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Abstract

Most previous work on grammar induction
focuses on learning phrasal or dependency
structure purely from text. However, be-
cause the signal provided by text alone is
limited, recently introduced visually grounded
syntax models make use of multimodal infor-
mation leading to improved performance in
constituency grammar induction. However,
as compared to dependency grammars, con-
stituency grammars do not provide a straight-
forward way to incorporate visual information
without enforcing language-specific heuristics.
In this paper, we propose an unsupervised
grammar induction model that leverages word
concreteness and a structural vision-based
heuristic to jointly learn constituency-structure
and dependency-structure grammars. Our ex-
periments find that concreteness is a strong in-
dicator for learning dependency grammars, im-
proving the direct attachment score (DAS) by
over 50% as compared to state-of-the-art mod-
els trained on pure text. Next, we propose
an extension of our model that leverages both
word concreteness and visual semantic role la-
bels in constituency and dependency parsing.
Our experiments show that the proposed exten-
sion outperforms the current state-of-the-art vi-
sually grounded models in constituency pars-
ing even with a smaller grammar size.1

1 Introduction

Grammar induction aims to discover the under-
lying grammatical structure of a language from
strings of symbols. Previous work has focused
on two grammar formalisms: constituency and
dependency grammars. Probabilistic context-free
grammars (Charniak, 1996; Clark, 2001, PCFG)
have been used for modeling probabilistic rules
in a constituency grammar, including more recent
approaches that combine PCFGs with neural mod-
els (Kim et al., 2019). The dependency grammar

1Code is available at https://github.com/
ruisi-su/concrete_dep.
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Figure 1: A learned tree structure with its lexicalized
heads. Solid lines represent the constituents. Arrows
represent the propagation path of the lexical heads from
the constituents to the root. and are the paths
of the neural L-PCFG which uses pure text and our pro-
posed CONCRETE L-PCFG which uses word concrete-
ness, respectively. neural L-PCFG incorrectly predicts
observing as the root of the sentence, while CONCRETE
L-PCFG selects the correct root fans.

approach to syntactic modeling allows for a binary
probabilistic treatment between each word and its
head. This binary relationship introduces flexibility
for modeling languages with rich morphology and
relatively free word order languages (Jurafsky and
Martin, 2009). A commonly used model for de-
pendency induction is the dependency model with
valence (Klein and Manning, 2004, DMV).

The two formalisms are complementary and uni-
fied models have been shown to achieve higher
induction accuracy than models that are trained for
either constituency or dependency parsing alone.
For instance, the lexicalized PCFG (Collins, 2003)
is a supervised model that jointly learns the two
formalisms by associating a word and a part-of-
speech tag with each non-terminal in the tree of
the PCFG. A more recent variant, the neural L-
PCFG (Zhu et al., 2020) is an unsupervised model
that uses lexical information to jointly learn both
constituency-structure and dependency-structure
grammars, achieving state-of-the-art performance
in both formalisms.

https://github.com/ruisi-su/concrete_dep
https://github.com/ruisi-su/concrete_dep
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Figure 2: Mean word concreteness by dominant part-
of-speech tags (Brysbaert et al., 2013) with standard de-
viations of the English MSCOCO captioning data (Lin
et al., 2014). We exclude words that are unclassified or
lack a dominant tag.

Besides the use of lexical information, grammar
induction also benefits from a coarse understand-
ing of the similarities in the syntactic structures
shared by many human languages. Recent works
showed that biases based on such syntactic univer-
sals can be applied to the posterior distribution of
the dependency structures (Naseem et al., 2010;
Cai et al., 2017; Li et al., 2019). Such univer-
sal linguistic rules can be helpful when part-of-
speech tags are given to the grammar induction
models. However, explicitly providing a ruleset
can make non-terminals sensitive to their context,
which is slightly contradictory to context-free gram-
mar based methods, such as PCFGs. Thus, a more
abstract method is needed to provide both guidance
and flexibility to grammar induction models.

Nevertheless, inducing grammars entirely from
pure text is a tall order, and arguably one not even
tackled by humans themselves – humans learn lan-
guage from the surrounding world (Bisk et al.,
2020). Recent work, such as the Visually Grounded
Neural Syntax Learner (Shi et al., 2019, VGNSL)
show improved performance on constituency gram-
mar induction by learning a shared embedding
space for text and its corresponding image. How-
ever, Kojima et al. (2020) note that the improve-
ment in performance is not a result of learning
complex syntactic rules, and is rather of the model
indirectly learning word concreteness, a concept
that evaluates the degree to which a word refers to
a perceptible entity (Brysbaert et al., 2013).

