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Abstract

Image captioning models generally lack the ca-
pability to take into account user interest, and
usually default to global descriptions that try
to balance readability, informativeness, and in-
formation overload. We present a Transformer-
based model with the ability to produce cap-
tions focused on specific objects, concepts or
actions in an image by providing them as guid-
ing text to the model. Further, we evalu-
ate the quality of these guided captions when
trained on Conceptual Captions which contain
3.3M image-level captions compared to Visual
Genome which contain 3.6M object-level cap-
tions. Counter-intuitively, we find that guided
captions produced by the model trained on
Conceptual Captions generalize better on out-
of-domain data. Our human-evaluation results
indicate that attempting in-the-wild guided
image captioning requires access to large,
unrestricted-domain training datasets, and that
increased style diversity (even without increas-
ing the number of unique tokens) is a key fac-
tor for improved performance.

1 Introduction

Describing the content of an image using natural
language is generically referred to as image cap-
tioning, but there are a variety of ways in which
this can be achieved: by focusing on the most
salient aspects of an image, as in MSCOCO (Lin
et al., 2014) or Conceptual Captions (Sharma et al.,
2018); on most of the groundable concepts in
an image, as in Image Paragraphs (Krause et al.,
2017) or Localized Narratives (Pont-Tuset et al.,
2020); or on a predefined set of objects, as in
dense captioning (Johnson et al., 2016). These
various approaches acknowledge that a typical real-
world image may contain a varying number of ob-
jects/concepts/actions that may be of interest to
the caption consumer, and therefore the optimal
description depends on the degree to which the
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Figure 1: An illustration comparing the difference be-
tween an image captioning model and a guided image
captioning model. The guided image captioning model
generates captions that focus on a specific object, con-
cept or action of the image, provided to the model as
free-form guiding text.

caption covers what the user is interested in at any
given moment.

However, the vast majority of captioning solu-
tions lack the ability to take into account user in-
terest, and usually default to global descriptions.
Such a description might say, for example “people
attending a birthday party”, which may not satisfy
a user interested in a description of “the cake”. In
this paper, we capture user interest via the guid-
ing text, a free-form text input that is assumed to
be related to some concept(s) in the image; and
we consider the Guided Image Captioning task,
where the guiding text is provided to the model
as an additional input to control the concepts that
an image caption should focus on1. This could,
for instance, enable accessibility tools for visually-
impaired users, who can select a guiding text pro-
duced from an upstream object/label detector to
receive a guided description of their surroundings.
Note that guiding texts are not limited to a set of
boxable objects, but include concepts (e.g. “vaca-

1A key difference to the Visual Question Answering
(VQA) task (Anderson et al., 2018; Zhou et al., 2020) is that
Guided Image Captioning is framed as a generation task to
produce an open-ended description, while VQA is usually
framed as a classification task to produce a specific closed-
ended answer. In its most frequent approaches, VQA uses
a long-text input form (the question) and a short-text output
form (the answer). In contrast, Guided Image Captioning uses
a short-text input form (the guiding text) and a long-text output
form (the caption).
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tion”, “love”) and actions (e.g. “swimming”).
A key question we ask in this work is what kind

of training data can lead to models that work better
in a real-world setting. Ideally, the training data
should contain multiple captions for a given im-
age, each associated with a different guiding text.
The Visual Genome dataset (Krishna et al., 2017a)
provides exactly that, with a total of 3.6M object-
level captions created through human annotation.
In contrast, the Conceptual Captions (Sharma et al.,
2018) contains only image-level captions created
through an automatic pipeline obtaining images
and captions from the internet. We perform human
evaluations that measure caption informativeness,
correctness and fluency to test our approach in a
real-world setting. Interestingly, while the Concep-
tual Captions dataset contains a similar number of
captions (3.3M), and has a lower number of unique
tokens than Visual Genome, models trained on this
dataset generalize better on out-of-domain data in
human evaluations.

The key contributions of this paper are summa-
rized as follows:

• Given the popularity of Transformer (Vaswani
et al., 2017) models for generative tasks in
NLP, we use a multimodal Transformer model
as a vehicle to study characteristics of the
guided image captioning task. In particular,
we investigate the underlying characteristics
of image captioning datasets required to pro-
duce higher quality guided captions. Our re-
sults suggest that the key to solving in-the-
wild guided image captioning may not be la-
borious human annotations, Visual Genome–
style, but rather access to noisy, unrestricted-
domain training datasets with high style diver-
sity.

