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Abstract

The task of causal question answering aims
to reason about causes and effects over a pro-
vided real or hypothetical premise. Recent ap-
proaches have converged on using transformer-
based language models to solve question an-
swering tasks. However, pretrained language
models often struggle when external knowl-
edge is not present in the premise or when ad-
ditional context is required to answer the ques-
tion. To the best of our knowledge, no prior
work has explored the efficacy of augment-
ing pretrained language models with external
causal knowledge for multiple-choice causal
question answering. In this paper, we present
novel strategies for the representation of causal
knowledge. Our empirical results demonstrate
the efficacy of augmenting pretrained models
with external causal knowledge. We show im-
proved performance on the COPA (Choice of
Plausible Alternatives) and WIQA (What If
Reasoning Over Procedural Text) benchmark
tasks. On the WIQA benchmark, our approach
is competitive with the state-of-the-art and ex-
ceeds it within the evaluation subcategories of
In-Paragraph and Out-of-Paragraph perturba-
tions.

1 Introduction

Recent model-based approaches for question an-
swering tasks have primarily focused on finetun-
ing pretrained transformer-based language models,
such as BERT (Devlin et al.) and RoBERTa (Liu
et al., 2019c), on task-specific datasets. These lan-
guage models have been found to contain transfer-
able linguistic knowledge (Liu et al., 2019a) and
general knowledge (Petroni et al., 2019) that are
effective for most downstream natural language
processing (NLP) tasks. For more complex tasks,
such as causal reasoning, pretrained language mod-
els are often limited as they lack the specific exter-
nal background knowledge required to effectively
reason about causality.

Events

1. Pressure pushes up from inside the volcano.

2. Lava comes out of the volcano.

3. Ash clouds and rocks also come out of some
volcanos.

4. The eruption lasts for a long time for some
eruptions.

5. The things that come out of the volcano cause
disturbances in the environment.

6. The volcano loses the built up pressure.

7. The lava and other debris stop coming out of
the volcano.

Question: Suppose MORE ash clouds forming
happens, how will it affect disturbances in the envi-
ronment.
A. More B. Less C. No Effect

Figure 1: Example question from WIQA. The question
poses an perturbation for Event 3 and asks what the
implication is on Event 5.

The term causal knowledge has a long history
rooted in philosophy, psychology, and many other
academic disciplines (Goldman, 1967). In this pa-
per, we will refer to causal facts and causal knowl-
edge interchangeably. Broadly, causal knowledge
captures relational knowledge between concepts,
which can be useful for reasoning about causality.
Causal facts are generally extracted from natural
language descriptions. For example, the statement
Global warming is caused primarily by human ac-
tivities such as coal-burning power plants would
yield the causal fact factories cause global warm-
ing. These causal facts can also be described explic-
itly in a knowledge base or expressed formally as
triples with an explicit cause-effect relation. For ex-
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ample, the causal fact factories cause global warm-
ing would be expressed as the triple (factory,
cause-effect, global warming). As
causal facts are generated from descriptions, the
veracity of these facts can be questionable. Ascer-
taining the verisimilitude of causal knowledge is an
open problem and out-of-scope for our experiments.
In this paper, we explore if causal knowledge is use-
ful for question answering and present strategies
on how to enhance a pretrained language model
with causal knowledge.

There is limited work on incorporating external
causal knowledge to improve question answering
and no prior work on using causal knowledge to
improve multiple-choice question answering. The
task of causal question answering aims to reason
about cause and effects over a provided real or hy-
pothetical premise. Specifically, we explore the
multiple-choice formulation of this task in the con-
text of the COPA (Choice of Plausible Alternatives)
(Gordon et al., 2012b) and WIQA (What If Rea-
soning over Procedural Text) (Tandon et al., 2019)
benchmark tasks. COPA and WIQA are both chal-
lenging causal reasoning tasks.