However, concisely describing the effect of word
concreteness on the constituency structure of a sen-
tence is non-trivial without resorting to language-
specific heuristics such as the head-initial bias
of the VGNSL (Shi et al., 2019). On the other

hand, describing the effect of concreteness on de-
pendency structure is more straightforward. In
most languages, content words, such as nouns and
verbs, tend to be more concrete as they are learned
through experience via modalities (Brysbaert et al.,
2013). Our analysis on the English MSCOCO
dataset, shown in Figure 2, affirms this is true for
English. Content words are also more likely to be
heads than dependents in many dependency speci-
fications (Nivre et al., 2016).

Motivated by these observations, in this paper,
we incorporate the concept of concreteness in the
unsupervised neural L-PCFG model (Zhu et al.,
2020) at two levels: the word level and the phrase
level. First, at the word level, we incorporate a prior
to upweight dependency structures that have heads
with higher word concreteness scores, which are
human-rated numerical values for common English
words (Brysbaert et al., 2013). Our experiments
on the English MSCOCO dataset show that, at the
word level, the word concreteness priors greatly
improve the dependency induction performance
over the neural L-PCFG, increasing the directed
attachment accuracy (DAS) by 50% (Section 4).
Additionally, we investigate the effect on predicted
roots and find that the concreteness priors serve as
a “short-cut” to bias perceptible entities towards
becoming heads in the dependency parse. In the ex-
ample in Figure 1, the CONCRETE L-PCFG selects
the entity fans as the root word for the sentence,
because it is more perceptible than the action ob-
serving. Adding word concreteness priors to the
root encourages the subsequently learned rules to
select the lexical head with higher word concrete-
ness.

At the phrase level, we present a vision-based
heuristic to exploit concreteness by connecting the
word referents of the corresponding perceptible en-
tities. These perceptible entities are extracted from
images and aligned using a unified vision-language
pre-training model (Zhou et al., 2020, VLP). Our
experiments show the vision-based heuristic im-
proves the model’s constituency parsing perfor-
mance. Finally, we present a model that combines
the concreteness priors at both the word and phrase
levels, which further improves the F1 score by 12%
over the neural L-PCFG for the constituency pars-
ing task.

In summary, this paper demonstrates that con-
creteness interacts with the neural L-PCFG differ-
ently at various levels: word-level concreteness
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helps dependency induction in differentiating be-
tween content and function words, and the phrase-
level vision-based heuristic helps pruning gram-
mars that produce incorrect spans. Both levels help
the neural L-PCFG to conceptualize the relation-
ships between words that are highly associated with
visually perceptible entities.

2 Background

This section briefly discusses the neural L-
PCFG (Zhu et al., 2020), which jointly learns
constituency-structure and dependency-structure
grammars. We encourage readers to refer to the
original paper for a more detailed description.

The neural L-PCFG is a neural parameteriza-
tion of the lexicalized PCFG (Collins, 2003, L-
PCFG) and it demonstrates improved performance
on unsupervised constituency and dependency pars-
ing. The phrase structures from a context-free
grammar (CFG) are defined as a five-tuple T =
(S,N ,P,Σ,R), including the following set of
rulesR:

S → A [α] , A ∈ N
A [α]→ B [α]C [β] , A ∈ N , B,C ∈ N ∪ P
A [α]→ B [β]C [α] , A ∈ N , B,C ∈ N ∪ P
T [α]→ α, T ∈ P

where N and P represent the set of non-terminals
and preterminals, respectively, and α, β ∈ Σ where
Σ is the set of lexical items in grammar T . The
branching rules’ scores rely on four components:
(1) the probability of the root to the non-terminal
A, (2) the word emission probability, (3) the proba-
bility of the headedness direction and the head-
inheriting child conditioned on the parent non-
terminal and head words, and (4) the probability of
the non-inheriting child conditioned on the head-
edness direction, parent non-terminal, and head-
inheriting child non-terminals.

