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Abstract

In this work, we draw parallels in auto-
matically responding to emails for combat-
ing social-engineering attacks and document-
grounded response generation. We lay out the
blueprint of our approach and illustrate our
reasoning. E-mails are longer than dialogue
utterances and often contain multiple intents.
To respond to phishing emails, we need to
make decisions similar to those for document-
grounded responses—deciding what parts of
long text to use and how to address each intent
to generate a knowledgeable multi-component
response that pushes scammers towards agen-
das. We propose Puppeteer as a promising so-
lution to this end: a hybrid system that uses
customizable probabilistic finite state transduc-
ers to orchestrate pushing agendas coupled
with neural dialogue systems that generate re-
sponses to unexpected prompts. We empha-
size the need for this system by highlighting
each component’s strengths and weaknesses
and show how they complement each other.

1 Introduction

The Anti-Phishing Working Group observed a dou-
bling of phishing attacks over 2020 with business
e-mail compromise scams costing an average of
75, 000 per incident (APWG, 2021). Scammers
use these attacks to reach a wide audience of vic-
tims and perform targeted attacks on high-value
targets. Even when not fully successful, these at-
tacks waste victims’ time and resources.

To fight back against scammers, individuals—
colloquially called scambaiters—have demon-
strated that careful engagement with scammers can
waste a scammer’s time, thus reducing resources
for new attacks. Engaging with scammers through
dialogue in the form of email also opens up opportu-
nities to push scammers towards actions beneficial
for defense and attribution, such as getting scam-
mers to visit a specialized honeypot or divulging

information. This information can aid in identi-
fying coordinated, large-scale attack campaigns
and help with attack attribution. In this paper we
introduce a framework for automating dialogue en-
gagement with scammers and pushing agendas to
get scammers to take actions.

Eliciting information from scammers and contin-
uing an email sequence to waste their time presents
challenges not addressed by existing dialogue sys-
tems. Specifically, this area of automated dialogue
is challenging because: 1) email conversations are
significantly different from chit-chat conversations:
each turn is longer and thus usually contains more
information that needs to be incorporated into the
response and has multiple intents/requests in a sin-
gle turn that should be addressed 2) the initial dia-
logue topics can range greatly and change quickly
and a bot must respond appropriately to new topics,
goals and questions from the scammer to appear
human 3) there is a high cost associated with the
scammer recognizing the dialogue is automated
as any work put in for trust building is lost if the
attacker suspects he/she is talking to a bot and 4)
the scammer’s agenda is independent of the bot’s
agenda– thus the bot needs to maintain awareness
of its own goals without ignoring the competing
goals of the scammer.

Using “canned” responses chosen by following
a pre-written script, or performing deep-learning
over expected conversation flows for eliciting in-
formation are reasonable approaches to address the
challenges of keeping responses targeted, topical
and persuasive without a lapse in coherency in di-
alogue. However, such approaches will not meet
the second challenge of being robust enough to re-
spond to open dialogue and unexpected scamming
intents in a topical and directed manner.

In this paper, we introduce our approach to ad-
dress all challenges with a modular hybrid dialogue
system, Puppeteer. Puppeteer uses multiple Fi-
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nite State Transducers (FSTs) to push and track
multiple agendas in uncooperative dialogue and
combines this with a neural dialogue system to
keep conversation topics free-flowing and natural
sounding while effectively incorporating informa-
tion provided from the incoming email. We discuss
our progress in building our approach and have
released our framework for public use1.

2 The Puppeteer Framework

Eliciting information from SE attackers introduces
a niche but important problem space that requires a
specialized dialogue system to address the distinct
trade-offs and risks involved in engaging with scam-
mers for the purpose of pushing the scammer into
certain actions. In this section, we introduce our
dialogue framework Puppeteer and discuss how our
framework deals with open-ended dialogue, while
inserting and tracking progress towards specific
desired actions.

First, to carry out and track progress towards
specific actions, Puppeteer uses probabilistic finite
state transducers (FSTs). The FST approach en-
ables a task-oriented framework for belief tracking
and context-specific natural language understand-
ing, which both keep the conversation moving to-
wards specific goals and bolsters accurate interpre-
tation of any extracted information.

Dialogue based on FSTs, however, can be inflex-
ible and brittle in the face of open-ended conver-
sations. An FST-based dialogue approach is not,
on its own, appropriate for SMS, social media, and
email conversations if the goal is to keep the con-
versation going without revealing the responder is
a bot. To address this, the Puppeteer framework
combines its FST approach with deep learning and
neural generative approaches. Dialogue generated
through the use of pre-trained models is folded in
with responses prescribed by any active FSTs in a
conversation. The goal in this hybrid approach is to
“script” the persuasive dialogue designed to push
agendas, while incorporating a more open-ended
neural dialogue system to keep the scammer en-
gaged. An illustrative example of this ensemble is
shown in Figure 1.