WIQA requires reasoning on hypothetical pertur-
bations to procedural descriptions of events. Con-
sider the example in Figure 1. To answer the hy-
pothetical question about the downstream effect of
an increase of ash and cloud on the environment,
the model must be able to causally link Event 3
(about ash clouds) to Event 5 (erupted materials
disturb the environment). If provided a causal fact
such as (ash clouds, cause-effect, environmental
disturbances), the model could make the causal as-
sociation and logical leap that the magnitude of the
effect is more.

COPA is another multiple-choice causal reason-
ing task. COPA requires external commonsense
causal knowledge to answer questions about the
causes and effects for a provided premise. Con-
sider the following example from COPA:

• Premise: Air pollution in the city worsened.
What was the CAUSE of this?

• Alternative 1: Factories increased their pro-
duction.

• Alternative 2: Factories shut down.

Lexically, there is limited information in the
premise and alternatives that the model can exploit
to answer the question. To successfully answer
this question, the model requires both background

knowledge about factories and the ability to make
causal leaps about the impact of factories on the
environment. Causal facts can succinctly capture
that knowledge. Consider the following claimed
causal fact triples from CauseNet (Heindorf et al.,
2020):

• (factory, cause-effect, pollution)

• (factory, cause-effect, air pollution)

• (production, cause-effect, pollution)

If the model was provided these facts apriori, it
could reason that factories cause air pollution and
the increase of production would worsen the air
quality.

This paper presents empirical findings on the ef-
ficacy of augmenting pretrained models with causal
facts extracted to improve multiple-choice causal
question answering. Our contributions can be sum-
marized as follows:

• We present a general method for selecting
relevant causal facts from CauseNet for a pro-
vided multiple-choice question.

• We present two novel strategies for represent-
ing external causal knowledge as embeddings
for downstream question answering.

• We present a novel end-to-end neural archi-
tecture that augments RoBERTa with external
causal knowledge for multiple-choice ques-
tion answering.

Our experiments demonstrate that augmenting pre-
trained models with external causal knowledge im-
proves results over the baseline on the COPA and
WIQA benchmark tasks. For the WIQA bench-
mark, we present findings that show causal knowl-
edge improves RoBERTa’s performance to nearly
match the current state-of-the-art (SOTA) and im-
prove upon the SOTA in specific sub-categories
such as in-paragraph and out-of-paragraph reason-
ing.

2 Related Work

Enhancing language models with external knowl-
edge (in the form of a knowledge graph or knowl-
edge base) remains an open problem. Several
promising strategies have emerged for injecting
knowledge into large language models as part of
the pretraining process. Peters et al. (2019) present
the Knowledge Attention and Recontextualization
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(KAR) layer which can be inserted into a neural lan-
guage model architecture and used to train knowl-
edge enhanced contextual embeddings. Liu et al.
(2019b) introduce the K-BERT model which learns
knowledge enabled representations from sentence
trees that consist of inputs augmented with knowl-
edge triples. Sun et al. (2020) introduce the Co-
LAKE model which jointly learns language and
knowledge representations through pretraining on
word-knowledge (WK) graphs. To the best of our
knowledge, there is no prior work on enhancing
language models specifically with causal knowl-
edge.

Next we provide a summary of the question
answering tasks which require causal reasoning.
The task of binary causal question answering poses
questions of cause and effect as yes/no questions
(i.e. Could X cause Y?). Hassanzadeh et al. evalu-
ate the application of cause-effect pairs extracted
from Gigawords corpus for binary question an-
swering. Kayesh et al. (2020) extends this work
to automatically learn the yes/no threshold using
word embeddings from BERT, RoBERTa, and other
transformer-based models. Sharp et al. and Xie
and Mu (2019) consider the task of answer rerank-
ing for open-ended causal questions. Both papers
are evaluated on a set of causal question extracted
from the Yahoo! Answers corpus which follows
the patterns What causes ... and What is the re-
sult of .... Sharp et al. present three distributional
similarity models to model the contextual relation-
ship between cause and effect phrases. Xie and
Mu (2019) extend Sharp et al. by proposing meth-
ods for building causal embeddings from cause-
effect phrase pairs by transferring causal relation-
ships from the phrase-pair level to word-pair level.
Our CausalSkipgram model for representing
causal knowledge expands upon the adapted Skip-
gram model presented by Sharp et al..

