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Abstract

Information visualization is critical to analyt-
ical reasoning and knowledge discovery. We
present an interactive studio that integrates per-
ceptive visualization techniques with powerful
text analytics algorithms to assist humans in
sense-making of large complex text corpora.
The novel visual representations introduced
here encode the features delivered by modern
text mining models using advanced metaphors
such as hypergraphs, nested topologies and
tessellated planes. They enhance human-
computer interaction experience for various
tasks such as summarization, exploration, or-
ganization and labeling of documents. We
demonstrate the ability of the visuals to sur-
face the structure, relations and concepts from
documents across different domains.

1 Introduction

Despite admirable progress in machine learning,
human participation in data analysis and decision
making is a reality. Human efforts are often re-
quired for bootstrapping labels, interpreting deci-
sions and verifying outcomes. It is important to
design intuitive visualizations that can exploit the
pattern recognition and spatial reasoning capabil-
ities of humans in order to transform the human-
computer interaction experience. While traditional
bar charts and heat map displays hold value, com-
plex interactive graphical representations (Yuan
et al., 2020) are often required to effectively slice
and dice high-dimensional data. Furthermore, it is
essential for these visuals to encode all the features
delivered by machine learning models.

Interactive information processing in large com-
plex text corpora pose a significant challenge due
to the sheer volume, lack of structure and multi-
faceted nature of text material. Existing efforts
around visual interfaces for sense-making of text
documents do not characterize the true potential of
the text analytics algorithms (Liu et al., 2012), are

Figure 1: Architecture Overview.

often tied to a particular model (Vig, 2019) or re-
main fragmented with task specific solutions (Wang
et al., 2016).

There is a compelling opportunity for percep-
tive visualization techniques that fully leverage the
capabilities of text mining models and cater to anal-
ysis at various levels of task granularity and hu-
man expertise. Towards this effort, we propose an
interactive studio that delivers novel visual repre-
sentations for common text oriented tasks such as
theme discovery, document organization and label
exploration. Visualizations presented here include
a hypergraph that encodes distributional similar-
ity between words, a multi-level radial layout to
capture distinguishing terms, a clutter-free parallel
coordinate plot of topic relations, a nested topology
for document hierarchies and a tessellated plane
to capture boundary points. These visualizations
highlight interesting linguistic patterns in the cor-
pus, surface complex relations between documents
and reduce the burden of annotations for labeling
exercises.

The structure of the framework, which follows a
loosely coupled architecture pattern, is outlined in
Fig. 1. There are three main components that drive
the system: a text corpora, a suite of text analytics
algorithms and a set of visualization techniques.
We particularly focus on metadata rich corpus with
multiple facets or data dimensions along which a
corpus can be subdivided. The visualizations are
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independent of the analytical models and newer
algorithms can be flexibly plugged-in. All the gen-
erated graphical elements are interactive, with the
end user being able to zoom, pan, hover and click
for receiving contextual information. The users
merely require a web-browser to access the visuals.

We demonstrate the domain agnostic nature of
the visuals by providing illustrations from publicly
available datasets that span across informal, legal
and scientific language formats. In the following
sections, we review related efforts and present eight
different visualizations.

2 Related Work

Research in visual text analytics has gained promi-
nence and surveys such as (Liu et al., 2018) pro-
vide an overview of recent progress. Differently,
Kucher and Kerren (2015) present a visual survey
by collating the images generated by the various
visualization methods and offer an interactive filter
for exploration.

There has been several efforts towards the devel-
opment of software tools for analyzing text data.
For example, the Leximancer (Angus et al., 2013)
application plots word frequency statistics to help
an analyst examine concepts in text. Tiara (Liu
et al., 2012) is a visual text analysis tool that uses
topic models to summarize documents. The popu-
lar pyLDAViz package (Sievert and Shirley, 2014)
offers interactive visualization for topic models.
Our work differs from these by introducing new
metaphors and integrating a variety of text mining
tasks.