• We open-source the set of test images and
guiding text pairs used for our human evalua-
tion experiments in order to encourage future
work in this direction and facilitate direct com-
parisons with our results.

2 Related Work

The task of image captioning has received con-
siderable interest over the past decade (Chen and
Zitnick, 2015; Kiros et al., 2014; Zhu et al., 2018;
Donahue et al., 2015; Mao et al., 2015; Karpathy
and Li, 2015; Vinyals et al., 2015a). Template-
based methods (Kulkarni et al., 2013; Elliott and

de Vries, 2015; Devlin et al., 2015) provide im-
age grounding, but lack the ability to produce di-
verse captions, while early encoder-decoder meth-
ods (Donahue et al., 2015; Vinyals et al., 2015b;
Karpathy and Li, 2015; Zheng et al., 2019; Wu
et al., 2015; Sharma et al., 2018) produce diverse
captions, but lack image grounding. Contemporary
encoder-decoder methods (Lu et al., 2018; Cornia
et al., 2019; Anderson et al., 2017; You et al., 2016;
Chen et al., 2020; Mun et al., 2017; Xu et al., 2015;
Fang et al., 2015), including the method proposed
in this work, can generate diverse captions with
image grounding.

Most similar to our work, (Zheng et al., 2019)
propose the use of a guiding object and produces
a caption by using a forward and backward LSTM
to separately generate the caption text before and
after the guiding object. In contrast, our approach
involves a multi-modal Transformer model that
uses layers of self-attention and cross-attention to
better ground the target caption using early-fused
representations for the image and the guiding text,
which in our work is not limited to boxable objects.

3 Method

Given an image I and guiding text T =
{t1, ..., tLT

} with LT tokens, the goal of Guided
Image Captioning is to generate an image descrip-
tion y = {y1, ..., yLy} with Ly tokens, such that
y focuses on the concepts provided in T . Note
that we do not necessitate our model to include the
tokens of T inside y, yet we find that our trained
model produces T inside y a majority of the time.
Interestingly, in some cases where T is absent from
y, we find that T is paraphrased in y. See Figure
5 for examples. Both ti and yi are tokens in the
shared model vocabulary.

We employ a Transformer (Vaswani et al., 2017)
based sequence to sequence model, with param-
eters θ where I and T are inputs to the encoder
and y is the decoder output. We use a dataset with
(I,T ,y) tuples to search for the optimal model
parameters θ∗ by maximizing the likelihood of the
correct caption given below.

θ∗ = argmax
θ

∑
(I,T ,y)

log p(y|I,T ;θ) (1)

In our model, the encoder input sequence com-
prises of image features followed by sub-token em-
beddings for the guiding text. We use a joint en-
coder for both image and guiding text to transform
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Figure 2: Our model architecture. Thick arrows indi-
cate a sequence, such as bounding boxes for image re-
gions, or list of tokens in a text.

the image features in the context of the guiding
text concepts and vice versa, such that the decoder
input is conditioned on the joint text-image repre-
sentation.

We represent the input image as a sequence
of global and regional features, G and R, respec-
tively. Following Changpinyo et al. (2019), we
use Graph-Regularized Image Semantic Embed-
ding (GraphRISE) as the global image features G.
These 64-dimensional features, trained to discrim-
inate O(40M) ultra-fine-grained semantic labels,
have been shown to outperform other state of the
art image embeddings (Juan et al., 2019).

For regional features, we first compute bounding
boxes using a Region Proposal Network (RPN).
Following Anderson et al. (2018), we reimple-
ment the Faster R-CNN (FRCNN) model trained
to predict selected labels (1,600 objects and 400 at-
tributes) in Visual Genome (Krishna et al., 2017b).
This model returns K bounding box regions, each
with a 2048-dimensional feature vector. Chang-
pinyo et al. (2019) observed that decoupling box
proposal and featurization could improve down-
stream tasks. Thus, we obtain two sets of regional
features – RGR and RFRCNN where the bounding
box feature extractor are GraphRISE and FRCNN
respectively. We experimented with using either or
both of these features for the top 16 regions.