Finally, we summarize the current approaches to
causal knowledge extraction and knowledge graph
population. Causal relation extraction aims to iden-
tify cause and effect phrases in various texts. The
extracted cause/effect phrases can be used to pop-
ulate causal knowledge bases. Recent approaches
frame causal relation extraction as a structured se-
quence classification problem. Dasgupta et al. pro-
pose a LSTM architecture that uses word-level em-
beddings to predict cause and effect tags within
a sentence. Li et al. (2021) present SCITE, a
BiLSTM-CRF model which uses pretrained Flair

embeddings and multi-headed self-attention to ex-
tract causal phrases. To date, there are few publicly
available causal knowledge bases. CauseNet (Hein-
dorf et al., 2020) is currently the largest publicly
available knowledge graph of claimed causal facts.
CauseNet consists of about 12 million concepts and
11.5 million relations extracted from Wikipedia and
ClueWeb12 1. ConceptNet (Speer et al., 2017), a
public knowledge graph, consists of 36 relations
and includes a causes relation. The ATOMIC (Sap
et al., 2019) knowledge base consists of 877k tex-
tual descriptions of inferential knowledge orga-
nized around event prompts and agent-centric activ-
ities. ATOMIC describes the social and common-
sense knowledge of these events along nine if-then
relations which describe the event’s causes and ef-
fects on other agents/participants. COMET (Bosse-
lut et al., 2019) is a language model adaptation
framework that is trained on ATOMIC and Con-
ceptNet to generate novel commonsense facts and
construct robust commonsense knowledge bases.
This paper uses CauseNet as its primary source
for causal knowledge as it contains a broad and
deep set of causal facts (including descriptions of
physical processes relevant to WIQA).

3 Data

In this section, we describe the datasets used for
causal knowledge extraction and our benchmark
evaluation. We use CauseNet as the primary source
of causal knowledge for our experiments. COPA
and WIQA are the benchmark datasets used to eval-
uate causal knowledge on downstream multiple-
choice question answering problems that require
causal reasoning.

3.1 CauseNet

CauseNet consists of millions of concepts
and causal relations extracted from ClueWeb12
and Wikipedia. ClueWeb12 is comprised of
733,019,372 English web pages crawled between
February and March 2012 (Heindorf et al., 2020).
Linguistic rules are used to generate candidate sen-
tences that contain causal relations and a BiLSTM-
CRF model is used to extract cause and effect
concepts from the candidate sentences. Due
to the unsupervised methodology used to pop-
ulate CauseNet, the relations are presented as
claimed causal relations. There are two versions of
CauseNet, CauseNet-Full and CauseNet-Precision.

1https://lemurproject.org/clueweb12/
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CauseNet-Precision is a subset of CauseNet-Full
where all concepts are manually evaluated and se-
lected to ensure high precision. CauseNet-Full
consists of 11,609,890 relations and 12,186,195
concepts.

3.2 COPA (The Choice of Plausible
Alternatives)

COPA was first introduced as a SemEval 2012
shared task (Gordon et al., 2012a). COPA consists
of a premise and two alternatives. The task is to
identify which alternative is most likely the cause
or effect of the provided premise. Background com-
monsense causal knowledge is required to success-
fully answer questions as there is limited lexical
overlap between the premise and alternatives. The
COPA dataset consists of 1,000 questions, broken
into 500 development and 500 test questions.

Recent pretrained models such as BERT and
RoBERTa have seen improved performance on the
COPA dataset. However, Kavumba et al. (2019)
found that these models exploited superficial cues
such as the token frequency in the correct answers.
To mitigate this effect, Kavumba et al. expanded
the development set to include mirror instances to
balance the lexical distribution between correct and
incorrect answers. For each set of alternatives, the
mirror instance introduces a new premise, where
the previous correct alternative is now incorrect.
This new dataset, called COPA-Balanced, also cat-
egorized the test set into easy and hard groups.
The easy group consists of 190 questions where
RoBERTa-Large and BERT-Large could answer
correctly without the provided premise and the
hard group is the remaining 310 questions. We
use the COPA-Balanced development set for train-
ing and the hard category (which we will refer to
as COPA-Balanced Hard) for evaluation.