From Zhu et al. (2020), the neural L-PCFG is a
parameter-sharing method that allows more flexi-
ble parameterization than traditional L-PCFGs by
conditioning the probabilities of production rules
on the representations of non-terminals, pretermi-
nals, and lexical items. The neural L-PCFG also
utilizes the compound probability distribution stem-
ming from the compound PCFG (Kim et al., 2019),
which showed promising results in estimating the
parameters of the model based on natural linguistic
differences in the inputting sentences. The latent

compound variable z is sampled from a standard
spherical Gaussian distribution, whose probabil-
ity is denoted as pN (0,I)(z). The log likelihood
of a sentence x is obtained by marginalizing the
compound variable:

log p(x) = log

∫
z
pz(x)pN (0,I)(z) dz (1)

Because it is intractable to integrate over z in
Equation 1, the evidence lower bound (ELBo) of
the log likelihood is estimated by Monte-Carlo sam-
pling and optimized during training of the neural
L-PCFG (Zhu et al., 2020) using the mean and the
variance vectors predicted by an inference network.
The neural L-PCFG is trained to maximize the log
likelihood of the entire corpus.

During inference, the most probable tree is ap-
proximated using the mean vector µ = fµ(x) (pre-
dicted by the inference network) in a Dirac delta
distribution δ(z−µ) instead of the real distribution
p(z|x), which would be intractable:

t̂ ≈ arg max
t∈Tx

∫
z
pzδ(z − µ) dz

= arg max
t∈Tx

pµ(t)

The probability distribution over sentences x is
then defined by:

pz(x) =
∑
t∈Tx

pz(t) =
1

Z(T , z)

∑
t∈Tx

p̃z(t)

in which Z(T , z) is the normalizing factor, and∑
t∈Tx pz(t) is the sum of normalized probabilities

of trees that might have generated x. The unnor-
malized probability is calculated by exponentiating
a scoring function: p̃z(t) ∝ expGθ(t, z), which
assumes each rule is independent of the other rules
in the parse tree t.

3 Dependency Induction Method

We propose three model variants: the word con-
creteness model, the vision-based heuristic model,
and a model that combines both concreteness and
the heuristic for inducing dependency structures
and constituency structures.

3.1 Proposed Model

We extend the neural L-PCFG model to incorporate
the concept of concreteness by adding two concrete-
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(a) The example image

source: (a) kitchen (with) (a) stove oven (and) refrigerator

target: overflowing refrigerator kitchen water

alignment pair scores

kitchen:kitchen 0.625
refrigerator:refrigerator 0.363
stove:overflowing 0.030
oven:water 0.006

(b) The example input and output of the alignment method.

Figure 3: An example of an image-caption pair from the MSCOCO test split. Figure 3b shows the source (captions)
and target (semantic role labels) for the alignment method of Figure 3a. Words in parentheses are the stop words
removed from the original caption. We use the SpaCy default list of stop words for English (Honnibal et al., 2020).
The labels are ordered by the first term as the predicted activity followed by the set of the entities involved in the
activity (Yatskar et al., 2016). The alignment pairs are ordered from the highest to the lowest scores.

ness priors to the context-free scoring function:

Gθ(t, z) =

k∑
i=1

gθ(ri, z) + λchi + λv1v(si) (2)

For a parsed tree t, gθ(ri, z) is the original scoring
function of the neural L-PCFG (Section 2) that as-
signs a log-likelihood to rule ri. λc is the hyperpa-
rameter used to control the effect of the word-level
concreteness prior hi of the current head word i,
detailed in Section 3.2. Similarly, λv is the hyperpa-
rameter controlling the effort of the phrase-level
concreteness prior. 1v(si) is the indicator func-
tion [si ∈ V] that the parsed constituent si is in the
set of the rewarded spans V generated using the
vision-based coupling heuristic in Section 3.3.

3.2 Concrete L-PCFG

The first variant of the model we experiment with
is denoted by CONCRETE L-PCFG. In this vari-
ant, we set λv = 0 in Equation 2, thus only in-
corporating the word concreteness prior into the
neural L-PCFG. The CONCRETE L-PCFG uses the
concreteness score derived from Brysbaert et al.
(2013), normalized (the raw scores are on a 5-point
rating scale) to lie between 0 and 1. Given an ob-
served sentence x, hi adds the concreteness score
of the root word xj , specifically the head of the
constituent generated from the rule that spans from
the beginning to the end of the sentence. Table 1
shows the concreteness scores of the possible lex-
ical heads in Equation 2 on an example sentence.

fans observe a basketball game in progress

0.942 0.526 0.292 0.994 0.9 0.6 0.424

Table 1: The concreteness score for each word in an
example phrase. Perceptible entities like fans and game
have higher scores than in and observe. Note that the
concreteness scores are not marginalized by the words
in a sentence.