3.1 Encoder

All models in the image feature extraction pipeline,
are pre-trained and are not fine-tuned during our
model training process. To transform them into
the encoder input space, we use a trainable fully-
connected network for each type of feature, de-
noted as FC in Figure 2. The guiding text is pro-
vided to the encoder as a sequence of sub-tokens,
T, which are embedded in the input space using
trainable embeddings.

To summarize, the input to the Transformer en-
coder is a sequence of features in the following
order.

G: Global image features by Graph-RISE, 64D
vector.

RGR: Sequence of 16 regional image features,
64D each, obtained by running GraphRISE
on each image region.

RFRCNN: Sequence of 16 regional image features,
2048D each, obtained from FRCNN for each
image region.

T: Sequence of sub-tokens corresponding to the
guiding text.

3.2 Decoder

The Transformer decoder generates the output cap-
tion sequence y conditioned on the encoder outputs.
The decoder shares the same vocabulary and em-
beddings used for the guiding text by the encoder.

4 Data

We train our models on two datasets with different
characteristics, we pick models according to auto-
matic metrics computed over the validation (dev)
split in each dataset. Human evaluations were con-
ducted on a separate test set which is out-of-domain
for both training datasets. The sub-token vocab-
ulary size is set to 4000 for both datasets, but a
comparison of the number of unique tokens is re-
ported in Table 1.

4.1 Training and Validation (Dev) data

Visual Genome (VG). Visual Genome (Krishna
et al., 2017b) contains dense annotations for each
image, including a list of human-annotated objects
and region captions (descriptions of image regions
localized by a bounding box). We take all region
captions and their first associated object to form
〈guiding text, caption〉 pairs for each image. On



186

CC VG
# of images 3.3M 107K
# of 〈image, guiding text, caption〉 3.3M 3.6M
# of unique guiding texts 43.2K 75.4K
# of unique tokens 42.6K 69.5K

Table 1: Statistics on the two datasets: Conceptual Cap-
tions (CC), Visual Genome (VG).

Length of guiding text 1 2 ≥ 3
CC 80.5% 16.3% 3.4%
VG 91.1% 8.3% 0.6%

Table 2: Length (in number of tokens) distribution of
guiding texts in the two datasets.

average, each image has 34 such pairs, provid-
ing 3.6M 〈image, guiding text, caption〉 tuples for
107,180 images. We randomly sample 96,450 and
10,730 images for the training and validation (dev)
sets respectively.

Conceptual Captions (CC). Conceptual Cap-
tions (Sharma et al., 2018) contains 3.3 million
training, 15K validation image/caption pairs col-
lected from the internet. Captions in this dataset
are obtained from the alt-text of the images, and are
diverse in their writing styles, however no paired
object annotations are available for these captions.
Instead, we use the Google Cloud Natural Lan-
guage API to extract the text span considered to
be the most salient2 entity in a caption, and treat it
as the guiding text for the corresponding caption,
yielding one 〈guiding text, caption〉 pair per image.

Comparisons of the two datasets. As shown
in Table 2, the guiding texts are dominated
by single-word expressions with a minority of
multi-word expressions (19.5% for CC; 8.9% for
VG). Both datasets have a similar number of
〈image, guiding text, caption〉 tuples. While VG
has significantly fewer images, it has a much higher
number of unique guiding texts and its number of
unique tokens in guiding texts and captions com-
bined is larger than that of CC (Table 1).

Which type of dataset is more suitable to train a
guided image captioning model? The VG dataset
contains human-quality guiding texts and corre-
sponding captions, even for small regions in the
image and also has a higher number of unique to-
kens. In contrast, the CC dataset contains noisy
guiding texts automatically extracted from cap-

2Salience measures the importance of an entity in a caption
(e.g. 0.65 for “cottage” and 0.35 for “seaside town” with
“thatched cottage in the seaside town” as the caption).

Test T unique guiding texts unique tokens
source cnt ∈ CC ∈ VG cnt ∈ CC ∈ VG

GCP 889 67% 62% 929 90% 88%
FRCNN 421 98% 100% 421 99% 100%

Table 3: Percentage of unique (tokens in) test guiding
texts that have been seen at training time for Concep-
tual Captions (CC) and Visual Genome (VG).

tions, which potentially focus only on the most
salient concept in the image. However, it has more
image diversity, and its captions reflect more di-
verse styles as a result of a much larger set of au-
thors. Although the model trained with CC is ex-
posed to only one 〈guiding text, caption〉 pair per
image compared to VG which has on average 34
〈guiding text, caption〉 pairs per image, it may still
learn to correctly generate descriptions for different
concepts in an image, because it has been exposed
to different ways of describing such images.