4 Methodology

In this section, we present our methodologies for
causal fact selection and causal representation.
Causal facts are extracted from CauseNet using
token-based retrieval heuristics. We also present
three strategies for representing causal knowledge.
The first strategy is input augmentation, where ex-
tracted causal facts are converted to causal state-
ments and appended to the plain text input. The sec-
ond and third strategies involve generating causal
embeddings using distributed similarity and knowl-
edge graph embedding approaches.

4.1 Causal Fact Selection

Selecting relevant causal facts for a provided input
is an unresolved challenge. We extracted causal
facts from CauseNet using a set of retrieval heuris-
tics. Given the large number of concepts and causal
relations (∼11.5 million relations and ∼12 million
concepts), it is computationally expensive to con-
sider all facts during model training. To narrow
down the scope of relevant facts, we consider only
the question text in WIQA and the premise descrip-
tion in COPA.

First, we extract a list of tokens T from the input
question/premise. T consists of unique words as
well as unique noun phrases. Each word in the noun
phrase is lower-cased and lemmatized. The normal-
ized noun phrase is then converted to a single token
by replacing spaces with underscores. Next, we
generate a list of potential causal fact candidates.
Since we do not know a priori which tokens corre-
spond to causes and effects, we apply a strict filter
to ensure that selected causal effects have lexical
overlap with the input text. The causal fact table
is queried to return all candidate facts where both
c and e exist as tokens in T . The causal facts are
ranked by frequency and the top five ranked candi-
dates are selected as the final set of relevant causal
facts for the input question.

4.2 Causal Knowledge Representation

4.2.1 Distributed Causal Embeddings
In this section, we present our method for mod-
elling causality using a distributional similarity
model. CausalSkipgram is similar to cEmbed
presented by Sharp et al.. As mentioned in Section
2, Sharp et al. first proposed adapting the skip-
gram word embedding approach (Mikolov et al.,
2013) to model causal pairs. Two embeddings are
learned for cause and effect concepts respectively.
The effect embeddings serve as a context for the
cause concepts and the cause embeddings in turn
are used as a context for the effect concepts. Sharp
et al. consider the cause and effect vectors sepa-
rately.
CausalSkipgram differs from cEmbed in

three ways. To learn word-level embeddings,
cEmbed decomposes multi-word phrases and gen-
erates word pairs such that each word in the
causal phrase is matched with each word in the
effect phrase. In contrast, multi-word concepts
are converted to a single token during the nor-
malization process for CausalSkipgram. Thus,
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CausalSkipgram learns embeddings for each
single token representation of cause and effect con-
cepts. Second, we use Negative Sampling loss
(Mikolov et al., 2013) to train CausalSkipgram.
Finally, Sharp et al. consider the cause and effect
vectors as separate features for their question an-
swering application. Instead, we generate a single
representation for each causal tuple by mean pool-
ing the cause and effect vectors.

4.2.2 Causal Knowledge Graph Embeddings
In this section, we present CausalKGE, which
represents causal knowledge as a knowledge graph
embedding. We adapt the TransE model presented
by Bordes et al. (Bordes et al., 2013). Given a
relational triple (consisting of head h, relation r,
and tail t), TransE represents entities and relations
in a lower-dimensional space such that h+ r ≈ t.
TransE treats knowledge graph embeddings as a
link prediction problem where the goal is identify
what the relation is given two nodes in the graph.
TransE treats relations as translations in the embed-
dings space where adding a the relation vector to
the head to should results in a vector that close to
the tail vector representation. To model our causal
tuples as a knowledge graph, we add the explicit
relation "cause-effect" to each tuple. The model-
ing goal of TransE is thus to predict an effect E,
given a cause C and "cause-effect" CR such that
C + CR ≈ E. A causal triple is represented by a
single vector which is generated by mean pooling
the head, tail, and relation vectors.

