
Proceedings of the 25th Conference on Computational Natural Language Learning (CoNLL), pages 279–289
November 10–11, 2021. ©2021 Association for Computational Linguistics

279

Tokenization Repair in the Presence of Spelling Errors

Hannah Bast, Matthias Hertel, Mostafa M. Mohamed
University of Freiburg

Freiburg, Germany
{bast,hertelm,amin}@cs.uni-freiburg.de

Abstract

We consider the following tokenization repair
problem: Given a natural language text with
any combination of missing or spurious spaces,
correct these. Spelling errors can be present,
but it’s not part of the problem to correct them.
For example, given: “Tispa per isabout token
izaionrep air”, compute “Tis paper is about to-
kenizaion repair”.

We identify three key ingredients of high-
quality tokenization repair, all missing from
previous work: deep language models with a
bidirectional component, training the models
on text with spelling errors, and making use
of the space information already present. Our
methods also improve existing spell checkers
by fixing not only more tokenization errors
but also more spelling errors: once it is clear
which characters form a word, it is much eas-
ier for them to figure out the correct word.

We provide six benchmarks that cover three
use cases (OCR errors, text extraction from
PDF, human errors) and the cases of par-
tially correct space information and all spaces
missing. We evaluate our methods against
the best existing methods and a non-trivial
baseline. We provide full reproducibil-
ity under https://ad.cs.uni-freiburg.

de/publications .

1 Introduction

Tokenizing a given text into words is the first step in
many natural language processing applications, in-
cluding: search engines, translation services, spell
checkers and all kinds of learning tasks performed
on text. This tokenization is typically performed
by the following simple method or a variant of it:
define a set of word characters and take each maxi-
mal sequence of word characters as one token. For
example, for

This algoritm runs in linear time (1)

a simple such tokenization yields the six words

This, algoritm, runs, in, linear, time.

Note the spelling error in the second word. Spelling
correction is not part of tokenization. We come
back to this important aspect in Section 1.2.

Missing and spurious spaces are common errors
in digital text documents. We refer to the union of
both types of errors as tokenization errors. Here is
a variant of the sentence above with one missing
space and one spurious space:

This algor itm runsin linear time (2)

In this paper, we consider the following tokeniza-
tion repair problem: Given a sequence of charac-
ters representing a natural language text, with an
arbitrary amount of missing and spurious spaces
and possibly also with spelling errors, compute
the variant of the text with correct spacing. For
example, given (2) above, compute (1).

Tokenization repair can be considered as a gener-
alization of the word segmentation problem, where
the text is given without any space information. In-
deed, we also evaluate our methods on this special
case in Section 5.

1.1 Sources of tokenization errors

Tokenization errors are typical in texts that are digi-
tized by Optical Character Recognition (OCR) tech-
niques. For example, tokenization errors are known
to be frequent in the ACL anthology corpus (Nas-
tase and Hitschler, 2018) and in digitized newspa-
pers (Soni et al., 2019; Adesam et al., 2019). Many
OCR error correction methods can not deal with
tokenization errors, and it is stated in Hämäläinen
and Hengchen (2019) that:

”A limitation of our approach is that it cannot do
word segmentation in case multiple words have
been merged together as a result of the OCR pro-
cess. However, this problem is complex enough on
its own right to deserve an entire publication of its
own and is thus not in the scope of our paper.”

Portable document formats like PDF specify the
position of the characters on a page. When extract-
ing text from such formats, space positions must be
inferred from the distance between the characters’

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

280

bounding boxes, which is error-prone. Tokeniza-
tion errors can also be found in human-typed texts.
The fraction of these errors among misspellings
was found to be 15 % in Kukich (1992).

Tokenization errors degrade the performance of
any natural language processing (NLP) system, if
it does not account for them. A search engine
will not find “algorithm” in a document containing
“algo rithm”. Syntax parsers and word labelers will
not give the correct results if a word is split into
multiple tokens, or multiple words merged into one.
A text classifier based on word statistics or word
vector representations will fail to retrieve statistics
or vector representations for wrongly tokenized
words, which can result in wrong classifications.

1.2 Tokenization and Spelling Correction
Existing spelling correction tools either assume
correct tokenization or fix tokenization errors only
to a limited extent; see our evaluation in Section
5. We show that by using our tokenization repair
as a pre-processing, not only are more tokeniza-
tion errors fixed (obviously), but also more spelling
errors. The reason is that once it is clear which
characters form a word, it is much easier to figure
out the correct word. For example, the best spelling
corrector from our evaluation corrects the passage
“Mqr ymay have k i ssecl John” from the ACL an-
thology to “Mqr may have k i secl John” without
prior tokenization repair and to the correct “Mary
may have kissed John” after tokenization repair.

It seems that, ideally, tokenization and spelling
errors should be fixed together. However, this ap-
pears to be a very hard problem. Our own ap-
proaches can be adapted to also fix spelling errors,
but only with an impractical large running time.
There is a fundamental reason for this: because of
the very many possible interpretations, the size of
the beam (containing the best partial corrections of
the sequence) needs to be very large, in order not
to miss the correct solution; see Section 3.1. All
other tools we know of that consider both tokeniza-
tion and spelling errors (and some even grammar
errors), fare very poorly on passages with tokeniza-
tion and spelling errors combined.

1.3 Contributions
We consider these as our main contributions:
• We consider the problem of tokenization repair
in the presence of spelling errors. Unlike previ-
ous work, our model can make use of the space
information already present. We can also solve the

classical word segmentation problem (all spaces
removed) better. We show that it is crucial to train
on text with (the right kind and dose of) spelling
errors.

• In previous work, forward models combined
with a beam search gave the best results. We
present an elegant idea to realize a bidirectional
model; see Figure 1 for an illustration. This is
tricky for a task like tokenization repair, which
involves changing the sequence while correcting it.

• We provide six benchmarks that cover all our
use cases (OCR errors, text extraction from PDFs,
human errors) and different degrees of available
space information (partially correct or all spaces
missing). We make use of existing benchmarks
wherever possible (manually augmenting some by
a ground truth) and create new benchmarks with
realistic error models.