Designing interactive graphics for the creation
of interesting visualization techniques is popular.
StoryPrint (Watson et al., 2019) is a visualization
method for script-based media that presents promi-
nence and emotion of characters in a scene. The vi-
sual analytic system in Verifi (Karduni et al., 2019)
enables investigation of misinformation on social
media. Vig (2019) introduced a multi-scale vi-
sualization tool to illustrate the inner workings of
attention patterns generated by neural Transform-
ers. Unlike these application and model specific
efforts, our work is intended to be agnostic both to
the data domain and underlying algorithm.

3 Visualizations

We present several techniques for visually analyz-
ing a corpus at word, topic and document levels be-
low. Samples from three different datasets namely

Figure 2: Hypergraph depicting word co-occurrences.

Amazon Reviews (McAuley and Leskovec, 2013),
Arxiv Abstracts1 and Code of Federal Regulations
(CFR)2 are used to illustrate the visualizations.

3.1 Word Hypergraph

A usual first step in text analytics is to plot the fre-
quency of words in the corpus with a word cloud.
However, the absence of context limits the ability
of a word cloud visual to provide any insights be-
yond a basic overview. Following the principle of
"characterizing a word by the company it keeps",
we depict the co-occurrences of words (Weeds and
Weir, 2005) to indicate semantic proximity. Rather
than the structure-less cloud visual, a graph for-
mat with word nodes inter-connected by weighted
edges is used. The words are scaled by a measure
of how often they appear and colored by their dom-
inant facet. The co-occurrence strength between
words is encoded in the edge thickness. Further-
more, hyper-edges are used to connect the linked
nodes that share similar attributes.

Formally, we are given a corpus with D doc-
uments comprising of N terms and a discrete
attribute associated with each document. Let
G = (V,E,H) be a hypergraph with term nodes
{vn}Nn=1, a set of edges E ⊂ V × V and hyper-
edges H ⊂ P(V ). We set the dyadic connections
between terms i and j based on weighted mutual

1https://doi.org/10.6078/D1708G
2https://www.ecfr.gov/
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information as

eij =
| ti ∩ tj |

D
log

N2 | ti ∩ tj |
D| ti || tj |

, (1)

where |t| is an occurrence measure and eij ∈ E.
Let ci ∈ {C1...CP } be the dominant attribute of
term i. An hyper-edge h ∈ H connecting poten-
tially arbitrary number of nodes is defined as

hi = {vi} ∪ {vk : ci = ck ∧ eik > τ, ∀k ∈ V\i}
(2)

where τ is a threshold to control visual clutter.
This hypergraph visualization allows the user

to identify words that are central to characterizing
a particular subset of the corpus. For example,
by paying attention to the hyper-edges connecting
nodes air, flight, passenger and aircraft in Fig. 2,
the user can conclude that flight is a key-word in the
Aeronautics subset of the CFR corpus while words
such as operation or access is more ambiguous in
describing the corpus.

3.2 Word Relations
Domain experts are often interested in understand-
ing how subsets of a text collection differ. The
identification of terms that are distinct to particular
subsets will aid in this effort. To achieve this, we
construct a radial layout of the top relevant terms
that are shared across the various subsets. Each
subset occupies a non-uniform slice based on its
bandwidth in an inner concentric circle while its
corresponding terms appear along the outer circle.
The prominence of a term to a particular subset
is reflected in its font-size. The relations between
the terms are modeled as a B-Spline curve (Holten,
2006) in order to reduce visual clutter. The curve is
drawn with a linear interpolation of the term colors
and its width depends on the relationship strength.

In detail, let ηp = {wi}
Np

i=1, ∃p
′

: wi ∈ ηp′ be the
set of relevant terms in subset p of the corpus. The
arc length for p is set toNp/

∑
p′ Np′ and the curve

width between p and p
′

for term i is computed as

γi
pp

′ =
[
1/Z

]
f(wp

i ) + f(wp
′

i ), (3)

where f is a measure of term occurrence and Z
is a normalization constant. Fig. 3 shows the rela-
tion between words across different facets of the
Amazon corpus. When inspecting the word music,
the user can visually infer that this word is com-
mon to CDs, Android Apps, Movies/TV and Video
Games subsets unlike a word such as great that

is prevalent across all subsets, thereby unearthing
distinguishing terms.