5 Experimental Settings

In this section, we describe how we trained our
causal representations and the experimental set-
tings for augmenting RoBERTa with causal knowl-
edge for downstream question answering.

5.1 Causal Representation

5.1.1 CausalSkipgram
CausalSkipgram generates 256 dimensional
embeddings. It takes as input a cause/effect tu-
ple and predicts if the pair is a valid causal fact. We
generate five negative examples per causal tuple by
randomly matching cause and effect tokens. The
samples are filtered to ensure that the generated
negative sample does not exist as a valid causal
fact. A dataset is generated by first combining
the known causal tuples with the negative samples.
The dataset is then randomly split into a train, vali-

dation, and test set following a standard 70-10-20
split ratio.

The CausalSkipgram model is trained for
100 epochs using a batch size of 256 and negative
sampling loss (Mikolov et al., 2013). We use the
sparse Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001 and cosine annealing
to learn the learning rate. To extract an embed-
ding for a causal tuple, we extract the hidden cause
and effect concept embeddings that comprise the
CausalSkipgram model. The causal tuple is
then represented by a 256-dimensional vector that
is generated by mean pooling the cause and effect
vectors that comprise the tuple.

5.1.2 CausalKGE
CausalKGE produces 100 dimensional TransE
embeddings. To train our knowledge graph em-
bedding, we generate a dataset with negative sam-
ples following the same process as Section 5.1.1.
The key difference is that our dataset consists of
causal triples instead of causal tuples. We use the
MKB (Sourty et al., 2020) library to train the 100-
dimensional TransE embeddings for 25 epochs us-
ing the following hyperparameters: gamma value
of 6, batch size of 32, negative sample of 5 exam-
ples per input. The model is trained to minimize
the adversarial loss using the Adam optimizer with
a learning rate of 0.001.

5.2 Causality Enhanced RoBERTa for
Multiple-Choice Question Answering

In this section, we describe the model architec-
tures and experimental settings for finetuning on
the COPA and WIQA tasks.

5.2.1 Baseline
Our baseline multiple-choice question answering
model is RoBERTa with a linear head for sequence
classification. We use the base RoBERTa imple-
mentation and pretrained weights provided by the
Huggingface library (Wolf et al.). Two separate
baseline models are trained with respect to the
COPA and WIQA task definitions.

The input for COPA consists of a premise p, two
alternatives a1, a2 and a question q, which are all a
sequence of tokens. The expected output is a binary
value corresponding to either alternative 1 or 2. We
format the text input to the RoBERTa models using
the convention below, where the separator token is
denoted as <sep>:

<sep > premise <sep > q u e s t i o n <sep >
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Model COPA Test COPA-Balanced Hard
RoBERTa baseline 53.00 58.39
+ CausalSkipgram 57.80 58.38
+ CausalKGE 59.20 (+6.2%/+11.69%) 62.25
+ InputAugmentation 59.00 62.29 (+3.9%/+6%)
Deberta Ensemble - SOTA (He et al., 2020) 98.40 N/A

Table 1: Accuracy on the COPA test set and COPA-BALANCED Hard set. CausalKGE improves accuracy over
the RoBERTa baseline by 6.2% (absolute) and 11.69% (relative). On the COPA-BALANCED Hard, InputAgu-
mentation improves accuracy by 3.9% (absolute) and 6% (relative) over the baseline.

a l t e r n a t i v e 1< sep >
a l t e r n a t i v e 2< sep >

WIQA entries are similarly formatted and con-
sist of a procedural text P , which comprises of a list
of events e1...en, question q, and answer options
[a1, a2, a3]. The expected output is the softmax
distribution over [a1, a2, a3]. The procedural text
is flattened into a single string which denote as
below context. The WIQA input is formatted as
follows:

<sep > c o n t e x t <sep > q u e s t i o n <sep >
more <sep > l e s s <sep >no e f f e c t <sep >

The inputs are then encoded using the default
byte-pair encoder and passed to the base RoBERTa
model. Next the pooled input representation H1,
which consists of the 768 last layer hidden-state
representation of the first token of the sequence,
is passed to a linear projection classification head.
To encourage generalization, dropout with a proba-
bility of 0.5 is applied to the classification head as
well.