• We compare our approach with the best existing
methods (from the literature) and tools (commer-
cial and open-source). We evaluate both the quality
of the tokenization repair and how existing spelling
correctors perform much better when the space er-
rors are fixed first.

• We provide a single model, trained across multi-
ple corpora, that produces good results across all
benchmarks without the need for any fine-tuning
or hyperparameter optimization.

• Our code, data, benchmarks and trained
models are available under https://ad.cs.

uni-freiburg.de/publications. It includes a
Docker setup that allows an easy replication of all
our results, a web application that allows an interac-
tive error analysis for all methods and benchmarks,
and a version of the ACL anthology corpus where
the tokenization errors were corrected by our best
method.

2 Related Work

A beam search with neural and character n-gram
language models is used for word segmentation
in Doval and Gómez-Rodrı́guez (2019). In Sec-
tion 5, we evaluate our own implementation of
this approach on our benchmark and we also com-
pare against their results on their benchmark. We
improve on their approach in several respects: inte-
grating a bidirectional model (which is not trivial),
considering the given spaces in the input (they re-
move all spaces), and explicitly addressing typos
by incorporating error models in training (they test

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

281

their approach on tweets, but do not explicitly han-
dle typos).

Tokenization repair on the ACL anthology cor-
pus is done in Nastase and Hitschler (2018) with a
neural machine translation model translating from
the sequence without spaces to the sequence with
spaces. They also remove all spaces from the in-
put text, thus discarding valuable information. In
Section 5.3, we compare our results against theirs.

A beam search with a word bigram language
model, instead of a character-based language
model, is used in Mikša et al. (2010) to correct
missing spaces in Croatian texts that were digi-
tized by OCR. In Soni et al. (2019), n-gram statis-
tics are used to determine when to split an out-of-
vocabulary token into two words. By using neural
language models, we extend the scope of this con-
text beyond the boundaries of n-gram models.

Recent work on Chinese and Arabic word seg-
mentation uses bidirectional neural network mod-
els to predict word boundaries, e.g. based on bi-
LSTMs (Ma et al., 2018; Almuhareb et al., 2019)
or a pre-trained BERT model (Huang et al., 2020).
These models are not directly applicable for our
task of tokenization repair for the English lan-
guage, since our inputs contain spurious and miss-
ing spaces and the English BERT model (Devlin
et al., 2019) is pre-trained on text with correct tok-
enization.

There is a large body of research on OCR post-
correction (Tong and Evans, 1996; Taghva and Stof-
sky, 2001; Niklas, 2010; Kissos and Dershowitz,
2016; Chiron et al., 2017; Dong and Smith, 2018;
Rigaud et al., 2019; Hämäläinen and Hengchen,
2019; Nguyen et al., 2019, 2020), which usu-
ally does not address tokenization errors explicitly.
Only few publications provide code so that we can
evaluate their tokenization repair capabilities.

3 Approach

Our approach is a beam search based on deep
character-based models, unidirectional and bidi-
rectional.

3.1 Character-based models

We represent the strings as sequences of one-hot
encoded characters, where we use the 200 most
frequent characters, while replacing the others by
a special character UNK for unknown characters.
Sequences are appended with start and end of sen-
tence special characters (SOS and EOS).

3.1.1 Unidirectional language models
Character-based language models estimate the
probability of a string to occur in some language
based on the probabilities of the individual char-
acters in the string. Following Graves (2013), we
implement these models as recurrent neural net-
works, using LSTM cells. Our architecture con-
sists of an LSTM cell with 1024 units, followed
by a dense layer (with 1024 units and ReLU ac-
tivation) and a softmax output layer for charac-
ter classification. This architecture has 6,287,563
trainable parameters, which are trained with the
categorical cross entropy loss. The model predicts
−!p (s|c), which is the probability that a character
s comes after a context c. Moreover, we define
−!p (s|c) := −!p (s|c) · −!p (|c) as the probability
that a space and character s come after context c.

3.1.2 Bidirectional sequence labeling model
We utilize a bidirectional model that predicts the
probability !pi of having a space before the ith

character when the whole sequence of non-space
characters is the input. Our architecture consists
of a bidirectional LSTM cell with 1024 units, fol-
lowed by a dense layer (with 1024 units and ReLU
activation) and a sigmoid output unit. This archi-
tecture has 12,158,980 trainable parameters, which
are trained with the binary cross entropy loss.

3.2 Beam search
Beam search is a search algorithm similar to
breadth-first search, but instead of maintaining all
search states at a given level, it maintains only
the best b states, which correspond to an estima-
tion of the best b partial solutions (called beams)
(Medress et al., 1977). We introduce two variants
of beam search, unidirectional (UNI) and bidirec-
tional (BID).

Correction procedure: Given a mistokenized
string Q, with its corresponding sequence of m non-
space characters T , the procedure executes beam
search for m levels. At level i, given a partial so-
lution’s search state (Si−1, Ri−1) of accumulated
score and partial solution string, two candidate ex-
tensions are created:
1. Adding Ti without space, which results in:

Si = Si−1 − log−!p (Ti|Ri−1) + Pdel

Ri = Ri−1Ti

2. Adding a space before Ti, which results in:
S′i = Si−1 − log−!p (Ti|Ri−1) + Pins

R′i = Ri−1 Ti

282

Pdel and Pins are non-negative penalties that are
used only when the introduced extension is not
originally in Q, otherwise they are equal to 0.
In other words, considering the character Qj−1
preceding Ti in the input sequence, Pins is used
when Qj−1 6= and Pdel is used when Qj−1 = .
The penalties regularize the effect of making too
many edits. These equations correspond to UNI.

The final solution R∗ is the estimated cor-
rected sequence of lowest penalized negative
log-likelihood score (highest probability):

− log p(R∗) + ninsPins + ndelPdel

where nins is the number of space insertions and
ndel is the number of space deletions, and

p(R∗) =

|R∗|∏
i=1

−!p (R∗i |R∗1:(i−1))

The time complexity is O(|Q| · b), because we
process 2b candidates at m levels (m ≤ |Q|). We
use a beam size b = 5 in our implementation. As a
result, the algorithm runs in linear time.

