., 2020), where
customized functionality or new modeling concepts can easily be added. (Right) Main trainer classes that offer a
particular transfer learning scenario and extend it to a specific transferring algorithm.

multi-layered Transformers and BiLSTM by de-
fault.

Prediction Layers offer the final classification
layer for the sequence labeling. Following Devlin
et al. (2019), the default prediction layer in T2NER

is a linear layer, however support for linear-chain
conditional random field (CRF) is included. In the
multi-task setting, several output layers from dif-
ferent datasets in different domains or languages
might be available with partial or exact entity types
as outputs. To help the transfer across the tasks,
private and shared prediction layers are also sup-
ported (Wang et al., 2020; Lin et al., 2018).

With these underlying components, models are
mainly implemented as single or multi-task archi-
tectures. To support a wide range of encoders in
a unified API, T2NER adopts the Auto classes
design from the Transformers. Figure 3 shows
the class hierarchies, outlining the customized ex-
tensions with further possibilities to extend with
external model implementations.

3.4 Criterions

For a given sequence of length L with tokens
x = [x1, x2, ..., xL], labels y = [y1, y2, ..., yL]
with each yi ∈ ∆C a one-hot entity type vector
with C types, and the linear prediction layer, the
NER loss is defined as:

L(y;x) = −
C∑
i=1

L∑
j=1

yij log p(hj = i|xj)

where p(hj = i|xj) is the probability of token xj
being labeled as entity type i and hj is the model
output. When p is softmax, this becomes cross-
entropy loss. To tackle class-imbalance in real-
world applications, T2NER also offers two-class
sensitive loss functions:

• Focal Loss adds a modulating factor to the
standard softmax which reduces the loss con-
tribution from easy examples and extends the
range in which an example receives low loss
(Lin et al., 2017).

• LDAM Loss is the label-distribution-aware
loss function that encourages the model to
have the optimal trade-off between per-class
margins by promoting the minority classes to
have larger margins (Cao et al., 2019).

3.5 Auxiliary Tasks
Multi-task learning has greatly benefited transfer
learning in NER (Lin et al., 2018; Wang et al.,
2020; Jia et al., 2019; Jia and Zhang, 2020). Several
auxiliary tasks are supported in a multi-task model
by default:

• Language Classification: In the cross-lingual
setting, this task provides an additional clas-
sification signal over the languages (e.g., En-
glish and Spanish) used in the training data
(Keung et al., 2019).

• Domain Classification: In the cross-domain
setting, this task provides an additional clas-
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sification signal over the domains (e.g., News
and Biomedical) used in the training data
(Wang et al., 2020).

• Adversarial Classification: In the cross- lin-
gual or domain setting, this task provides
an additional adversarial classification signal
over the languages or domains to learn invari-
ant features used in the training data (Keung
et al., 2019; Chen et al., 2018).

• Language Modeling: While pre-trained trans-
former models are already tuned on a specific
corpora, additional causal language modeling
signal is supported during fine-tuning over the
raw texts (Rei, 2017; Jia et al., 2019; Jia and
Zhang, 2020).

• Entity Type Classification: To better extract
entity type knowledge, an additional linear
classifier is added. This performs classifica-
tion over entity types such as [PER, LOC, O,
...] without the segmentation tags such as
B/I/E (Jia and Zhang, 2020).

• Shared Tagging: In NER settings where the
entity types might differ, a shared prediction
layer across all the entity types provides an
additional signal to the base NER tasks.

• All-Outside Classification: This is a binary
classification task which predicts if the sen-
tence has entity types other than the outside
(O) type.

3.6 Optimization Modules
T2NER provides thin wrappers around the optimiz-
ers and learning rate schedulers from the PyTorch
(Paszke et al., 2019) and the Transformers (Wolf
et al., 2020) libraries.