This model is trained to minimize the
cross-entropy loss using the AdamW optimizer
(Loshchilov and Hutter, 2017) and a learning rate
scheduler. We use a learning rate of 0.001 and
500 warmup steps with a weight decay of 0.01 for
the scheduler. For both WIQA and COPA we use
a batch size of 24 and enable 16-bit floating pre-
cision for training. The model is trained for 10
epochs on the WIQA dataset and 50 epochs on the
COPA dataset (we use a higher number of epochs
as COPA has fewer than 1,000 training examples).
We select the checkpoint with the highest valida-
tion accuracy and use those weights for evaluation
on the provided test sets.

5.2.2 Input Augmentation
The most direct way to incorporate causal infor-
mation is to append them to the end of text in-
put which we term as InputAugmentation

Figure 2: Architecture of Causality Enhanced
RoBERTa. The architecture takes as input the multiple-
choice question input and relevant causal facts selected
from CauseNet.

method. Relevant causal tuples are converted
into causal statements which follow the pattern C
causes E. Multi-word concepts in the tuples which
represented as single tokens are separated back
out. For example, the tuple (human_activity,
climate_change) would be converted into the
statement Human activity causes climate change.

Inputs for both COPA and WIQA follow the
input formatting described in section 5.2.1 with
the additional causal facts appended to the input.
For example inputs for COPA are formatted using
the following convention and RoBERTa specific
separator token denoted as <sep> below.

<sep > premise <sep > a l t e r n a t i v e 1< sep >
a l t e r n a t i v e 2< sep >
c a u s a l s t a t e m e n t s 1 . . . 5 < sep > .

The augmented inputs are passed into the base
RoBERTa model as presented in section 5.2.1 and
trained using the same experimental settings.

5.2.3 Causality Enhanced RoBERTa
To incorporate causal embeddings with RoBERTa,
we propose a modified neural architecture (Fig-
ure 2). This architecture is used for both
CausalSkipgram and CausalKGE, with the
primary difference being the size of the causal em-
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Figure 3: Performance over difficult questions that
RoBERTa baseline answered incorrectly.

beddings. The first layer is the causal enhanced
input layer which combines the pooled embedding
output of RoBERTa with the external causal em-
beddings. For inputs that have extracted causal
facts, a causal embedding vector is generated by
concatenating and flattening all the causal embed-
dings. We extracted up to five causal facts per input.
As a result, the combined CausalSkipgram
embedding input is 1,280 and 500 dimensions
for CausalKGE. Zero-valued vectors are used if
causal facts are missing. The RoBERTa pooled out-
put is then concatenated with causal embeddings.
This input is further passed into a FeedForward
Network (FFN) with a hidden layer and classifier.
The first layer of the FFN has a hidden dimension
of 512 and we apply dropout with a probability
of 0.5 and ReLU (Agarap, 2018) activation to it.
The second layer is the output layer with a softmax
activation.

WIQA provides data that has already been split
into train, validation, and test sets. We use COPA-
Balanced instead of COPA. The balanced set in-
cludes mirror instances that make it more difficult
for RoBERTa to exploit superficial lexical cues
present in the correct answers. We randomly split
the COPA-Balanced train set into a train and vali-
dation set using an 85 - 15 split.

This model is trained to minimize the cross-
entropy loss using the AdamW optimizer and a
learning rate scheduler. We use a learning rate of
0.001 and 500 warmup steps with a weight decay of
0.01 for the scheduler. For both WIQA and COPA,
we use a batch size of 24 and enable 16-bit floating
precision for training. The model is trained for 10
epochs on the WIQA dataset and 50 epochs on the
COPA dataset (we use a higher number of epochs
as COPA has fewer than 1,000 training examples).
We select the checkpoint with the highest valida-
tion accuracy and use those weights for evaluation
on the provided test sets.