Beam search bidirectional (BID): This method
combines UNI with the bidirectional labeling
model introduced in section 3.1.2. We process
the non-space characters T using the bidirectional
model, then we modify the beam search formulas:

Si = Si−1 − log(−!p (Ti|Ri−1) · (1− !pi)) + Pdel

S′i = Si−1 − log(−!p (Ti|Ri−1) · !pi) + Pins

As stated earlier, the penalties are only used if they
correspond to changes that are not originally in the
given text. Figure 1 shows an example illustrating
these equations.

Penalty optimization: The penalties Pins and
Pdel are optimized using a development set of mis-
tokenized sequences and their ground truth. We
simulate a beam search assuming that the left con-
text is always predicted correctly, and that the pro-
cedure takes a decision after processing the next
two characters. Given the ground truth string Q,
for every non-space character Qi and its previous
non-space character Qj , the space probability ps
and non-space probability pn are computed:

ps =
−!p (Qi|Q1:j) · −!p (Qi+1|Q1:j Qi) · !pi′

pn = −!p (Qi|Q1:j) · −!p (Qi+1|Q1:jQi) · (1− !pi′)
where i′ is the position of the non-space character
corresponding to Qi. These equations are for BID;
the last term in both equations is excluded for UNI.

Q h e l l o w o r d

R R1 R2 R3 R4 R5

 !p !p1
 !p2

 !p3
 !p4

 !p5
 !p6

 !p7
 !p8

 !p9

S6 = S5 − log(−!p (w|hello) · (1− !p6))
S′6 = S5 − log(−!p (w|hello) · !p6) + Pins

S4 = S3 − log(−!p (l|hel) · (1− !p4)) + Pdel

S′4 = S3 − log(−!p (l|hel) · !p4)

Figure 1: A snapshot of one beam fixing the string
with typo “hel low ord”, as explored by bidirectional
beam search. For the beam R5 =“hello”, the equa-
tions for S6, S

′
6 show the updated scores for the two

new states of not inserting a space and inserting a space,
respectively. For the earlier beam R3 =“hel”, the equa-
tions for S4, S

′
4 show the updated scores for deleting

the space and keeping it, respectively.

If the space is present in the input sequence, the
scores S and S′ of the candidate sequences without
and with a space are:

S = − log pn + Pdel

S′ = − log ps

The space gets deleted if Pdel < log pn− log ps. If
the space is not present in the input, then:

S = − log pn
S′ = − log ps + Pins

The space gets inserted if Pins < log ps − log pn.
We perform a grid search on Pins and Pdel in

the range [0, 20] with step size 0.1, and take the
combination that maximizes the sequence accuracy
defined in Section 5.2.1. We optimize sequence ac-
curacy instead of F-score, because that gives better
results on benchmarks with very few errors, where
the model must be very conservative.

3.3 Baseline approaches

We evaluate the following three baselines. We also
tested a greedy algorithm but omit the results be-
cause it consistently performed much worse than
the dynamic-programming baseline.

Dynamic programming bigram model: This
baseline uses the Viterbi algorithm (Viterbi, 1967)
with a word bigram model. First, all possible words
(substrings of length ≤ 20 with non-zero unigram
frequency in the training data) are located in the
sequence without spaces. The states of the Viterbi
algorithm are equivalent to the words. A transi-
tion between two states is possible if the next word

283

starts at the end of the first word. State transition
probabilities are determined by a combination of
a unigram and a bigram model, with probabilities
puni and pbi estimated on Wikipedia:

p(wi+1|wi) =
1
2(puni(wi+1) + pbi(wi+1|wi))

The output is the most likely segmentation of the
sequence into words.

Wordsegment: Wordsegment1 is an open-source
library, based on Halpern (2015), that uses unigram
and bigram frequencies to segment words.

Google: To compete with a commercial spell
checker, we copy the erroneous sentences into a
Google document2 and accept all suggested ed-
its. We also evaluated the widely used tools Hun-
spell, TextRazor, and Grammarly, as well as the
OCR post-correction system Natas (Hämäläinen
and Hengchen, 2019). However, for our datasets,
Google yielded the best corrections (for both tok-
enization and spelling errors).

4 Datasets and training

4.1 Datasets
ACL anthology corpus: The ACL corpus is ex-
tracted from scientific articles published between
1965 and 2012 (Bird et al., 2008). The publica-
tions were scanned and parsed using OCR, and
hence have many typical OCR errors. We manually
corrected the tokenization and spelling of 500 se-
quences for development and penalty optimization,
and 500 sequences as a test set.

arXiv: We used the benchmark generator from
Bast and Korzen (2017) to generate the text from
910,000 articles from arXiv (parsed from LATEX
files and serving as our ground truth) as well as
the text extracted from the corresponding PDF files
(using pdftotext from FooLabs (2014)). The files
were split into paragraphs, which were matched
with the ground truth by searching for a text span
that differed from the paragraph only by spaces. We
thus obtain 64,965,651 sequences for training, and
10,000 sequences each for penalty optimization,
development and test.

Wikipedia: We extracted the articles from
Wikipedia3 using WikiExtractor (Attardi, 2017),
and split them into sentences using NLTK (Bird

1https://pypi.org/project/wordsegment/
2https://docs.google.com, access. Sept. 8, 2021
3https://dumps.wikimedia.org/enwiki,

dump of June 20, 2019

et al., 2009). We did a pre-processing to re-
move sentences that were incomplete or contained
markup. We thus obtain 43,103,197 sequences for
training, and 10,000 sequences each for penalty
optimization, development and test.

We verify the quality of the generated ground
truths for Wikipedia and arXiv on 100 sequences
from the development sets. Both ground truths have
few errors: The 100 sequences from Wikipedia con-
tain no tokenization errors and two spelling errors.
The 100 sequences from the arXiv ground truth
contain three tokenization errors and no spelling
errors.

4.2 Error injection

We inject different types of errors into clean text
for two purposes: (1) To create noisy training data.
(2) To create large synthetic benchmarks with OCR
errors and spelling errors (see Section 5.1).