4.2 Test data

Images For human evaluation, we use the T2
test set (i.e. 1000 images sampled from the Open
Images Dataset (Kuznetsova et al., 2020) for the
Conceptual Captions challenge) and these images
are out-of-domain for both training datasets.

Guiding Texts The T2 dataset does not provide
any groundtruth annotations. However, we want
to evaluate models on multiple guiding texts for
each image, in order to test their ability to generate
different captions. To this end, we compile a list of
up to 6 guiding texts for each T2 test image as de-
scribed below, which we release for reproducibility.
This is intended to simulate the scenario where a
visually-impaired user is given a set of candidate
guiding texts generated by an upstream model, and
picks the one they are interested in learning more
about. The guiding text chosen by the user is then
provided as input to our model. Specifically, we
use the following two approaches, and consider up
to 3 test guiding texts per image from each.

GCP Three GCP labels are obtained using the
image labelling API from Google Cloud by sorting
labels by confidence scores and randomly sampling
one from each tertile3. The GCP labels generated
for the T2 set can be an object (i.e. a box can be
drawn around it to show its location in the image),

3We hope to evaluate our model performance over a wider
variety of guiding texts from the upstream models, rather than
limiting to the most confident ones.
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Automatic Metrics on Dev Set Human Score on T2
Train/Dev Model CIDEr SPICE ROUGE-L METEOR GCP FRCNN

CC Set output to T 0.580 0.301 0.204 0.087 - -
T 1.079 0.250 0.301 0.147 - -
G 0.808 0.171 0.242 0.117 - -
T + G 1.683 0.337 0.383 0.204 - -
T + G + RFRCNN 1.685 0.337 0.383 0.205 - -
T + G + RGR 1.718 0.341 0.387 0.208 0.73 0.75
T + G + RGR + RFRCNN 1.695 0.339 0.387 0.206 0.69 0.75

VG Set output to T 1.108 0.372 0.277 0.119 - -
T 1.589 0.344 0.336 0.186 - -
G 0.406 0.109 0.183 0.079 - -
T + G 1.606 0.355 0.340 0.190 - -
T + G + RFRCNN 1.758 0.376 0.357 0.204 - -
T + G + RGR 1.744 0.373 0.354 0.202 0.62 0.79
T + G + RGR + RFRCNN 1.775 0.377 0.362 0.206 0.66 0.84

Table 4: Automatic metrics and Human evaluation results for model variations trained on Conceptual Captions
(CC) and Visual Genome (VG). Each model corresponds to a different set of inputs to the Transformer encoder.
The first row for each dataset is a “no-op model” that simply copies the guiding text to output to compute baseline
metrics. Human evaluations are conducted with two sets of guiding texts obtained for the test images – from
Google Cloud API (GCP) and an FRCNN model. In all but one case, the model with higher CIDEr score (note that
CIDEr score is only comparable within the same dataset) is also the one receiving better average human ratings.

a concept (a box cannot be drawn around it) or an
action (i.e. a verb). Through manual inspection
we find that 53.43% are objects (e.g. “airplane”,
“coin”, “desk”), 41.73% are non-object concepts
(e.g., “love”, “adventure”, “software engineering”)
and 4.84% are actions. Figure 4 displays example
GCP labels as well as sample outputs of each type
of guiding text.

FRCNN The other three guiding texts are FR-
CNN objects obtained from the faster R-CNN
model described in Section 3 by also sorting the
objects based on confidence and randomly sam-
pling one from each tertile. Since the model is
trained on VG annotations, and its region proposal
is used in our image representations, this simulates
a much more in-domain type of guiding texts. As
expected, all of the FRCNN-based guiding texts
have appeared in the training guiding texts of VG
(Table 3).

Overall, GCP-based guiding texts have a signif-
icantly lower overlap with our training data (for
both CC and VG), as compared to FRCNN-based
guiding texts. We find that 67% and 62% of the
GCP labels are seen at training time for CC and
VG respectively, while 98% and 100% of the FR-
CNN objects are seen at training time for CC and
VG respectively. We consider our analysis with
FRCNN objects as an in-domain type of guiding
text and GCP labels as an out-of-domain type of
guiding text.