3.3 Vision-based Coupling Heuristic

For the second variant of our model, we introduce
the COUPLING heuristic: instead of upweighting
the root word with high word concreteness, we
incentivize rules that might have generated spans
according to the argument-predicate relationship
extracted from the visual information. Specifically,
this objective aims to reward spans that contain
both an argument and predicate in a relation with
the head assigned to the predicate. For example,
given a caption, a girl is eating a slice of cheese-
cake, and the predicted semantic role labels from
the corresponding image are the agent woman, the
activity eat, and the item cake. COUPLING sets
λc = 0 in Equation 2. We use a VLP (Zhou et al.,
2020) fine-tuned on a subset of MSCOCO and a
subset of imSitu (Yatskar et al., 2016) to generate
semantic role labels for the image corresponding
to the text caption (see Figure 3). In Equation 2,
we use si to denote the span generated by the rule
ri, and V to denote the set of the rewarded spans.
The rewarded spans are selected following the pro-
cedure described below.

Label-Caption Alignment For a given image,
its semantic role labels consist of an action, its
participants (such as actors, objects, substances, lo-
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Algorithm 1 Rewarded Span Generation
Inputs:

caption, labels, aligns
Initialize:
V ← ∅, F = zeros(labels)

for l1 in labels do
for a in aligns do

Get cap, l2, score from a
if l1 == l2 then

Fi = index(cap)
end if

end for
end for
compute distance D between F0 and rest of F
F0 is the predicate
A← argsort(D)
for i = 1, . . . , N do

d← D[A[i]]
if d < 0 then

s← (F [A[i]], F [0], F [0])
elses← (F [0], F [A[i]], F [0])
end if
V ← V + s

end for

cations, and etc.), and the roles these participants
play in the activity (Yatskar et al., 2016). We per-
form alignment between the captions of the dataset
and the predicted semantic labels to locate the pre-
dicted perceived entities from the VLP model in
the caption. Since the VLP model is pretrained
with an unsupervised learning objective, using the
vision-based heuristic on the neural L-PCFG re-
mains an unsupervised task. The semantic labels
are preprocessed before the alignment by removing
the role labels. The first entity is always the main
activity followed by the participants in the order
they appear in the semantic labeling predictions.
We also removed stop words from the captions to
generate more reliable alignment pairs. This is
largely because a misalignment, such as aligning
determiners with nouns, can potentially be detri-
mental to use the COUPLING heuristic on the neural
L-PCFG. An example of the alignment inputs and
the generated outputs with the corresponding align-
ment scores are described in Figure 3. We use the
Dice alignment method (Melamed, 1997) to find
co-occurrences of the caption words and semantic
labels and generate alignment pairs between them.

Because semantic role labels explain the situa-
tion depicted in the image, it is reasonable to couple
the words of the corresponding caption that realizes
the role labels in a similar way: couple the predi-
cate representative, eat, with the representatives of
its arguments, girl and cheesecake.

Rewarded Span Generation For each caption,
we use the alignment pairs to generate a set of re-
warded spans V in the third term of Equation 2.
Each generated span couples only one argument
with the predicate: the start and end of the span are
based on the order in which the predicate and the
alignment appeared in the caption, and the pred-
icate word is always the head word of the span.
Algorithm 1 details the procedure for generating
the rewarded spans.

4 Experiments

We run experiments for the three model variants
we propose in the previous section: the word con-
creteness prior, the vision-based heuristic, and the
combined method. For word concreteness, our ex-
periments aim to answer the following questions:
(1) “does incorporating concreteness in the learn-
ing process improve dependency induction?” and
(2) “once concreteness has been used in learning,
can the model still achieve good performance when
concreteness information is no longer available dur-
ing inference?”. In particular, the second question
asks whether the model can internalize the concept
of concreteness during training and accurately in-
duce dependency structure even when concreteness
is not explicitly provided. Additionally, we ex-
periment with the vision-based heuristic model to
explore (3) whether structured priors at the phrase-
level can improve constituency parsing, and (4)
whether it is also effective on improving depen-
dency parsing. Finally, we combine the priors to
investigate the utility of concreteness at both the
word and the phrase levels for further improving
the performance of the neural L-PCFG. This com-
bination allows more effect of the concreteness
priors when training the neural L-PCFG to jointly
learn the constituency and the dependency struc-
tures. We experiment on the combined model that
applies both priors either at the root level (as in
CONCRETE L-PCFG), or at the rule-level that pro-
duces the parsed tree t (as in COUPLING) to fully
understand the influence of the priors and the ef-
fect of where they are incorporated in the neural
L-PCFG grammars.