OCR errors: We consider three kinds of OCR
errors: tokenization errors, hyphenation errors (a
spurious hyphen due to hyphenation at the end of a
line), and character replacement errors (insertions,
replacements or deletions of one or more charac-
ters, where no spaces are involved).

We estimate the probabilities for these errors on
our ACL development set. For hyphenation errors,
we divide the total number of spurious hyphens by
the number of hyphenable tokens. For space inser-
tions, space deletions, and character replacements,
we compute the error rates (number of errors di-
vided by the number of characters) per span of l
continuous tokens.

We derive the rules for character replacements
and their relative frequency by a comparison of the
ACL corpus with a cleaned version4, and from
the ICDAR 2017 and ICDAR 2019 OCR post-
correction benchmarks (Chiron et al., 2017; Rigaud
et al., 2019).

To inject errors, we first hyphenate each token
with the estimated probability of 3.5 % using Py-
Hyphen.5 We pick each token as the beginning of
an erroneous span with the estimated probability
of 5.8 %. We sample the span length l, space in-
sertion, space deletion and character replacement
rates from the collected data, and introduce errors

4https://web.eecs.umich.edu/˜lahiri/
acl_arc.html, we found the corrections to be incomplete,
and therefore do not use the cleaned corpus for training or
evaluation, but to derive statistics about typical OCR errors.

5https://pypi.org/project/PyHyphen/

https://pypi.org/project/wordsegment/
https://docs.google.com
https://dumps.wikimedia.org/enwiki
https://web.eecs.umich.edu/~lahiri/acl_arc.html
https://web.eecs.umich.edu/~lahiri/acl_arc.html
https://pypi.org/project/PyHyphen/

284

into the next l tokens accordingly. Character re-
placements are sampled following their frequency
in the ACL and ICDAR datasets. No tokenization
errors are injected for the training data.

Human errors: We use another model to inject
human errors. Each word gets replaced by a mis-
spelling from a typo collection with 10 % probabil-
ity. The collection contains 228,414 spelling errors
from Peter Norvig6, Twitter7 and Hagiwara and
Mita (2020), which we split equally into a train-
ing/development set and a test set. For the training
data, we also generate random spelling errors (char-
acter insertions, deletions, replacements or swaps).
For the synthetic benchmarks, we inject on average
pt tokenization errors per token, with a constant pt.

4.3 Models training

We use the two beam search approaches described
in Section 3.2: a unidirectional model (UNI), and
the unidirectional model combined with the bidi-
rectional sequence labeling model described in Sec-
tion 3.1 (we call this combination BID). For each
of these, we train two variants: one using a com-
bination of the clean arXiv ground truth (from the
LATEX source files) and Wikipedia datasets from
Section 4.1, and the other using the same datasets,
but with OCR and spelling error noise injected as
described in the previous subsection.

For each approach, we optimize the penalties
Pins and Pdel on the penalty optimization set
for every benchmark with spaces; see Section
4.1. Additionally, we consider a model with
fixed (benchmark-independent) penalities, aver-
aged across the five benchmarks with spaces. When
there are no spaces (which is trivial to detect), we
set Pins = Pdel = 0. In summary:

UNI UNI trained on clean text
UNI+ UNI trained on noisy text
BID BID trained on clean text
BID+ BID trained on noisy text
BID+ The One BID+ with fixed penalties

The models were trained for one epoch, which took
86 hours for the unidirectional and 144 hours for
the bidirectional models on a NVIDIA Titan X
GPU. The training was performed using the Adam
optimization algorithm (Kingma and Ba, 2015),
with learning rate 0.001, and mini-batch size 128.

6https://norvig.com/ngrams/
spell-errors.txt

7http://luululu.com/tweet/
typo-corpus-r1.txt

The sequences were cut after 256 characters, while
shorter sequences were padded with EOS symbols
that got masked in the loss function. The models
are implemented using TensorFlow (Abadi et al.,
2015). The unidirectional language model has
67.7% character accuracy, 88.8% top-5 character
accuracy and 1.099 categorical cross-entropy.

5 Evaluation

5.1 Benchmarks
We evaluate our methods on six benchmarks with
different kinds of spelling and space errors. The
datasets and ground truths behind these bench-
marks, as well as the division into test, develop-
ment, and training set, are described in Section 4.1.
We here describe the corrupt sequences used as
inputs to our models.

ACL: The 500 test sequences from the ACL an-
thology dataset are considered. This benchmark
contains many tokenization and OCR errors, often
in combinations that are very hard to fix.

arXiv OCR: The 10,000 ground truth sequences
from the arXiv test set are considered. We create
corrupt sequences by injecting OCR errors into
the ground truth according to our noise model de-
scribed in Section 4.2 (this includes tokenization
errors). We created this benchmark in order to have
a larger benchmark than ACL, but with similar
properties.

arXiv pdftotext: The same 10,000 ground truth
sequences are considered, but corrupt sequences
taken from the output of pdftotext on the corre-
sponding PDFs. This benchmark has no spelling
errors and few tokenization errors, so it is hard to
make the necessary few corrections, yet avoid false
positives.

Wikipedia (three variants): For the corrupt se-
quences of Wiki+ and Wiki+ no , we inject spelling
errors into the Wikipedia ground truth using the hu-
man error model described in 4.2. For Wiki+, we
inject tokenization errors with a realistic (see Sec-
tion 1.1) rate of pt = 0.01 per token. For Wiki+
no , we remove all spaces, which is the scenario
from previous work and the word segmentation
problem. Wiki has no spelling errors and a tok-
enization error rate of pt = 0.1, similar as in the
PDF extraction scenario.