Pushing Agendas with FSTs A Puppeteer
agenda is defined by the states and transitions of
an FST as well as the cues which indicate that a
transition should be taken. The FST for an agenda
captures the different pathways a conversation can

1https://github.com/STEELISI/Puppeteer

go when requesting a specific action and respond-
ing to possible push-back against requests. At each
turn in the conversation, the incoming message is
evaluated for all cues in all active agenda FSTs.
Additionally, the message is evaluated for a “non-
event” for each agenda—the probability that the
incoming message does not contain any cues for a
particular agenda.

Each cue has a cue detector which recognizes
when an indicator was found, and provides a con-
fidence value for that decision. These confidence
values are then combined with the non-event prob-
ability for an agenda and normalized. This normal-
ization must support comparison between different
cue detector confidence values and therefore is spe-
cific to the set of detectors used for an agenda. For
each agenda’s FST, Puppeteer tracks the probabil-
ity distribution across all possible states in the FST
as the conversation progresses, retiring agendas as
they stall out or complete and adding new agendas
based on policy rules dictating when and how to
kick off agendas.

Determining when an agenda is complete is also
based on thresholding. Ultimately, when the sys-
tem reaches a high enough confidence the conversa-
tion has transitioned an agenda’s FST to a terminus
state, the agenda is considered complete. By de-
fault, Puppeteer does not use fixed thresholds for
determining confidence for completion, but instead
uses relative probabilities between states and con-
figurable thresholds. This is because longer conver-
sations tend to disperse total probability through-
out all states over time. For agendas which are
expected to complete over fewer turns, this default
can be overridden.

We anticipate a wide range of agendas may be
needed. The Puppeteer framework is written in
Python and designed to be modular, enabling the
easy addition of new agendas (backed by FSTs) and
allowing for modular incorporation of nearly any
natural language understanding approaches in cue
detection. Additionally, defining response actions
is extensible to enable differing approaches for re-
sponse generation. To define a Puppeteer agenda,
a user describes the state machine and any custom
policy and thresholds in a YAML file. Default be-
haviors can be easily customized by overriding the
appropriate delegator mixin class.

Currently, cue detectors are managed by Snips
NLU (Coucke et al., 2018). For each transition
cue, the user supplies a file of example sentences

https://github.com/STEELISI/Puppeteer
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Figure 1: An example of a response generated by a neural dialogue system folded into the script indicatored by
the FST to pursue an information collection agenda. Each component complements one another to generate an
effective response for eliciting the attacker’s information.

or phrases which indicate a transition should be
taken, and optionally a file of examples for nega-
tive indicators. For example, if an cue detector is
looking for text that someone lives in a location,
a positive example would be "I live in New York"
and a negative example would be "I want to visit
New York". These negative examples help filter
out false positives. These files are used to create
a Snips engine which gives confidence scores on
found intents in incoming messages. In practice,
we have found most indicators need only 20–40
positive and negative example sentences each as
cues are only employed in contexts likely to con-
tain a small set of specific intents and need only to
distinguish between "no intent" and the handful of
intents in an active agenda. The framework is de-
signed so Snips NLU can be replaced with another
NLU approach. To do so, the user must supply
a function to Puppeteer which takes in incoming
message content and returns a confidence score a
particular cue is found in the incoming messages.

Each agenda has a configurable number of asso-
ciated actions with each state in its FST that can
be kicked off any time the probability the conver-
sation has reached policy thresholds for that state
and threshold. The default action for all states is to
pull a response from a template file, and users can
provide additional functions and link these to states
in their FST definition for an agenda. In use with
our phishing defense system, most agendas have
additional actions for states where the scammer has
responded with information we pass to other func-
tions of our phishing system such as the attribution
module.

Neural Dialogue System: In our current im-

plementation, the neural dialogue system can be
chosen to be either a BERT-based question and an-
swering system called Closed-Domain Question
Answering (cdQA) or a fine-tuned GPT-2 model.

cdQA offers indirect functionality as a dialogue
system by retrieving relevant segments of text to
a given query. As its name suggests, it is actually
closed-domain in the sense that it only retrieves
answers from a given set of source documents, but
the source documents can be expanded to accom-
modate a variety of domains.

Our GPT-2 model is SpolinBot, which can be
used as a stand-alone dialogue system. SpolinBot
is first fine-tuned with Personachat (Zhang et al.,
2018) to adapt to the dialogue domain and then fur-
ther tuned with SPOLIN to ground its response to
the incoming email by learning how to incorporate
the “Yes, and" principle of improvisational theatre
(Cho and May, 2020). We use training details out-
lined by Wolf et al. (2019).

Importance of a Hybrid Approach The impor-
tance of correctly integrating the components be-
comes evident by observing the shortcomings of
each component when used in isolation. Figure 2
demonstrates components in isolation. The FST
approach is stilted in pushing an agenda as it is
limited to responses for agendas deemed relevant
to the conversation which does not directly address
questions. The neural dialogue systems cannot
push an agenda, but respond to the prompt.

In contrast, Figure 1 demonstrates the strengths
of each component when they are ideally combined
together to generate an effective response.