6 Results

In this section, we present the results of our ex-
periments. We find that the inclusion of causal
facts improves the performance on both the COPA
and WIQA datasets. Additionally, on the WIQA
dataset, we observed the Augmented Input method
nearly matches the SOTA in overall accuracy and
exceeds the SOTA in two of the three subcategories
of perturbations.

6.1 COPA Results

We present results on the COPA test set and the
COPA-Balanced Hard subset in Table 1. The cur-
rent state-of-the-art on COPA is DeBERTa-Large,
which consists of 3.5 billion parameters. DeBERTa
(He et al., 2020) modifies the BERT architecture
using the disentangled attention mechanism and
an enhanced mask decoder used to predict masked
tokens during pretraining. While we are unable
to match the performance of DeBERTa, we pro-
vide the SOTA as a fair reference for the current
benchmark leader. Additionally, our augmentation
methodology is not unique to RoBERTa and could
be used to augment any language model with exter-
nal causal information.

We were able to extract causal information from
CauseNet for 32% of the questions in the test set,
with an average of one causal tuple per question.
About 36% of the questions with causal informa-
tion had two or more extracted causal tuples.

Through the inclusion of external causal in-
formation, all three methods outperform the
RoBERTa baseline. The CausalKGE and Input
Augmentation have similar performance, im-
proving accuracy by 11.69% and 6% relatively over
the RoBERTa baseline on the COPA test set and
COPA-Balanced Hard set. In Figure 3, we further
evaluate all three methods on the subset of ques-
tions that the baseline model was unable to answer.
On average, all three methods can answer 36% of
questions correctly that the baseline missed, with
the Input Augmentation method performing the
best.

6.2 WIQA Results

Table 2 provides the results for our experiments on
the WIQA dataset. The current SOTA for WIQA
is the QUARTET model presented by Rajagopal et
al. (Rajagopal et al., 2020). QUARTET modifies
the WIQA task to include an explanation struc-
ture which identifies the supporting events from
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Model Overall In-Para. Out-of-Para. No Effect
Bert-Baseline (Tandon et al., 2019) 73.80 79.68 56.10 89.38
QUARTET - SOTA (Tandon et al., 2019) 82.07 73.49 65.65 95.30
RoBERTa baseline 67.00 64.0 42.10 92.50
+ CausalSkipgram 65.00 53.96 41.38 92.29
+ CausalKGE 74.00 71.70 55.17 93.78
+ InputAugmentation 80.00 76.79 67.65 92.43

Table 2: Accuracy of causal augmentation methods on the WIQA dataset. InputAugmentation has the best overall
accuracy amongst the augmentation methods. Additionally, it achieves higher accuracy in the In-Paragrah (+3.3%)
and Out-of-Paragraph (+2%) sub-categories over the current state-of-the-art QUARTET.

the procedural description that best explain the pro-
posed perturbation. The supporting events come
from the explanations influence graph which were
selected by human annotators for each question
in the WIQA dataset. QUARTET models the ex-
planation task as a multi-task learning problem
where the model must predict both the gold relevant
supporting sentences and the associated impact of
the perturbation for each supporting event. Our
approach nearly matches the overall accuracy of
QUARTET while outperforming QUARTET in the
In-Paragraph and Out-of-Paragraph subcategories.

We were able to select causal information
for 55% (1,661) of the questions in the test
set, with an average of one causal tuple ex-
tracted per question. 37% of questions had
two or more extracted causal tuples. The
CausalSkipgram method was the least success-
ful, performing worse than the RoBERTa base-
line across all categories. The CausalKGE and
InputAugmentation methods both improved
accuracy upon the RoBERTa baseline in all cat-
egories. The InputAugmentation method
was competitive with the QUARTET method
and outperformed it in both the In-Paragraph
(+3.3%/+4.5%) and Out-of-Paragraph (+2%/+3%)
categories. We do, however, see a -3% decrease in
accuracy in the No Effect category. This is likely
due to extraneous or irrelevant causal tuples being
selected. Future work can explore improving the
precision of the causal extraction process.