Statistics of the tokenization errors in the six
benchmarks are given in Table 1. We have also

https://norvig.com/ngrams/spell-errors.txt
https://norvig.com/ngrams/spell-errors.txt
http://luululu.com/tweet/typo-corpus-r1.txt
http://luululu.com/tweet/typo-corpus-r1.txt

285

Benchmark Sequences Erroneous Spurious Missing
ACL 500 190 1,160 297
arXiv OCR 10,000 3,570 14,242 3,798
arXiv pdftotext 10,000 1,274 2,355 594
Wiki 10,000 6,502 7,681 7,261
Wiki+ 10,000 1,310 726 727
Wiki+ no 10,000 9,590 0 141,750

Table 1: Statistics of the tokenization repair bench-
marks. Erroneous = sequences with tokenization errors,
Spurious = spurious spaces, Missing = missing spaces.

Benchmark Sequences Tokens TE SE ME
ACL 500 12,990 914 451 143
arXiv OCR 1,000 22,446 1,073 571 133
Wiki+ 1,000 15,369 215 901 19
Wiki+ no 1,000 15,369 14,192 0 1,133

Table 2: Statistics of the spelling benchmarks. Tokens
= number of ground truth tokens, TE = tokenization
errors, SE = spelling errors, ME = mixed errors.

evaluated our approaches on the ICDAR bench-
marks (Section 4.2), but do not report them due to
severe issues with the ground truth.8

5.2 Metrics
5.2.1 Tokenization repair
Given a corrupt input text C, a ground truth text
T and a predicted text P , a tokenization repair
algorithm predicts a set of space insertions and
deletions that ideally would transform C into T .
We use two metrics for the evaluation: F-score and
sequence accuracy.

F-score: We define edits(A,B) as the space in-
sertions and deletions that transform A into B. If
we let C = edits(C, T) be the ground truth edit
operations and P = edits(C,P) the predicted
edit operations, the number of true positives is
TP = |C ∩ P|, the number of false positives is
FP = |P \ C| and the number of false negatives is
FN = |C \ P|. The F-score is computed as:

F (T,C, P) =
2 · TP

2 · TP + FP + FN

Sequence accuracy: The sequence accuracy is
the fraction of sequences that are corrected com-
pletely (P = T).

5.2.2 Spelling correction
We use a word correction F-score as a metric for
spelling correction. We compute the longest com-

8Many corrections were missing and the word order was
often significantly changed. As a relatively minor compli-
cation, some of the text uses old language and symbols not
encountered in our training data.

mon token subsequence of C with T (that is, C∩T),
and P with T (that is, P ∩T), and define erroneous
tokens E = T \ C, error-free tokens F = C ∩ T ,
and correctly predicted tokens S = P ∩ T . Then
TP = |E ∩ S|, FP = |F \ S| and FN = |E \ S|,
and the F-score is computed as above.

We classify each token in E as tokenization error
if its correction involves only space edits, spelling
error if only non-space edits, and mixed otherwise.
See Table 2 for the distribution of the three error
types in the benchmarks with spelling errors.

5.3 Main results

Table 3 provides F-scores and sequence accura-
cies for all our methods on all benchmarks. We
use a beam size of b = 5 for all beam search ap-
proaches; increasing this to b = 10 has shown only
minimal improvements while doubling the running
time. The average running time of our tokenization
repair, measured on an NVIDIA Titan X GPU, is
2.0 sec/KB for UNI and 2.6 sec/KB for BID.

The main takeaway from Table 3 is that the bidi-
rectional models beat all four baselines by a wide
margin on all benchmarks. They are also better
than their unidirectional counterparts trained on
the same data. We remark that it is not obvious
that the bidirectional methods are the best, which
might be the reason why previous work used uni-
directional methods. A unidirectional model has
the advantage that the tokenization errors are in-
crementally fixed from left to right, so that the
language model predictions can be based on text
that is (almost) free from such errors. However, the
text after the current position has not yet been re-
paired, so that predictions from the other direction
are based on text with tokenization errors. Using
these predictions actually deteriorates the quality
of the unidirectional methods. Our trick was to
combine a unidirectional model that makes use of
the space information with a bidirectional model
that disregards all space information and thus does
not have the aforementioned problem.

The other important takeaways from Table 3 are
as follows. The results for previous work are dis-
cussed in Section 5.4.
• Tokenization repair is harder when there are
spelling errors. This is especially pronounced for
the ACL benchmark, which has many passages
so deformed by OCR errors that there is simply
not enough information to reconstruct the correct
spacing; see Section 5.5. When there are spelling

286

F-score Sequence accuracy

ACL
arXiv arXiv

Wiki Wiki+
Wiki+

ACL
arXiv arXiv

Wiki Wiki+
Wiki+

OCR pdftotext no OCR pdftotext no
Do nothing 0.0 0.0 0.0 0.0 0.0 0.0 62.0 64.3 87.3 35.0 86.9 4.1
Dyn. Progr. 57.4 62.2 27.5 92.6 33.0 98.0 40.2 52.9 68.1 86.2 68.6 68.6
Wordsegment 55.2 58.2 18.7 59.1 9.9 91.1 32.2 52.0 58.3 41.1 32.0 32.0
Google 54.7 60.8 2.5 74.0 66.3 12.4 67.8 75.8 86.0 58.4 90.6 9.1
UNI 83.6 90.6 76.5 98.2 85.8 98.3 70.8 84.5 93.2 95.2 96.0 72.5
UNI+ 86.0 96.1 73.5 98.3 92.7 99.1 77.6 92.8 93.4 95.7 98.0 85.3
BID 88.7 94.0 85.1 99.0 86.5 98.9 76.0 87.7 94.8 97.3 96.2 80.2
BID+ 89.6 97.5 84.6 98.7 93.7 99.4 79.8 94.1 94.2 96.8 98.3 89.0
BID+ The One 90.6 97.5 81.8 98.9 91.5 99.4 79.6 94.2 94.1 97.2 97.7 89.0

Table 3: Micro-averaged F-scores and sequence accuracies in percent for all models (baselines, existing tools,
unidirectional, bidirectional) and the six benchmarks from Section 5.1. The best results for each benchmark are
shown in bold. All sequence accuracy differences larger than 0.5 % in the table are statistically strongly signifi-
cant (p < 0.01 with a paired two-sided randomization test). Google’s tokenization repair was evaluated on 500
sequences from ACL and 1,000 sequences for all other benchmarks.

errors, training on text with spelling errors (UNI+
and BID+) is crucial, as it enhances the results
significantly.