Putting them together: For each paragraph
from the email other than the header and the signa-
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SCAMMER: Are you interested in a job? Let’s set up a
meeting.

FST: Where are you based out of? What time works
for you?

NDS-YESAND: Yes, I’ve been looking for one.

NDS-QNA: I can see what times work.

Figure 2: Examples that highlight the weaknesses of
individual components. The FST approach is stilted
in pushing an agenda as it does not address the ques-
tion posed by the scammer. The neural dialogue system
(NDS) fails to respond to specific tasks.

ture, Puppeteer currently consults the cdQA com-
ponent for questions and the yes-and bot for non-
question text and text which has no indicators for
any agenda. As shown in Figure 1, the responses
from the neural dialogue component and the Pup-
peteer agendas are naively appended in order of the
parts of the email that they respond to. However, it
may often be the case that some parts of the email
do not necessarily need a response. Improving how
and when components are called on for responses
and how these responses are combined is an ongo-
ing effort. So far, empirical results show our current
combining approach does relatively well on short
prompts, but this analysis is particularly challeng-
ing due to the lack of automatic evaluation metrics
for neural dialogue systems and the large variance
of resulting models based on different training data.

3 Related Work

Social engineering (SE) is the act of getting users
to compromise information systems. Contrary to
technical attacks directly on network and computer
systems, SE attacks target humans with access to
information and manipulate these target users to
divulge confidential information (Krombholz et al.,
2015). Phishing is a specific type of social engineer-
ing attack in which targets are contacted through
digital channels such as e-mail, SMS or social me-
dia to lure individuals into providing sensitive data
such as personally identifiable information, system
log in credentials or organization details (Hong,
2012). Our work focuses on generating dialogue to
engage such scammers over one or more of these
digital, text-based channels.

Most research efforts addressing SE look at de-
tection (e.g. Basnet et al. (2008); Chen et al. (2014);
Singh et al. (2015)) and defending against such at-
tacks by dropping or otherwise terminating such
attacks (e.g. Chaudhry et al. (2016); Gragg (2003);
Chandra et al. (2015)). An anti-phishing project
by Netsafe2 picks a curated personality and uses
automated email responses to waste the attacker’s
time as much as possible, but its not open-sourced
and little is known about how it works. Our system
is similar to Netsafe’s project in that it is focused
on actively engaging scammers through automated
dialogue, but Puppeteer also pushes scammers to-
wards actions favorable for attribution and defense.
We rely on separate detection methods to identify
messages and senders the Puppeteer dialogue sys-
tem should engage.

Only recently have research efforts looked at us-
ing automated text-based dialogue to respond to
scammers. Li et al. (2019) leverage intent and se-
mantic labels in non-collaborative dialogue corpora
to distinguish on-task and off-task dialogue and
therefore enhance human evaluation scores for en-
gagement and coherence. We aim to achieve a sim-
ilar objective with the additional goal of pushing a
range of agendas and responding appropriately and
topically over a broad range of open dialogue. Hob-
byists and commercial developers also have looked
at automatic responses to scammers. These efforts
are interactive spoken-word approaches that detect
silence in conversation and interject prerecorded
non sequiturs to waste a scam caller’s time (Ober-
haus, 2018; TelTech, 2020). While one of the goals
of our work is to waste scammer time, Puppeteer
performs natural language understanding to engage
scammers at a deeper level and push agendas with
the ultimate goal of pushing scammers into actions
which aid attribution.

Our hybrid system is inspired by a large body
of existing work in dialogue systems. Hudson
and Newell (1992) propose probabilistic FSTs for
managing dialogue under uncertainty, while many
dialogue systems incorporate FSTs for manage-
ment functionality in spoken dialogue systems
(Pietquin and Dutoit, 2003; Chu et al., 2005; Son-
ntag, 2006; Hori et al., 2009). Recent interests in
large pre-trained language models based on Trans-
formers and open-domain question answering sys-
tems paved the way for our neural network ap-
proaches to be used as open-domain dialogue sys-

2https://rescam.org

https://rescam.org
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tems, such as GPT-2 or DrQA (Vaswani et al., 2017;
Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2018; Chen et al., 2017; Farias et al., 2019). The
novelty of Puppeteer is in the combination of these
two approaches to address the unique challenges
of system-scammer dialogue.

4 Conclusion

In this paper we introduced email response genera-
tion for phishing as a challenging dialogue domain.
Our approach draws on similarities with document-
grounded response generation. As a first step to
address the challenges of automating phishing re-
sponse, we proposed Puppeteer and made it pub-
licly available. Puppeteer’s modular architecture
makes it easy to augment or replace its components
to tackle individual challenges. These components
complement one another in generating suitable re-
sponses for engaging scammers and inserting agen-
das, but it remains an open problem to seamlessly
combine response components into a composed
email response.

This material is based on research sponsored by
the AFRL and DARPA under agreement number
FA8650-18-C-7878. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies or endorsements, either expressed
or implied, of the AFRL, DARPA, or the U.S. Gov-
ernment.
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