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Abstract

The intensity of online abuse has increased in
recent years. Automated tools are being devel-
oped to prevent the use of hate speech and of-
fensive content. Most of the technologies use
natural language and machine learning tools to
identify offensive text. In a multilingual soci-
ety, where code-mixing is a norm, the hate con-
tent would be delivered in a code-mixed form
in social media, which makes offensive con-
tent identification, further challenging. In this
work, we participated in the EACL task to de-
tect offensive content in the code-mixed social
media scenario. The methodology uses a trans-
former model with transliteration and class bal-
ancing loss for offensive content identification.
In this task, our model has been ranked 2nd in
Malayalam-English and 4th in Tamil-English
code-mixed languages.

1 Introduction

Language is a social phenomenon. It is through
language that day-to-day interactions and interper-
sonal relations are possible (Barnali et al., 2017).
Languages keep on changing and adapting. In a
multilingual scenario, the languages influence each
other in certain ways. Normally, this interaction
is reflected in language convergence, borrowing,
and replacement. It also leads to the emergence
of hybrid languages, such as pidgins, creoles, and
other mixed languages. This form of language
interaction is known as Language contact (Thoma-
son, 2001). Language contact is considered to be
an important phenomenon, especially in multilin-
gual societies. In bilingual or multilingual commu-
nities, speakers use their native tongue and their
second language in different domains. This form
of alternation of two or more languages is called
’code-mixing’ (CM) (Muysken et al., 2000).

With the increase in social media access, Offen-
sive content and hateful material on the internet

has increased in the recent past (Thavareesan and
Mahesan, 2019, 2020a,b). The internet harbors
a variety of hateful and offensive statements, and
nowadays, social media is a hotbed of such conver-
sations. Recently, countries across the world have
already begun to address hate speech and offensive
content and how it affects society’s functioning
(Chakravarthi, 2020). Research and technologies
worldwide are utilizing natural language and ma-
chine learning tools to detect and curb the use of
offensive content on social media.

In a multilingual society, code-mixing has be-
come a norm. The hateful and offensive content is
delivered in a code-mixed form (Jose et al., 2020;
Priyadharshini et al., 2020). Automatic hate speech
detection on code-mixed data has faced quite many
challenges due to the non-standard variations in
spelling and grammar (Bali et al., 2014). The typi-
cal hate-speech and offensive language tools devel-
oped for monolingual data will not work for code-
mixed data. So there is a need for more research
and analysis to be done to identify the offensive
content in code-mixed social media data.

To encourage research on code-mixing and re-
strain the use of offensive texts on social me-
dia, the NLP community has organized several
workshops such as Workshops on Computational
Approaches to Linguistic Code-Switching, Sen-
tiMix (Patwa et al., 2020), Dravidian CodeMix
(Chakravarthi et al., 2020d), HASOC Dravidian
CodeMix 1 (Chakravarthi et al., 2020b; Mandl
et al., 2020). Similarly, the European As-
sociation of Computational Linguistics 2021’s
DravidianLangTech (Chakravarthi et al., 2021)
was also devoted to identifying offensive con-
tent on Kannada-English, Tamil-English, and
Malayalam-English code-mixed languages. This
task aims to classify the given code-mixed com-

1https://sites.google.com/view/
dravidian-codemix-fire2020/overview

https://sites.google.com/view/dravidian-codemix-fire2020/overview
https://sites.google.com/view/dravidian-codemix-fire2020/overview
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ments into one of the six predefined categories:
Not-offensive, offensive-untargeted, Offensive-
Targeted-Insult-Individual, Offensive- Targeted-
Insult-Group, Offensive-Targeted-Insult-Other, or
Not-in-indented-language.

This paper presents a pre-trained BERT model
with the class balanced loss for offensive content
identification on the Dravidian code-mixed text.

The paper is organized as follows. Section 2
provides related work on offensive content identifi-
cation on CM social media text. Section 3 provides
information on the task and datasets. Section 4
describes the proposed work. Section 5 presents
the experimental setup and the performance of the
model. Section 6 concludes our work.

2 Related Work

This section describes the related work on hate
speech detection and offensive content identifica-
tion in the code-mixed scenario.

Bohra et al. (2018) created a dataset for hate
speech detection from Hindi-English tweets. They
collected around 4575 Hindi-English tweets and
used traditional machine learning models with fea-
ture engineering for hateful and offensive content
identification. Mandl et al. (2019) created a Hindi-
English dataset for a hate speech and offensive
content identification Task (HASOC), organized
at FIRE 2019. It consists of 4665 Hindi-English
annotated posts collected from social media sites.
They used Twitter API for crawling an unbiased
dataset. The top models used the Long Short Term
Memory (LSTM) (Schmidhuber and Hochreiter,
1997) with attention mechanism, pre-trained Bidi-
rectional encoder representations with transformers
(BERT) (Devlin et al., 2018) models, and convo-
lutional neural networks (CNN) for hate speech
and offensive content identification. Kumar et al.
(2018) created the dataset for an aggression detec-
tion task. The dataset was annotated for a com-
parison task by (Rani et al., 2020). This data set
consists of 3367 posts and tweets collected from
social media sites. The authors used traditional
machine learning classification models for hate
speech detection. A shared task called Dravidian
Code-Mix (Chakravarthi et al., 2020b) was orga-
nized to identify the offensive language from com-
ments/posts in code-mixed Dravidian Languages
(Tamil-English and Malayalam-English) collected
from social media. Each comment/post is anno-
tated with the offensive language label at the com-