• Tokenization is also harder when there are more
space errors, yet previous work chose to remove all
spaces from the text. Removing all spaces simpli-
fies the approaches (one only has to predict space
insertions, no space deletions), but the price is
much worse results when there were actually only
few tokenization errors; see the sequence accura-
cies of Wiki+ no vs. Wiki+.

• The arXiv pdftotext benchmark is hard, because
87.3% of the sequences have no errors and it is
hard to correct the other 12.7% without insert-
ing mistakes into the error-free sequences. Indeed,
Google is very conservative on this benchmark and
suggests almost no corrections (hence the very low
F-score). Wordsegment is bolder, with a result that
is much worse than doing nothing. UNI and BID
improve very significantly over doing nothing.

• The results for “BID+ The One” are close to the
results of the best models with penalties tailored
to the respective benchmark. This shows that one
model works well on different datasets, without
having to optimize the penalties for each dataset.

Table 4 shows the capabilities of Google’s error
correction (the best among all the existing tools,
see Section 3.3) with and without our tokenization
repair on our four benchmarks with spelling mis-
takes. We removed internal punctuation in tokens
that were merged by our method or the oracle, to
help Google to correct more errors. The main take-
away is that Google can correct substantially more

Benchmarks ACL
arXiv

Wiki+
Wiki+

OCR no
Error distribution 61-30-9 60-32-8 19-79-2 93-0-7

Percentage of corrected spelling and mixed errors
Google 13.5 % 16.5 % 75.0 % 4.0 %

BID+Google 18.4 % 22.2 % 75.2 % 81.2 %
Oracle+Google 19.9 % 22.0 % 75.3 % 82.1 %

F-score for all errors combined
Google 47.7 % 56.7 % 79.0 % 8.2 %

BID+Google 66.6 % 76.3 % 83.4 % 98.5 %
Oracle+Google 75.4 % 78.2 % 84.1 % 98.9 %

Table 4: Percentages of spelling errors corrected by
Google only, Google after our tokenization repair (with
BID+), and Google after perfect tokenization repair.
The error distribution is given as three percentages: to-
kenization errors, spelling errors, mixed errors.

errors when our tokenization repair is run as a pre-
processing. The reason is that once it is clear which
characters form a word, it is much easier to figure
out the correct word. Furthermore, the upper bound
by the Oracle+Google approach in Table 4 shows
that using our method as a pre-processing reaches
near optimal results for all benchmarks, except for
the ACL benchmark which has severe errors. The
difference in corrected spelling and mixed errors
between Google and Oracle+Google on the Wiki+
benchmark is small, because there are only very
few mixed errors.

Note that there are two reasons why the overall
F-score of BID+Google is higher than for Google
alone: because our tokenization repair fixes many
more tokenization errors than Google and because
our tokenization repair helps Google to fix more
spelling errors.

287

Approach F-score Seq.acc.
Doval and Gómez-Rodrı́guez (2019) 99.6 % 92.2 %
UNI 99.6 % 90.7 %
BID 99.8 % 94.2 %
Nastase and Hitschler (2018) 40.3 % 19.0 %
BID+ 89.6 % 79.6 %

Table 5: Evaluation on the English benchmark by
Doval and Gómez-Rodrı́guez (2019) and the ACL
benchmark.

5.4 Evaluation of previous work
The results for the best previous work are shown in
Table 5. These works did not provide sufficient ma-
terial to run their methods on our benchmarks. In-
stead, we ran our approaches on their benchmarks.

The approach from Doval and Gómez-Rodrı́guez
(2019) is an instance of UNI. The BID model per-
forms better than their model and our UNI, which
shows the improvement by the bidirectional compo-
nent. Figures are high for all three models because
their benchmark is unrealistic: it has no spelling
errors and all spaces are removed. Our results in
Table 3 show that the problem is much harder with
spelling errors (in particular, see the low sequence
accuracy for UNI in column Wiki+ no), and that
results are much worse when not making use of
existing spaces (compare the F-score and sequence
accuracy for columns Wiki+ and Wiki+ no).

The results from Nastase and Hitschler (2018)
on the ACL corpus are very weak in comparison.9

5.5 Error analysis
Our interactive web application under https://ad.
cs.uni-freiburg.de/publications allows a de-
tailed error analysis for all benchmarks and meth-
ods. We here list our most important findings.

Methods trained without spelling errors have a
strong tendency to split words with a typo because
there is no meaningful continuation (e.g., “unwnted
pregnancies” is wrongly repaired to “unw nted
pregnancies”) and to wrongly merge misspelled
words when they happen to form a correct word
(e.g., if “as well” is mistyped as “s well”, it is
wrongly repaired to “swell”).

The ACL benchmark has many passages that are
hard to correct given only the input text. In par-

9Nastase and Hitschler (2018) report an F-score of 95%,
whereas Table 5 states 40.3%. There are three reasons for
this: (1) they remove all spaces and evaluate how many words
they can restore, including words that had no error initially;
(2) they evaluate on newer documents which have less OCR
errors; (3) they make many errors around punctuation, but
their word-level evaluation does not punish this.

ticular: wrong reading order due to imperfect text
extraction from the PDFs (e.g., “Prepa- Season-
ing ration”), ambiguous formulas (e.g., does the
text “nik” come from “ni k” or “nik”), and very de-
formed words (e.g., “(.hme:e ”s” with ground truth
“Chinese”). The arXiv OCR benchmark has, by
construction, similar problems, except the wrong
reading order; hence the better figures in Table 3.

For the arXiv pdftotext benchmark, many of the
unresolved errors are in formulas (often involving
unusual mathematical symbols) and unconvention-
ally written words (e.g. “bench mark”). Many of
these could be considered as ground truth errors.

On Wikipedia, our method struggles mostly with
compound words (e.g., “offseason”), entity names
(Baseball team “Waikiki BeachBoys” vs. rock band
“The Beach Boys”), foreign words and inconsistent
punctuation. The few remaining errors were due to
abbreviations, measuring units or rare symbols.