4.1 Dataset

We use the MSCOCO dataset because it has a large
number of visually concrete concepts, which pro-
vides a good testbed for our model. Although the
MSCOCO dataset is not commonly used in previ-
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ous works on dependency induction, MSCOCO has
been used in previous work on visually informed
constituency induction (Shi et al., 2019; Zhao and
Titov, 2020). Using the same splits as VGNSL,
the dataset contains 82,783 images for training,
1,000 for validation and testing, respectively. Each
image has five corresponding captions. As a pre-
processing step, we tokenize and lemmatize the
captions (hyphenated words are preserved as a sin-
gle token) using SpaCy (Honnibal et al., 2020).
We use the Berkeley constituent parser (Kitaev and
Klein, 2018) to create the gold trees, and we use
the Stanford Parser for generating the gold depen-
dencies (de Marneffe and Manning, 2008) for the
validation and test sets.

Concreteness scores Each word of the pro-
cessed sentence in the MSCOCO dataset is
matched with its lemma’s concreteness rating from
Brysbaert et al. (2013). If a word’s lemma is ab-
sent from the concreteness rating, the word has a
concreteness of zero.

4.2 Baseline Methods

We compare our proposed CONCRETE L-PCFG

model and the COUPLING heuristic to several ex-
isting state-of-the-art methods:

• DMV: The dependency model with valence
(Klein and Manning, 2004, DMV) is trained on
POS tags obtained from an unsupervised tagging
model following He et al. (2018) using sentences
that have fewer than 20 tokens. This allows the
model to run faster while retaining high coverage
of the data (97.6% of the training set).

• HI+FastText+IN: The results from VGNSL
with head-initial bias, FastText embeddings, and
normalized image features (Shi et al., 2019).

• 1, SMHI, CMX-IN: The results from Kojima et al.
(2020) that reduces the image dimension to a
single-dimension, uses mean and head-initial in-
ductive bias for the score function (SMHI), uses
max pooling for the combine function (CMX),
and -IN removes normalized image features.

• VC-PCFG: The results of the visually-grounded
compound PCFGs with the language model-
ing objective (Zhao and Titov, 2020) trained
with 30 non-terminals, 60 preterminals, and 512-
dimensional hidden states for the LSTM infer-
ence network.

• neural L-PCFG: The state-of-the-art neural L-
PCFG (Zhu et al., 2020), i.e., the base model
described in Section 2.

4.3 Our Methods
To compare with previous work, we use pre-trained
FastText (Joulin et al., 2016) embeddings for the
MSCOCO dataset on all variants of our model
described in Section 3. We initialized the preter-
minals embeddings with centroids obtained using
K-means clustering on the pre-trained word em-
beddings following Zhu et al. (2020). This ini-
tialization allows the model to have a preliminary
understanding of word meanings before training.

As described in Section 3, we experiment with
three variants of our proposed model. The first of
these variants is CONCRETE L-PCFG, described in
Section 3.2. We experimented with different values
of λc in Equation 2 between 1.0 and 3.0, to vary the
amplitude of the concreteness prior, but found that
the model’s performance is not strongly affected by
this hyperparameter. Because the neural L-PCFG
benefits from a larger grammar (Zhu et al., 2020),
we increase the number of non-terminals and preter-
minals to 20 and 25, respectively, when training on
the MSCOCO dataset as compared to the original
paper. All other hyperparameters remain the same
as Zhu et al. (2020).

We conduct experiments with the COUPLING

variant of the model, described in Section 3.3. We
train the model with 15 non-terminals, 20 pretermi-
nals, and decrease the hidden states of the LSTM
inference network from 512 dimensions to 128.
This is because, in our preliminary experiments,
the effect of the vision-based heuristic was more
apparent with a smaller inference network. We also
run experiments with preterminals of 10 to further
limit the strength of the neural LPCFG to uncover
the difference, if any, in performance between de-
pendency parsing and constituency parsing. One
advantage of decreasing the grammar size is the re-
duction of parameters for faster training and lower
memory requirements.Two values, 1.0 and 2.0, are
used for λv in Equation 2.