ment/post level. The data set has been collected
from YouTube comments and Tweets. The dataset
contains 4000 annotated Youtube comments and
4952 annotated tweets for the Malayalam language,
and 4940 annotated tweets for the Tamil language.
The top models used deep learning models like
LSTM, CNN, and BERT for hate speech and of-
fensive content detection on the given Dravidian
data.

3 Task and Dataset information

The goal of offensive language identification is
to identify the offensive language content of the
code-mixed dataset of comments/posts in Tamil-
English (Chakravarthi et al., 2020c), Malayalam-
English (Chakravarthi et al., 2020a), and Kannada-
English (Hande et al., 2020) Dravidian languages
collected from social media. Each comment or post
is annotated with offensive, not-offensive, and not-
in-intended-language labels. Where the offensive
label is fine-grained into further categories. The
description of each label is given below

• Offensive-targeted-individual: offensive text
delivered to an individual or person

• Offensive-targeted-group: offensive text de-
livered to a group of people

• Offensive-targeted-other: offensive text deliv-
ered to topics such as films, elections, sports,
and so on.

• Offensive-untargeted: the offensive text is de-
livered but without targeting any person or a
topic.

• Not-in-indented-language: the given content
is not in the intended language.

• Not-offensive: the post does not contain any
offensive content

The dataset for offensive content identification
into divided into train, development(dev), and test
sets for the given languages.

The details of the dataset are given in table 1.

4 Our work

In this section, we start with pre-processing of code-
mixed text. Later we describe the pre-trained mul-
tilingual BERT model with the class balanced loss
for offensive content identification.



156

Data #train #dev #test #total
Kannada-English CM 6217 777 778 7772
Malayalam-English CM 16010 1999 2001 20010
Tamil-English CM 35138 4388 4392 43919

Table 1: Data Statistics

4.1 Pre-processing
The given code-mixed dataset depicts real-time sce-
narios of variations in the spelling, script changes,
use of hashtags, mentions, and emoticons in the text
and has imbalance problems. So pre-processing
is necessary for such a dataset. During pre-
processing,

• To resolve the ambiguities resulting from
script change, we back-transliterated the script
to the native language. As the data has Dra-
vidian and English comments, we used the
NLTK2 English word corpus to detect if the
word is in English or not. Later we back-
transliterated the word to its native script. We
applied linguistic rules not to transliterate the
tweet/comment ”not-Kannada/not-Tamil/not-
Malayalam” as they are not in the intended
language.

• We removed all the punctuations, URLs, men-
tions, unwanted numbers, and emoticons from
the given dataset. We accepted repetitions of
characters up to a length of 2 and removed
others.

4.2 Our proposed model
In our approach, we have used multilingual pre-
trained BERT with the class balanced loss on the
transliterated data.

We have used multilingual pre-trained BERT
(Devlin et al., 2018) in this work because it is
a transformer-based self multi-headed attention
model that is pre-trained on a huge collection of
data and can be finetuned for our offensive content
classification task. This kind of transfer learning is
very successful when we want to learn a classifier
from a small set of data by taking advantage of
pre-trained embeddings.

BERT is a non-regressive model that reads the
whole string of terms present in the text in a single
stretch. BERT analyzes the meaning of a term
depending on its context given on both sides. As
they are pre-trained on a large corpus, the semantic

2https://www.nltk.org/

and syntactic information is well modeled and can
be directly finetuned for a specific task.

The transformer part in the BERT works like
an attention mechanism capable of learning the
contextual relationships between the terms in a
sentence. The basic form of transformer consists of
an encoder and a decoder. The encoder part reads
the text as the input, and the decoder part gives the
corresponding predictions.

4.3 Class balanced loss to handle dataset
imbalance

While handling an imbalanced dataset (one with
most of the samples belonging to very few of the
classes and many other classes with very few in-
stances), loss calculation can be tricky. The most
common approach to balance the loss is assigning
weights to the loss. The weights are calculated
as the inverse of the number of class instances or
inverse of the square root of the number of class
instances. This form of weighing scheme creates
the problem by shifting focus entirely to the classes
with very few instances.

To handle the shift, the authors Cui et al. (2019)
proposed a Class-Balanced Loss based on Effec-
tive Number of Samples. A framework to measure
data overlap by associating each sample to a small
neighboring region rather than a single point. The
effective number of samples is defined as the vol-
ume of samples and can be calculated by a simple
formula (1− bn)/(1− b), where n is the number
of samples and b is a hyper-parameter, and it takes
values between [0,1]. The authors designed a re-
weighting scheme that uses sufficient samples for
each class to re-balance the loss, thereby yielding
a class-balanced loss.