3.7 Trainers
Trainer is the main class concept that glues together
all the components and provides a unified setup
to develop, test, and benchmark the algorithms.
Figure 3 shows the organization of trainer classes.
Each transfer learning scenario inherits from the
BaseTrainer class, where each scenario can
further be extended to create an algorithm-specific
training regime. This allows the researchers to
focus mainly on the algorithms’ logic while the
framework fulfills the requirements of a chosen
transfer scenario. Following (Zhou et al., 2020;
Jiang et al., 2020), a few training algorithms are

implemented by default which we briefly describe.
In the following, a feature extractor is referred to
as the base encoder with any X-nets. An optional
pooling strategy {mean, sum, max, attention,
...} can be applied to aggregate the hidden states.
In what follows, domain and language can be used
interchangeably. For consistency, we use the word
domain.

Gradient Reversal Layer (GRL) adds a do-
main classifier which is trained to discriminate
whether input features come from the source or tar-
get domain, whereas the feature extractor is trained
to deceive the domain classifier to match feature
distributions.

Earth Mover Distance (EMD) adds a critic
that maximizes the difference between unbounded
scores of source and target features. This effec-
tively returns the approximation of Wasserstein
distance between source and target feature distri-
butions (Arjovsky et al., 2017). The overall ob-
jective jointly minimizes NER cross-entropy loss
and Wasserstein distance. Theoretically, GRL is
effectively minimizing Jensen-Shannon (JS) diver-
gence which suffers from discontinuities and thus
provide poor gradients for feature extractor. In con-
trast Wasserstein distance is stable and less prone
to hyperparamter selection (Chen et al., 2018). For
stable training, the gradient penalty is also provided
(Gulrajani et al., 2017).

Keung Adversarial is closely related to GRL
but additionally uses the generator loss such that
the features are difficult for the discriminator to
classify correctly between source and target. The
optimization is carried out in step-wise fashion for
the feature extractor, discriminator, and generator
(Keung et al., 2019).

Maximum Classifier Discrepancy (MCD)
adds a second classifier to measure the discrep-
ancy between the predictions of two classifiers on
target samples. It is noted that the target samples
outside the support of the source can be measured
by two different classifiers. Overall, MCD solves a
minimax problem in which the goal is to find two
classifiers that maximize the discrepancy on the tar-
get sample, and a features generator that minimizes
this discrepancy (Saito et al., 2018).

Minimax Entropy (MME) decreases the en-
tropy on unlabeled target features in adversarial
manner by using GRL to obtain high quality dis-
criminative features (Saito et al., 2019). Besides
unsupervised domain adaptation, the method can
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Figure 4: An example of the configuration file that al-
lows the user to specify their choices. It shows an in-
stantiation of the multi-task learning scenario.

additionally be used in semi-supervised and few-
shot learning scenarios when some labeled target
samples are available.

Further algorithms, such as classical conditional
entropy minimization (CEM) for semi-supervised
learning (Grandvalet and Bengio, 2004) or re-
cent works based on maximum mean discrepancy
(MMD) for multi-source domain adaptation (Peng
et al., 2019), are provided. In general, extending
T2NER for newer algorithms is simple and flexible.

4 Usage

T2NER offers a single entry point to the framework
which relies on a base JSON configuration file, an
experiment-specific JSON configuration file with
an optional algorithm name to run. An example
experiment-specific configuration file is shown in
Figure 4. The command below shows an example
run:

Like other frameworks, it can be further devel-
oped and used as a standard Python library.

5 Conclusion and Future Work

In this work we presented a transformer based
framework for transfer learning research in named
entity recognition (NER). We laid out the design
principles, detailed out the architecture, and pre-
sented the transfer scenarios and some of the rep-
resentative algorithms. T2NER offers to bridge the
gap between growing research in deep transformer
models, NER transfer learning, and domain adapta-
tion. T2NER has the potential to serve as a unified
benchmark for existing and newer algorithms with
state-of-the-art models.

For future work, we consider the following:

• We would like to create a benchmark data and
perform comparison of the transfer learning al-
gorithms (Ramponi and Plank, 2020; Kashyap
et al., 2020).

• We would like to investigate adding support
for few-shot (Huang et al., 2020), nested (Jue
et al., 2020) and document-level (Schweter
and Akbik, 2020) NER.

• Assess the performance of framework in terms
of speed and efficiency and compare with
other tools3.

• While we focused on the task of NER here, we
would also like to add related tasks such as re-
lation extraction, entity linking, and question
answering.
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