3.3 Topic Graph

Summarizing a corpus using a small set of underly-
ing topics is a popular text mining technique to dis-
cover semantic structures. We improve over exist-
ing topic model visualizations by introducing three
new features: the ability to capture correlations
between topics, rank a topic by the significance
of its semantic content, and associate meaningful
labels with a topic. Consequently, the topics are
now represented as a graph with the links between
topic nodes denoting the extent of their correlation
(Blei and Lafferty, 2006). While a node is colored
by the dominant facet of its topic, its opacity is
controlled by the topic’s significance (Röder et al.,
2015). Thus topics that are less coherent are de-
emphasized, blending into the background. Both
the automatically extracted topic label (Mei et al.,
2007) and the top ranked terms of a topic are dis-
played, with the latter decorated in an elliptical arc
around a node.

In order to extract the topic label, we first con-
struct a set of candidate phrases 1...L and score the
semantic relevance of a phrase l to topic k as

score(l, k) =
∑
m

log
p(wmk)

p(wm)
, (4)

where p(wmk) denotes the probability of the mth

term in the phrase for topic k and p(wm) is the
probability of the term across all topics. The topic
label is then selected from the top ranked scores.

The utility of this visualization is evident in
Fig. 4. The presence of labels such as convex op-
timization problem and multivariate asset return
makes the topic theme of Arxiv corpus more inter-
pretable than merely viewing a generic term such
as problem or model.

3.4 Topic Relations

It is useful to discover differentiating topics across
corpus subsets, similar to the identification of dis-
tinguishing words. However, it is difficult to accom-
modate the additional topic level grouping in the
radial layout discussed above without disrupting
legibility. Hence we employ a parallel co-ordinate
(Siirtola et al., 2009; Collins et al., 2009) repre-
sentation to portray this high-dimensional data.
Specifically, the subsets are visualized along paral-
lel columns and the top ranked topics for a subset
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Figure 3: Relations between words across different subsets are displayed in a radial layout.

Figure 4: Topic Graph encoded with correlations, co-
herence and labels.

are scaled by their corresponding topic distribution.
The topic terms themselves are relatively sized.

Naively showing all the links between related
topics will clutter the visual. Hence the edges ap-
pear clipped by default, and are expanded only
when the user hovers over a topic of interest.
Fig. 5 demonstrates this concept, with the full-links
shown only for Topic 3 and rest of the elements are
de-emphasized. The user can judge whether a topic
is distinctive or not from the presence or absence
of the clipped edges. For example, unlike Topic 1,
Topic 2 does not contain any edge implying that it
captures Aliens subset specific terms.

3.5 Document Clusters

Visualizing the documents in the corpus in a man-
ner that reflects the similarity and differences be-
tween them is essential for efficient organization
and navigation. The spatial relations between the
documents can be determined by comparing their
embedding representations, which may range from
a simple bag-of-words model to a modern pre-

trained contextual text encoder (Devlin et al., 2018).
Instead of simply plotting a 2D projection of these
document embeddings, we cluster the documents
using their original high-dimensional representa-
tion and visualize their relative positions in the
clustered space.

Formally, we convert a document d to a fixed
length continuous vector of size m through a func-
tion φ : d → Rm. The pdf of the document is
modeled based on this vector as a mixture of K
multi-variate Gaussian densities as follows:

p(d) =

K∑
k=1

πkN (µk,Σk). (5)

Here µk ∈ Rm, Σk ∈ Rm×m and πk ∈ R denotes
a mixture proportion. The above model partitions
the corpus into K different clusters and the cluster
index of a document sampled from this density
function is used to determine its position in the
cluster network.

Fig. 6 illustrates such a cluster network of doc-
uments for the CFR corpus. The documents are
centered around their corresponding cluster and
colored by their facet. Nearby clusters are linked
together denoting their similarity and a cluster can
be collapsed interactively to simplify the view. The
visual enables the user to reason say "Why is an
Aeuronatics document grouped in a cluster with
predominantly Federal Elections documents?" and
provide feedback, thereby improving the tagging
process in an active learning setting.