CB(p, y) =
1

Eny

L(p, y) = 1− β
1− βny

L(p, y)

(1)
Here, L(p, y) can be any loss function.ny is the

number of estimated samples for each labels y.

https://www.nltk.org/
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Malayalam-English CM data Accuracy macro-F1 Weighted-F1
SVM 0.96 0.78 0.96
mBERT 0.68 0.38 0.70
mBERT ’balanced’ 0.68 0.38 0.70
mBERT ’transliterated’ 0.96 0.78 0.96
Our approach 0.97 0.80 0.96

Table 2: Classification metrics for Malayalam-English CM data

Tamil-English CM data Accuracy macro-F1 Weighted-F1
SVM 0.77 0.43 0.80
mBERT 0.76 0.45 0.78
mBERT ’balanced’ 0.76 0.46 0.78
mBERT ’transliterated’ 0.78 0.47 0.80
Our approach 0.78 0.48 0.80

Table 3: Classification metrics for Tamil-English CM data

Kannada-English CM data Accuracy macro-F1 Weighted-F1
SVM 0.70 0.43 0.73
mBERT 0.74 0.44 0.77
mBERT ’balanced’ 0.74 0.45 0.77
mBERT ’transliterated’ 0.66 0.42 0.64
Our approach 0.66 0.43 0.65

Table 4: Classification metrics for Kannada-English CM data

5 Experiments

The section presents the baselines, hyper-parameter
settings, and analysis of observed results.

The baselines used for the proposed work is:

1. SVM with TF-IDF Term frequency and in-
verse document frequency-based vectoriza-
tion is used to represent the text data, and
the support vector machine is used to classify
the data.

2. Pre-trained multilingual BERT (mBERT)
A pre-trained multilingual BERT model with
a feed-forward network for classification.

3. mBERT with class balanced loss (mBERT
”balanced”) A pre-trained multilingual
BERT model with a feed-forward network and
class balanced loss is used for classification.

4. mBERT with transliteration (mBERT
”transliterated”) A pre-trained multilingual
BERT model with a feed-forward network
with transliterated data is used for classifica-
tion

5.1 Hyperparameters and libraries used

During pre-processing, we have used a deep
transliteration tool known as ai4bharat-
transliteration3 library. We have used SVM
with TF-IDF vectorization from the scikit-learn
library (Pedregosa et al., 2011). The default
parameters are used to train the SVM for multi-
class classification. The multilingual pre-trained
BERT is obtained from huggingface transformers
library (Wolf et al., 2019) and is finetuned for this
sentence classification task. The optimizer used is
weighted Adam with the learning rate of 2e-5 and
epsilon value equal to 1e-8. The loss function used
is a cross-entropy loss. The number of epochs used
for training the model is 30.

5.2 Results and Analysis

Tables 2, 3 and 4 presents the f1-score and accu-
racy of the models on the Dravidian code-mixed
datasets.

From the above results, for Malayalam and Tamil
datasets, it is clear that our approach of the mul-
tilingual pre-trained BERT model with the class

3https://pypi.org/project/
ai4bharat-transliteration/

https://pypi.org/project/ai4bharat-transliteration/
https://pypi.org/project/ai4bharat-transliteration/
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balanced loss and transliteration works best for the
given datasets. It is due to the effectiveness of the
pre-processing and class balanced loss. Removing
URLs, punctuations and emojis features helped the
BERT model to focus on the relevant information.
As the script is associated with the embeddings,
back-transliteration helped the BERT model distin-
guish between the native script and English words
that improved the model’s accuracy. The class bal-
anced loss statistically estimated the weightage of
each label and helped the model not to favour the
label with maximum instances.

Our approach for Kannada-English CM dataset
didn’t give best results. It might be due to the
problems given below,

1. The transliteration tool didn’t function well
for the Kannada data.

2. There were more English words in the data,
with small spelling variations or abbreviations,
that are not detected by the NLTK corpus and
transliterated to Malayalam script.

5.3 Conclusion
We used pre-trained multilingual bi-directional en-
coder representations using transformers (BERT)
for offensive content identification given the
Kannada-English, Malayalam-English, and Tamil-
English code-mixed datasets. We compared the
BERT with traditional machine learning classifi-
cation methods with and without class balanced
loss. The results showed that using the back-
transliteration helped the module to obtain the na-
tiveness of script and class balanced loss handled
the problem of imbalanced data. During back-
transliteration, we observed that the data has many
spelling variations for the same word. So the back-
transliteration had many instances of the same word
with small variations. In the future, we wish to nor-
malize these transliterations based on the context,
such models, if developed, will help in handling
the code-mixed real-time data better. It would also
be an interesting study to analyze the effects of
different loss functions in our model on given im-
balanced data.
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