Finally, we combine the two priors from Sec-
tion 3.2 and Section 3.3 in the COMBINED_ROOT

and COMBINED_NON_ROOT models, which per-
form the combination at the root-level and the
rule-level, respectively. The combined models are
trained with 15 non-terminals, 20 preterminals, and
with the hidden states of 128 dimensions. Hyperpa-
rameters λc and λv are set to 0.25 to avoid overpow-
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PT NT Corpus F1 Sent F1 DAS UAS

Small grammar system
NEURAL L-PCFG 10 15 53.04 53.21 16.55 47.41
COUPLING 10 15 54.84 55.01 26.22 53.23
Large grammar system
NEURAL L-PCFG 20 15 56.63 56.46 13.76 42.08
COUPLING 20 15 58.52 58.6 18.27 45.79
COMBINED_ROOT 20 15 51.01 50.91 17.94 46.15
COMBINED_NON_ROOT 20 15 68.73 69.23 18.22 47.12

NEURAL L-PCFG 25 20 58.02 58.63 15.63 42.33
CONCRETE L-PCFG 25 20 54.81 55.21 31.42 52.23
Baselines
DMV - - - - 18.79 42.47
HI+FastText+IN - - 54.4 - - -
1, SMHI, CMX-IN - - 57.5 - - -
VC-PCFG** 60 30 59.3 59.4 - -

Table 2: Performance of constituency parsing (F1) and
dependency parsing (DAS/UAS) of our proposed mod-
els as compared to the baselines. The best setup of each
model is reported in this table, selected based on valida-
tion set performance. The best scores for each task are
highlighted. PT and NT are the number of pretermi-
nals and non-terminals of the neural L-PCFG, respec-
tively. Priors are added at the root level for the COM-
BINED_ROOT model. For the NON_ROOT model, the
priors are added at each rule-level. ** indicates the VC-
PCFG (Zhao and Titov, 2020), which is trained with a
much larger grammar system.

ering the neural L-PCFG with two sets of priors.
We evaluate all models using directed and undi-

rected attachment score (DAS and UAS) to mea-
sure dependency parsing, and F1 score for con-
stituency parsing. We select the model checkpoint
that maximizes the F1 score of the validation set.
We report both corpus-level F1 and sentence-level
F1 numbers in our experiments.

4.4 Results

Table 2 shows our three model variants compared
with the baseline models. Both the CONCRETE

L-PCFG and the neural L-PCFG show compara-
ble results in F1 with the VGNSL from Shi et al.
(2019) and from Kojima et al. (2020). In depen-
dency parsing, CONCRETE L-PCFG doubles the
DAS as compared to the neural L-PCFG, while
also outperforming DMV by a large margin.

For further analysis of the performance improve-
ment, we look at the part-of-speech (POS) distribu-
tions of the sentence roots in MSCOCO (Figure 4).
For the text-only neural L-PCFG, the model has
a tendency to select prepositions and determiners
as heads. This is intuitive because function words
are far more common in the data, and there are no

verb noun adj pp det
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%
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ot
di

st
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base ours gold

Figure 4: Root distribution (%) by part-of-speech tags
of the parse trees predicted with neural L-PCFG (base)
and CONCRETE L-PCFG (ours), compared to the gold
distribution. POS categories with root distribution<
.05for all setups are removed for clarity.

constraints against choosing them as the root of
the tree. In contrast, CONCRETE L-PCFG chooses
nouns as the root word more often than function
words, which is closer to the gold distribution, thus
indicating the utility of the concreteness prior that
upweights perceptible entities (typically nouns).

In Table 2, we observe that with smaller gram-
mar systems, the proposed COUPLING method
achieves better dependency induction performance
as compared to the neural L-PCFG of the same
grammar size. With the large grammar system,
the best COUPLING model achieves comparable
performance in constituency parsing (F1) with the
neural L-PCFG, and all models improve perfor-
mance in dependency parsing (DAS/UAS) from
the baseline neural L-PCFG on MSCOCO. In
addition, although the COMBINED_ROOT shows
slightly lower performance in dependency parsing
compared with the COMBINED_NON_ROOT, the
COMBINED_ROOT still improves over the neural
L-PCFG. This shows that enforcing the priors at
the root level might be too late––the model has
likely already selected incorrect heads in lower-
level spans.