This set of images, together with the guiding

text used in our experiments, is made available4

in order to encourage future work in this direction
and facilitate direct comparisons with our work.

5 Experiments

5.1 Model Implementation Details
Our Transformer contains a stack of 6 layers each
for both the encoder and decoder, with 8 attention
heads. All models were optimized with a learn-
ing rate of 0.128 using stochastic gradient descent
(SGD) and a decay rate of 0.95. Decoding was
performed using beam search with a beam width
of 5. The T + G + RGR + RFRCNN model has a
total of 48.6M trainable parameters, while the T +
G + RGR model has 47.3M trainable parameters.
We use a batch size of 4096 on a 32-core Google
Cloud TPU. All models are trained to optimize the
CIDEr performance on the validation set, which typ-
ically takes approximately 2 million and 4 million
steps for Visual Genome and Conceptual Captions
models, respectively. With this setup, convergence
for Visual Genome models typically takes 3 days,
while Conceptual Captions takes 6 days.

We start from the initial hyperparameters from
(Changpinyo et al., 2019), and perform an addi-
tional hyperparameter search for the learning rate
and decay rate for SGD. The values used for the
learning rate are {0.0016, 0.008, 0.016, 0.048,
0.096, 0.128, 0.16}, while for the decay rate are

4Download at https://github.com/
google-research-datasets/T2-Guiding

https://github.com/google-research-datasets/T2-Guiding
https://github.com/google-research-datasets/T2-Guiding
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{0.90, 0.95}. We choose the learning rate and decay
rate with the highest validation CIDEr score (i.e.
0.128 learning rate and 0.95 decay rate), and use
the same hyperparameters for all models.

5.2 Automatic evaluation results

We start by examining model performances via au-
tomatic evaluation metrics. The CC-trained model
is evaluated on the CC validation set, and the VG-
trained model is evaluated on the VG validation set.
Note that the automatic evaluation metric results
are only comparable within each dataset.

As shown in Table 4, providing guiding texts
as additional input to the model outperforms the
model with image-only input (model T + G vs
model G) for both datasets. This confirms the ex-
pectation that with either dataset, the model does
learn to produce captions based on the guiding
texts. Model T + G also outperforms a trivial base-
line method where the prediction reproduces the
guiding text verbatim (“Set output to T”), and a
stronger baseline, where only the guiding text is
given as input to the model (Model T + G vs model
T), confirming that the model does learn from the
global image features as well. Note that the VG-
trained model achieves much higher CIDEr scores
with the T baseline, indicating that the dataset con-
tains more image-independent, formulaic expres-
sions (e.g. “white clouds in blue sky”). Also, note
that the a VG image has several (guiding text, im-
age, caption) triples; with the guiding text removed,
the G model is trained on multiple (image, cap-
tion) pairs, i.e. multiple targets for the same input,
potentially causing the performance to be lower.

The most important result here is that, for both
datasets, the models that use both image features
and guiding text achieve significantly higher scores
than the T baseline, indicating that these models
are capable of learning additional, image-specific
information about the guiding text. Note that we
observe a bigger improvement by adding image
features to model T when training on the CC data
(1.079→ 1.718 = +0.639 CIDEr), compared to the
VG dataset (1.589→ 1.775 = +0.186 CIDEr).

Table 4 also shows the effects of different visual
features. RFRCNN has a stronger positive effect on
the Visual Genome dataset, most likely because
the model that produces these features is trained
on Visual Genome data. The top two performing
models for each dataset were sent for human eval-
uation, and we found that the human evaluation

results correlated with the automatic metrics.
See Figure 3 for qualitative examples of models

trained with different datasets. From Figure 3, we
observe that although CC target captions are gener-
ally longer, our model naturally generates shorter
captions even though we do not restrict the number
of output tokens in the output caption.

5.3 Human Evaluations
For human evaluations over T2 images, each pre-
dicted caption is rated by three raters. Our rater
pool consisted a total of 12 raters. Raters are shown
an image, a guiding text, along with a generated
image caption. If the guiding text is judged to be
present in the image5, the rater is asked to rate
the predicted caption across the following three
dimensions; their choice will be converted to a
score between 0 and 1 according to the following
scheme:

Informativeness : For someone who cannot see
the image, does the caption provide additional in-
formation about the object?

• No useful info provided [0.0]
• Some useful info provided [0.5]
• Key info provided [1.0]

Correctness : Is the additional information cor-
rect?