In Figure 3, we also present the results of the aug-
mentation methods on the questions the baseline
RoBERTa model was unable to answer. We find
the InputAugmentation method can answer
52.73% of the difficult questions that the baseline
failed to answer.

7 Conclusion

This paper considers the challenge of enhancing
pretrained language with causal knowledge to solve
multiple-choice causal question answering prob-
lems which require causal reasoning. Specifi-
cally, we evaluate our methods on the COPA and
WIQA benchmark datasets. We present meth-
ods of selecting knowledge from CauseNet and
three strategies for representing causal knowledge
(InputAugmentation, CausalSkipgram,
and CausalKGE). We evaluated the efficacy of en-
hancing RoBERTa with causal knowledge multiple-
choice question answering tasks. We provide re-
sults that show improved performance over the
RoBERTa baseline on both the COPA and WIQA
benchmark tasks. RoBERTa with CausalKGE
provides a 6.2%/11.69% improvement in accu-
racy over the baseline. RoBERTa with Input
Augmentation posts a 3.9%/6% improvement
on the COPA-Balanced Hard dataset. We also
observed that on average the inclusion of causal
knowledge allows RoBERTa to answer 36% of
the questions the baseline was unable to an-
swer. On WIQA, our approach is competitive
with the SOTA and exceeds SOTA within spe-
cific evaluation subcategories. RoBERTa with
InputAugmentation improves accuracy on
the in-paragraph and out-of-paragraph perturba-
tions by (+3.3%/+4.5%) and (+2%/+3%) respec-
tively. On average, the inclusion of causal knowl-
edge allows RoBERTa to answer 40% of the ques-
tions that the baseline was unable to answer on the
WIQA test set.

Our work demonstrates that causal knowledge is
valuable for causal reasoning tasks and that there
are many opportunities for future work. Further
work can explore improving recall on causal fact
selection from CauseNet and more sophisticated
techniques to reduce the selection of irrelevant
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facts. On the language modeling side, future work
can explore generalizing the entity-based methods
which inject knowledge into the pretraining process
to consider explicit causal knowledge. Addition-
ally, further work can evaluate causal knowledge
in other reasoning benchmarks such as ROPES and
COSMOSQA as well as other causal reasoning
tasks.

8 Broader Impact

This paper focused narrowly on the efficacy of
causal knowledge for multiple-choice question an-
swering. To the best of our knowledge there
are limited societal implications of this research.
Broadly improvements to question answering sys-
tems have commercial value for information re-
trieval and other knowledge management commer-
cial use cases. Causal reasoning is one of the out-
standing challenges of AI research. We imagine
that improvements to causal reasoning can have
broader impacts on real-world applications. Mod-
els with causal reasoning capacities have the poten-
tial to impact applications ranging from medical
drug discovery and stock market trading to scien-
tific knowledge mining. There is also a growing
interest in the regulatory space for causal systems
that can conduct counterfactual reasoning around
the allocation of resources to protected groups and
audit policy decisions made by automated systems.
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A Appendix

A.1 CauseNet Processing Details
Our approach for fact selection is identical for COPA and WIQA. spaCy 2, a python based NLP library, is
used for tokenization, lemmatization, and noun-phrase extraction.

CauseNet is formatted as a JSON file where each cause-effect entry consists of relevant concepts,
source sentences, and associated linguistic pattern used for causal extraction. Causal facts need to be
programmatically extracted and normalized. For simplicity, we define a causal fact as a tuple consisting of
cause c and effect e, where c, e ∈ Concepts. Concepts in CauseNet range from single word entities to
multi-word expressions (e.g. rising sea levels). We normalize multi-word concepts by first lemmatizing all
its constituent words and then joining them into a single token by replacing white spaces with underscores.
So the causal concept "rising sea levels" would be normalized to token "rise_sea_level". After iterating
through all the entries in CauseNet and normalizing the extracted facts, we store the cause and effect
tokens in a two-column causal fact table.

2https://spacy.io/