6 Conclusion

We identified three key ingredients of high-quality
tokenization repair, all missing from previous work:
bidirectional models, training on text with spelling
errors, and making use of the space information
already present. Our methods also improve existing
spell checkers, by helping them to identify which
characters form a word.

There is still room for improvement, especially
in a scenario where many spelling (or OCR) errors
and tokenization errors come together. However,
we show that the remaining errors are hard, with
many ambiguous situations. We paid attention to
practical running times and all our methods have
linear complexity. A carefully trained Transformer
model (Vaswani et al., 2017), however, has the
potential to achieve comparable results with much
faster running times (Walter, 2021).

It remains an open problem whether tokeniza-
tion repair and spelling correction can be solved
“together” both efficiently and with high quality.
Our own methods can be extended to also correct
spelling errors, but only with very large beam sizes
and impractically large running times. Existing
models that correct both types of errors (and some-
times even grammar errors) simultaneously fare
poorly in comparison to the results we presented.

Acknowledgement

We thank Claudius Korzen for providing the arXiv
dataset, and Markus Näther for helpful discussions.

https://ad.cs.uni-freiburg.de/publications
https://ad.cs.uni-freiburg.de/publications

288

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org.

Yvonne Adesam, Dana Dannélls, and Nina Tahmasebi.
2019. Exploring the Quality of the Digital Historical
Newspaper Archive KubHist. In Proceedings of the
Digital Humanities in the Nordic Countries 4th Con-
ference, Copenhagen, Denmark, CEUR Workshop
Proceedings.

Abdulrahman Almuhareb, Waleed Alsanie, and Ab-
dulmohsen Al-Thubaity. 2019. Arabic word seg-
mentation with long short-term memory neural net-
works and word embedding. IEEE Access, 7:12879–
12887.

Giuseppe Attardi. 2017. WikiExtractor: A tool for ex-
tracting plain text from Wikipedia dumps. https:
//github.com/attardi/wikiextractor.

Hannah Bast and Claudius Korzen. 2017. A Bench-
mark and Evaluation for Text Extraction from PDF.
In ACM/IEEE Joint Conference on Digital Libraries,
JCDL, Toronto, ON, Canada, pages 1–10. IEEE
Computer Society.

Steven Bird, Robert Dale, Bonnie J. Dorr, Bryan R.
Gibson, Mark Thomas Joseph, Min-Yen Kan, Dong-
won Lee, Brett Powley, Dragomir R. Radev, and
Yee Fan Tan. 2008. The ACL anthology reference
corpus: A reference dataset for bibliographic re-
search in computational linguistics. In Proceed-
ings of the International Conference on Language
Resources and Evaluation, LREC 2008, 26 May -
1 June 2008, Marrakech, Morocco. European Lan-
guage Resources Association.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly.

Guillaume Chiron, Antoine Doucet, Mickaël Coustaty,
and Jean-Philippe Moreux. 2017. ICDAR2017 com-
petition on post-ocr text correction. In 14th IAPR In-
ternational Conference on Document Analysis and
Recognition, ICDAR 2017, Kyoto, Japan, November
9-15, 2017, pages 1423–1428. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Rui Dong and David Smith. 2018. Multi-input at-
tention for unsupervised OCR correction. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 2363–2372. Association for Computa-
tional Linguistics.

Yerai Doval and Carlos Gómez-Rodrı́guez. 2019. Com-
paring neural- and N-gram-based language models
for word segmentation. Journal of the Association
for Information Science and Technology, 70:187–
197.

FooLabs. 2014. Xpdf: A PDF Viewer for X.

Alex Graves. 2013. Generating Sequences With Recur-
rent Neural Networks. CoRR, abs/1308.0850.

Masato Hagiwara and Masato Mita. 2020. GitHub typo
corpus: A large-scale multilingual dataset of mis-
spellings and grammatical errors. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 6761–6768, Marseille, France. Euro-
pean Language Resources Association.

Orit Halpern. 2015. Beautiful data: A history of vision
and reason since 1945. Duke University Press.

Mika Hämäläinen and Simon Hengchen. 2019. From
the Paft to the Fiiture: a Fully Automatic NMT
and Word Embeddings Method for OCR Post-
Correction. In Proceedings of the International
Conference on Recent Advances in Natural Lan-
guage Processing, RANLP 2019, Varna, Bulgaria.
INCOMA Ltd.

Weipeng Huang, Xingyi Cheng, Kunlong Chen,
Taifeng Wang, and Wei Chu. 2020. Towards fast
and accurate neural chinese word segmentation with
multi-criteria learning. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, COLING 2020, Barcelona, Spain (Online), De-
cember 8-13, 2020, pages 2062–2072. International
Committee on Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR , San Diego, CA, USA, Conference Track Pro-
ceedings.

Ido Kissos and Nachum Dershowitz. 2016. OCR er-
ror correction using character correction and feature-
based word classification. In 12th IAPR Workshop
on Document Analysis Systems, DAS 2016, San-
torini, Greece, April 11-14, 2016, pages 198–203.
IEEE Computer Society.

https://www.tensorflow.org/
https://www.tensorflow.org/
http://ceur-ws.org/Vol-2364/1_paper.pdf
http://ceur-ws.org/Vol-2364/1_paper.pdf
https://doi.org/10.1109/ACCESS.2019.2893460
https://doi.org/10.1109/ACCESS.2019.2893460
https://doi.org/10.1109/ACCESS.2019.2893460
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://doi.org/10.1109/JCDL.2017.7991564
https://doi.org/10.1109/JCDL.2017.7991564
http://www.lrec-conf.org/proceedings/lrec2008/summaries/445.html
http://www.lrec-conf.org/proceedings/lrec2008/summaries/445.html
http://www.lrec-conf.org/proceedings/lrec2008/summaries/445.html
http://www.oreilly.de/catalog/9780596516499/index.html
https://doi.org/10.1109/ICDAR.2017.232
https://doi.org/10.1109/ICDAR.2017.232
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/P18-1220
https://doi.org/10.18653/v1/P18-1220
https://doi.org/10.1002/asi.24082
https://doi.org/10.1002/asi.24082
https://doi.org/10.1002/asi.24082
http://www.foolabs.com/xpdf
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://www.aclweb.org/anthology/2020.lrec-1.835
https://www.aclweb.org/anthology/2020.lrec-1.835
https://www.aclweb.org/anthology/2020.lrec-1.835
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
https://doi.org/10.18653/v1/2020.coling-main.186
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/DAS.2016.44
https://doi.org/10.1109/DAS.2016.44
https://doi.org/10.1109/DAS.2016.44

289

Karen Kukich. 1992. Spelling Correction for Telecom-
munications Network for the Deaf. Communica-
tions of the ACM, 35:80–90.