• Incorrect [0.0]
• Partially correct [0.5]
• Correct [1.0]

Fluency : Does the caption read fluently?

• Not fluent. [0.0]
• Fluent [1.0]

Table 5 reports the average scores per dimension
ranging from 0 to 1. We observe that the VG-
trained model performs significantly worse than the
CC-trained model for out-of-domain GCP-based
guiding texts. One may hypothesize that the VG-
trained model performs worse, because it contains
fewer images than CC. However, from Table 5 we
also observe that the VG-trained model performs
better than the CC-trained model for in-domain
FRCNN-based guiding texts. This suggests that
the VG-trained model has a harder time adapting
to the out-of-domain guiding texts, rather than the
out-of-domain images. But recall from Section 4.2,

5We find that automatically extracted T2 guiding texts
using GCP and FRCNN were rated present in the image for
80.90% and 79.51% cases respectively.



189

Figure 3: Example qualitative results for CC images using model T + G + RGR trained on CC (first row), VG
images using model T + G + RGR + RFRCNN trained on VG (second row), T2 images using model T + G + RGR
trained on CC where guiding text is extracted using the Google Cloud Natural Language API (third row).

Human score on T2 Diversity T ∈ cap?
D HI HC HF Avg Div-1 Div-2 = % ≈ %

Test T = GCP
CC 0.63 0.68 0.88 0.73 0.74 0.92 83.9 12.5
VG 0.57 0.61 0.79 0.66 0.78 0.94 55.7 15.0
MX 0.70 0.68 0.88 0.75 0.78 0.94 86.7 11.5

Test T = FRCNN
CC 0.65 0.67 0.94 0.75 0.76 0.94 98.3 0.2
VG 0.75 0.80 0.96 0.84 0.74 0.92 99.8 0.2
MX 0.74 0.72 0.95 0.80 0.78 0.95 99.5 0.1

Table 5: Human evaluation results on T2 with the best
models from each dataset (D): Conceptual Captions
(CC), Visual Genome (VG) and mixing both (MX).
Each instance was replicated three times and rated
against informativeness (HI ), correctness (HC) and flu-
ency (HF ); we report average score across these three
scales ranging from 0 to 1. We report the n-gram di-
versity for uni-gram (Div-1) and bi-gram (Div-2). Last
two columns report the percentage cases where the in-
put guiding text T appears verbatim (=) or paraphrased
(≈) in the output caption.

the GCP-based guiding texts have similar levels of
overlap with these two datasets, so why does the
VG-trained model perform worse? One potential
reason could lie in the distribution of the guiding
texts: entropy of guiding texts is significantly lower
for VG with H(T ) = 9.7 bits, vs H(T )= 10.6 bits
for CC, even though VG has a higher number of
unique guiding texts and a higher number of unique
tokens. We posit that variety in the training data is

important when adapting to out-of-domain guiding
texts.

5.4 Caption Diversity
Recall that we produce three captions for each im-
age given three different guiding texts. In Table 5,
we report the n-gram diversity (Deshpande et al.,
2019) for unigrams (Div-1) and bigrams (Div-2)
by computing the number of distinct n-grams from
the three predicted captions divided by the total
number of n-grams from these three captions. Our
Div-1 ranges 0.74 - 0.78, and Div-2 ranges from
0.92 to 0.95, showing that our model generates di-
verse captions for the same image when prompted
by different guiding texts.

5.5 Guiding Text paraphrasing in Caption
Table 5 also reports the percent of instances where
the guiding text is present verbatim or paraphrased
in the predicted caption, based on manual inspec-
tion. Interestingly, we observe cases where para-
phrasing the guiding text leads to a better caption.
For example: “mobile device” to “cell phone in
hand”, “red juniper” to “a huge juniper in a field”,
and “pine family” to “a pine tree in the garden”
(Figure 3).

Figure 5 displays sample outputs with captions
that paraphrase the guiding text and sample outputs
that use incorrectly labelled guiding text (i.e., the
guiding text is not present in the image).



190

Figure 4: Sample outputs for T2 set using the model
trained on Conceptual Captions with GCP labels ex-
tracted as guiding text and evaluated on GCP la-
bels. The first, second and third columns display sam-
ples with object-based, concept-based and action-based
guiding text respectively.