Finally, we see that the COMBINED method out-
performs all models in terms of constituency pars-
ing performance by a large margin. We depict the
predicted tree structures for an example sentence
with various models in Figure 5. In this example,
(b) standing is incorrectly selected as the root of
the sentence. Interestingly, (c) is almost identical
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(f) NEURAL L-PCFG**

Figure 5: The predicted tree structures for each model. ** indicates the tree structure was predicted by both
CONCRETE L-PCFG and neural L-PCFG with the same model size. Note that (b) is the baseline model in the
vision-based heuristic experiments, and (f) is the baseline model in the concreteness experiments.

to (e) except the correct head is predicted by (c)
in the subtree natural setting. It is possible that
due to the simplicity of the constituency structures
in MSCOCO, the neural L-PCFG finds a set of
optimal latent rules which explains most of the
noun-phrases in the corpus but fails to identify the
correct root for dependency parsing. This indi-
cates that learning the correct lexical head is rather
difficult for the neural L-PCFG and it requires addi-
tional information such as the concreteness priors
to improve on dependency parsing.

5 Discussion and Conclusion

Overall, our results show that the substantial in-
crease in dependency induction performance using
our method is due to the added word concreteness
prior. We demonstrate that concreteness is a good
approximation for understanding subcategories of
words in a dependency parsing model. However,
we recognize that this approximation is insufficient
for verb phrases, because an action described by a
verb is often coupled with visible entities (Alikhani
and Stone, 2019). For example, in a sentence many
people gather around a building with clocks, our
approach incorrectly upweights people to be the
root rather than gather, because the concreteness
of the former is higher than the latter.

Similar to Alikhani and Stone (2019), our anal-
ysis in Figure 4 shows that MSCOCO includes a
large number of noun phrases (almost double the
number of verb phrases). This disproportional ratio
might contribute to the lower DAS for the DMV

and text-only neural L-PCFG models. Because
MSCOCO contains shorter sentences with a sim-
pler syntactic structure as compared to the Penn
Treebank, neural L-PCFG converges to a local opti-
mum that achieves high constituency accuracy but
low dependency accuracy (Table 2). By adding
concreteness, our results show that dependency ac-
curacy can be significantly improved while still
maintaining a high constituency accuracy.

Our experiments with the proposed vision-based
heuristic show that both dependency and con-
stituency accuracy measures can be improved by
leveraging the joint learning setting of the neural
L-PCFG and the visually derived information. Un-
like previous work on visually grounded models,
our COUPLING heuristic selects what is visually
significant from an image in the language model-
ing objective. However, certain limitations exist in
our simple heuristic, including noise propagation
from the semantic role labeling model. Because
MSCOCO has a large portion of noun phrases,
the action predicted by the semantic role labeling
model from the image is often misaligned with a
noun term in the caption and vice versa. This could
mislead the downstream grammar induction task
and hurt the constituency accuracy. For example,
the left constituent from the root in (d) of Figure 5
is grammatically incorrect. Given these observa-
tions, we removed the rewards to spans that couple
the arguments when predicate is not aligned in the
COMBINED model.

In future work, we plan to explore more ele-
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gant ways to parameterize the priors in the neu-
ral L-PCFG, instead of using the hyperparame-
ter λ. Nonetheless, different from other visually
grounded models, which jointly learn the textual
representations with the paired image,our approach
directly influences the language model by encod-
ing the visual information completely in the text
domain. One advantage of our approach is that the
visual information is directly applied to optimize
a language modeling objective, allowing explain-
ability of which parts of the image are helpful for
learning the syntax of the corresponding caption.

Our work provides a basis for solving higher-
level syntax ambiguities. For example, the sen-
tence the girl will put the orange on the tray in
the bowl can be decomposed in two ways: [the
girl will put][the orange on the tray][in the bowl]
and [the girl will put the orange][on the tray in the
bowl] (Coco and Keller, 2015). Although both anal-
yses are grammatically correct, only one is correct
when a visual reference (i.e., an image) is provided.
Future dependency induction models could aim at
untangling such ambiguity using more complex
visual information.

Finally, although we show that concreteness is
useful for dependency induction, using concrete-
ness is seemingly an over-simplification for model-
ing semantic dependency relationships. In human
language, root assignment can involve a priority
mechanism: when a verb is present in a sentence, it
immediately becomes the root despite how con-
crete other words are. Our work suggests that
further investigation into modeling such priority
mechanisms to improve the grammar induction per-
formance even more.
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