Ji Ma, Kuzman Ganchev, and David Weiss. 2018.
State-of-the-art chinese word segmentation with bi-
LSTMs. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 4902–4908. Association for Computa-
tional Linguistics.

Mark F. Medress, Franklin S. Cooper, James W. Forgie,
C. C. Green, Dennis H. Klatt, Michael H. O’Malley,
Edward P. Neuburg, Allen Newell, Raj Reddy,
H. Barry Ritea, J. E. Shoup-Hummel, Donald E.
Walker, and William A. Woods. 1977. Speech un-
derstanding systems. Artif. Intell., 9(3):307–316.

Mladen Mikša, Jan Šnajder, and Bojana Dalbelo Bašic.
2010. Correcting Word Merge Errors in Croatian
Texts. The Seventh International Conference on For-
mal Approaches to South Slavic and Balkan Lan-
guages.

Vivi Nastase and Julian Hitschler. 2018. Correction
of OCR Word Segmentation Errors in Articles from
the ACL Collection through Neural Machine Trans-
lation Methods. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation, LREC, Miyazaki, Japan. European Lan-
guage Resources Association (ELRA).

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickaël Cous-
taty, Nhu-Van Nguyen, and Antoine Doucet. 2019.
Post-OCR error detection by generating plausible
candidates. In 2019 International Conference on
Document Analysis and Recognition, ICDAR 2019,
Sydney, Australia, September 20-25, 2019, pages
876–881. IEEE.

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Nhu-Van
Nguyen, Mickaël Coustaty, and Antoine Doucet.
2020. Neural machine translation with BERT for
post-OCR error detection and correction. In JCDL

’20: Proceedings of the ACM/IEEE Joint Conference
on Digital Libraries in 2020, Virtual Event, China,
August 1-5, 2020, pages 333–336. ACM.

Kai Niklas. 2010. Unsupervised post-correction of
OCR errors. Diploma thesis. Leibniz Universität
Hannover.

Christophe Rigaud, Antoine Doucet, Mickaël Cous-
taty, and Jean-Philippe Moreux. 2019. ICDAR
2019 competition on post-OCR text correction. In
2019 International Conference on Document Analy-
sis and Recognition, ICDAR 2019, Sydney, Australia,
September 20-25, 2019, pages 1588–1593. IEEE.

Sandeep Soni, Lauren F. Klein, and Jacob Eisenstein.
2019. Correcting Whitespace Errors in Digitized
Historical Texts. In Proceedings of the 3rd Joint
SIGHUM Workshop on Computational Linguistics
for Cultural Heritage, Social Sciences, Humanities

and Literature, LaTeCH@NAACL-HLT, Minneapo-
lis, MN, USA, pages 98–103. Association for Com-
putational Linguistics.

Kazem Taghva and Eric Stofsky. 2001. OCRSpell:
an interactive spelling correction system for OCR
errors in text. Int. J. Document Anal. Recognit.,
3(3):125–137.

Xiang Tong and David A. Evans. 1996. A statistical
approach to automatic OCR error correction in con-
text. In Fourth Workshop on Very Large Corpora,
VLC@COLING 1996, Copenhagen, Denmark, Au-
gust 4, 1996.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Andrew J. Viterbi. 1967. Error bounds for convolu-
tional codes and an asymptotically optimum decod-
ing algorithm. IEEE Transactions on Information
Theory, 13:260–269.

Sebastian Walter. 2021. Tokenization re-
pair using transformers. https://
ad-blog.cs.uni-freiburg.de/post/
tokenization-repair-using-transformers.
Accessed: 2021-09-07.

https://doi.org/10.1145/129875.129882
https://doi.org/10.1145/129875.129882
https://doi.org/10.18653/v1/d18-1529
https://doi.org/10.18653/v1/d18-1529
https://doi.org/10.1016/0004-3702(77)90026-1
https://doi.org/10.1016/0004-3702(77)90026-1
http://dcl.bas.bg/wp-content/uploads/2015/08/FASSBL7_2010_proceedings-3.pdf#page=68
http://dcl.bas.bg/wp-content/uploads/2015/08/FASSBL7_2010_proceedings-3.pdf#page=68
http://www.lrec-conf.org/proceedings/lrec2018/summaries/114.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/114.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/114.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/114.html
https://doi.org/10.1109/ICDAR.2019.00145
https://doi.org/10.1109/ICDAR.2019.00145
https://doi.org/10.1145/3383583.3398605
https://doi.org/10.1145/3383583.3398605
http://www.l3s.de/~tahmasebi/Diplomarbeit_Niklas.pdf
http://www.l3s.de/~tahmasebi/Diplomarbeit_Niklas.pdf
https://doi.org/10.1109/ICDAR.2019.00255
https://doi.org/10.1109/ICDAR.2019.00255
https://doi.org/10.18653/v1/w19-2513
https://doi.org/10.18653/v1/w19-2513
https://doi.org/10.1007/PL00013558
https://doi.org/10.1007/PL00013558
https://doi.org/10.1007/PL00013558
https://www.aclweb.org/anthology/W96-0108/
https://www.aclweb.org/anthology/W96-0108/
https://www.aclweb.org/anthology/W96-0108/
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://ad-blog.cs.uni-freiburg.de/post/tokenization-repair-using-transformers
https://ad-blog.cs.uni-freiburg.de/post/tokenization-repair-using-transformers
https://ad-blog.cs.uni-freiburg.de/post/tokenization-repair-using-transformers