5.6 Train with an Object or Label Detector

For the results we report in Section 5.3, the training
guiding texts are either extracted from the ground
truth captions (CC) or from human annotations
(VG). If we already have access to the upstream
model that provides candidate guiding texts, we can
potentially take advantage of this at training time
to create a more streamlined model. For this exper-
iment, we run the FRCNN object and GCP label
detector on our training images to obtain training
guiding texts. To ensure that the ground truth cap-
tion is relevant to the guiding text constructed this
way, we only retain the training tuples in which the

D HI HC HF Avg Div-1 Div-2
CCGCP 0.71 0.76 0.96 0.81 0.77 0.94
VGGCP 0.55 0.63 0.92 0.70 0.77 0.94
MXGCP 0.69 0.74 0.95 0.79 0.75 0.92
CCFRCNN 0.73 0.69 0.96 0.79 0.76 0.94
VGFRCNN 0.81 0.82 0.99 0.87 0.78 0.95
MXFRCNN 0.77 0.75 0.98 0.83 0.78 0.95

Table 6: Human evaluation results with the best mod-
els from each dataset. These results were trained with
guiding texts extracted using GCP or FRCNN.

Figure 5: Examples of captions that paraphrased the
guiding text (first column) and examples of captions
produced from guiding text that are absent from the im-
age (second column). Sample outputs are obtained on
the T2 set using the model trained on Visual Genome
with its own annotations as guiding text and evaluated
on GCP labels.

guiding text is present in the groundtruth caption,
using a text-match filter. For CC, this filter reduces
the training tuples from 3.3M to 1.1M when us-
ing the FRCNN object detector, and from 3.3M
to 2.4M when using the GCP label detector. For
VG, the filter reduces the training tuples from 3.6M
to 2.4M when using the FRCNN object detector,
and from 3.6M to 1.2M when using the GCP la-
bel detector. Taking the models with the highest
CIDEr score for each dataset and guiding text, we
perform another human evaluation and report the
scores6 in Table 6. We note that the average scores

6Each instance is evaluated with replication 1, because we
found that our human evaluation results were similar between
replication 1 and 3: difference was under 0.01 for the majority
cases, with one exception where the difference was 0.03.
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obtained are all higher than their counterparts in
Figure 5, showing that training with a guiding text
distribution that matches the inference-time guid-
ing text distribution generally leads to better results,
e.g., about +8 points across all three dimensions
for GCP guiding texts under CC.

6 Conclusion

In this work, we compare Conceptual Captions
and Visual Genome to analyze and determine
which type of training set performs better Guided
Image Captioning on out-of-domain data. We
show that although Visual Genome has human-
annotated object-level captions and a higher num-
ber of unique tokens, training on the Conceptual
Captions dataset with web-collected image-level
captions that have a high diversity of writing styles
and are image-dependent (unlike Visual Genome
which has many image-independent target cap-
tions) produces better guided captions on out-of-
domain data. Our results suggest that creating a
good guided image captioning training set does
not require laborious human annotations and that
building these datasets by automatically scraping
the internet which has the side effect of being more
easily scaled-up can lead to better performance.
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A Examples of Human Evaluation Form

“Right Hind Leg”

Guiding Object

Generated Image Caption: It’s the right hind leg of a young zebra

Is the guiding object present in the image?

No Yes

If you answered “No” to the previous question, then skip the rest of the questions below.

1. For someone who cannot see the image, does the caption provide additional information 
about the object?

3. Does the caption read fluently?

Not fluent Fully fluent

No useful 
info provided

Some useful 
info provided

Key info 
provided

2. Is the additional information correct?

Incorrect Partially Correct Correct

Image
A caption focused on the guiding object is automatically generated for the image.

Figure 6: Human evaluation form for raters to rate pre-
dicted captions.

“police officers”

Guiding Object

Generated Image Caption: two police officers

Is the guiding object present in the image?

No Yes

If you answered “No” to the previous question, then skip the rest of the questions below.

3. Does the caption read fluently?

Not fluent Fully fluent

No useful info 
provided

Some useful info 
provided

Key info 
provided

Incorrect Partially Correct Correct

Image

A caption focused on the guiding object is automatically generated for the image.

1. For someone who cannot see the image, does the caption provide additional information about the object?

2. Is the additional information correct?

Figure 7: Example human evaluation form with caption
that should receive partial score for informativeness.