3.6 Document Hierarchy
Examining the relationship between documents
within a same cluster is critical to gaining gran-
ular insights about the corpus structure. Instead
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Figure 5: Topic Relations rendered using a parallel coordinate plot and clipped edges. Topic boxes and links are
highlighted on hover to reduce clutter.

Figure 6: Network representation of document clusters.

of partitioning the documents exclusively, a bet-
ter alternative is to organize them in a hierarchical
fashion, from generic to specific (Ibrahim et al.,
2019). This would empower the users to decide
the level of detail, as dictated by their target task.
We recursively partition the corpus to create hier-
archical clusters and visualize them using a nested
structure enclosure diagram.

Each circle in Fig.7 denotes an hierarchical level,
with the circles contained inside the same parent
being more similar. Leaf level circles denote the
documents and are colored by their facet. The user
can zoom-in to each circle and access the document
content to explore anomalous patterns. For exam-

ple, we investigated the reasons for the placement
of an orange point (Clothing/Shoes) in the midst of
violet points (Android Apps) and observed that it
was a data quality issue.

3.7 Document Boundaries
Selecting the right data to label is important for an-
notation exercises and in active learning tasks. An
effective strategy when sampling the data points is
to identify points that are near decision boundaries
(Monarch, 2021). The idea being that such uncer-
tain points may have subjective interpretation and
hence are worthy of human attention. We focus on
presenting such boundary documents to the user
in conjunction with documents that the machine is
confident about.

In detail, the documents are first partitioned us-
ing a flat clustering algorithm based on their em-
bedding representations using (5). Let Dk ⊂ Rm

denote the set of documents in cluster k. A con-
vex hull encompassing the points in this cluster is
defined from their convex combinations of Dk as{∑

j

λjDkj :
∑
j

λj = 1∧λj ≥ 0∧Dkj ⊂ Dk

}
.

(6)
The vertices of the hull are treated as the bound-

ary points of a cluster. For visualization, a Voronoi
diagram (Phillips, 2021) is constructed by using the
cluster centroids as seed points. Thus each cluster
is now visualized as a Voronoi cell bounded by a
polygon with the polygon segments overlapping
for nearby cells. The boundary points of a cluster
are placed adjacent to the polygon sides while the
interior points are arranged in a radial fashion at
the center. Fig. 8 depicts this structure. The user
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Figure 7: Hierarchical relations between the documents portrayed using a nested topology. Documents inside the
same circle are more similar than the documents in sibling and parent circles.

Figure 8: Voronoi tessellation of the cluster space show-
ing both boundary and interior points.

can drill down to see details about the boundary
points and the sampled interior points. The Voronoi
cells adjacent to Cluster 1 is highlighted, signify-
ing that the boundary points for this cluster may be
assigned to its neighbors such as Cluster 20 or 23.

3.8 Document Relations

All the document specific visualizations outlined
above consider the corpus holistically. Sometimes
it is required to anchor the analysis to a particular
subset of the corpus and compare with the rest of
the subsets in a one-vs-all setting. Such intra and
inter subset relations is explored in Fig. 9. The
top hemisphere contains the ids of documents only
from Aeuronatics and Space subset of CFR corpus.
The documents from other subsets that are close to
these documents in the embedding space are listed

Figure 9: Relations (intra vs inter) between documents.

in the bottom hemisphere, with related documents
being linked. The documents with strong intra-
segment links are highlighted in bold font. The user
can analyze the similarity and differences between
a select set of documents based on the link cues.

4 Conclusion

Large and complexly related text collections re-
quire perceptive information visualization tech-
niques to assist human understanding and reason-
ing. The interactive visualizations proposed here
facilitates discovering concepts, themes, clusters,
outliers and structure in a corpus by integrating text
analytics models with novel visual representations.
In future, we wish to extend the suite of statistical
models for selection and incorporate new visuals
for temporal analysis that exploits animations.
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