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Abstract

Language grounding aims at linking the sym-
bolic representation of language (e.g., words)
into the rich perceptual knowledge of the out-
side world. The general approach is to embed
both textual and visual information into a com-
mon space -the grounded space- confined by
an explicit relationship. We argue that since
concrete and abstract words are processed dif-
ferently in the brain, such approaches sacrifice
the abstract knowledge obtained from textual
statistics in the process of acquiring percep-
tual information. The focus of this paper is
to solve this issue by implicitly grounding the
word embeddings. Rather than learning two
mappings into a joint space, our approach inte-
grates modalities by implicit alignment. This
is achieved by learning a reversible mapping
between the textual and the grounded space
by means of multi-task training. Intrinsic and
extrinsic evaluations show that our way of vi-
sual grounding is highly beneficial for both ab-
stract and concrete words. Our embeddings
are correlated with human judgments and out-
perform previous works using pretrained word
embeddings on a wide range of benchmarks.
Our grounded embeddings are publicly avail-
able here.

1 Introduction

The distributional hypothesis asserts that words oc-
curring in similar contexts are semantically related
(Harris, 1954). Current state-of-the-art word em-
bedding models (Pennington et al., 2014; Peters
et al., 2018a), despite their successful application
to various NLP tasks (Wang et al., 2018), suffer
from the lack of grounding in general knowledge
(Harnad, 1990; Burgess, 2000), such as captured
by human perceptual and motor systems (Pulver-
müller, 2005; Therriault et al., 2009). To overcome
this limitation, research has been directed to link-
ing word embeddings to perceptual knowledge in
visual scenes. Most studies have attempted to bring

visual and language representations into close vicin-
ity in a common feature space (Silberer and Lapata,
2014; Kurach et al., 2017; Kiela et al., 2018).

However, studies of human cognition indicate
that the brain processes abstract and concrete words
differently (Paivio, 1990; Anderson et al., 2017)
due to the difference in associated sensory per-
ception. According to Montefinese (2019), sim-
ilar activity for both categories are observed in
the perirhinal cortext, a region related to memory
and recognition, whereas in the parahippocampal
cortex, associated with memory formation, higher
activity only occurs for abstract words.

We argue that forcing the textual and visual
modalities to be represented in a shared space
causes grounded embeddings to suffer from the
bias towards concrete words as reported by Park
and Myaeng (2017); Kiela et al. (2018). Therefore,
we propose a zero-shot approach that implicitly in-
tegrates perceptual knowledge into pre-trained tex-
tual embeddings (GloVe (Pennington et al., 2014)
and fastText (Bojanowski et al., 2017)) via multi-
task training. Our approach learns multifaceted
grounded embeddings which capture multiple as-
pects of words’ meaning and are highly beneficial
for both concrete and abstract words.

Figure 1 lays out the architecture of our model.
It learns a reversible mapping from pre-trained text-
based embeddings to grounded embeddings which
maintains the linguistic co-occurrence statistics
while integrating visual information. The architec-
ture features a similar structure as an auto-encoder
(Press and Wolf, 2017) translating from words to
grounded space and back. The training is carried
out as multi-task learning by combining image cap-
tioning in two directions and image-sentence pair
discrimination. At the core is a mapping matrix
that acts as an intermediate representation between
the grounded and textual space, which learns to
visually ground the textual word vectors. This map-
ping is trained on a subset of words and then is

https://github.com/Hazel1994/Visually_Grounded_Word_Embeddings
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Figure 1: Our zero-shot model: 1. Two GRU based language-model tasks in forward (Gf ) and backward (Gb)
directions represented by solid black and dashed red lines. 2. A matching task predicting if the given (sentence,
image) pair match (blue dotted line). The zero-shot mapping matrix M , shared by all the tasks, learns to visually
ground the textual word vectors by learning a reversible mapping from textual space to grounded space.

applied to ground the full vocabulary of textual
embeddings in a zero-shot manner.

We evaluate our grounded embeddings on both
intrinsic and extrinsic tasks (Wang et al., 2019)
and show that they outperform textual embeddings
and previous related works in the majority of cases.
Overall, our contributions are the following:
a) we design a language grounding framework that
can effectively ground different pre-trained word
embeddings in a zero-shot manner;
b) we create visually grounded versions of two
popular word embeddings and make them publicly
available;
c) unlike many previous works, our embeddings
support both concrete and abstract words;
d) we show that visual grounding has the potential
to refine the irregularities of a text-based vector
space.

2 Related Works

The many attempts to combine images and text in
order to obtain visually grounded word/sentence
representations can be grouped into the following
categories.
Feature Level Fusion: where the grounded em-
bedding is the result of combining the visual and
textual features. Combining strategies range from
simple concatenation to adopting SVD and GRU
gating mechanisms (Bruni et al., 2014; Kiela and
Bottou, 2014; Kiros et al., 2018).
Mapping to Perceptual Space: this is usually a
regression task predicting the image vector given
its corresponding textual vector. The grounded
embedding are extracted from an intermediate

layer in auto-encoders (Silberer and Lapata, 2014;
Hasegawa et al., 2017), the output of an MLP (Col-
lell Talleda et al., 2017) or an RNN (Kiela et al.,
2018). Another method is mapping both modali-
ties into a common space in which their distance is
minimized (Kurach et al., 2017; Park and Myaeng,
2017).
Equipping Distributional Semantic Models
with Visual Context: here images are treated as
a context in the process of computing the word
vectors. Many of these approaches modify the
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) models by incorporating image
features to the context for concrete words (Hill and
Korhonen, 2014; Kottur et al., 2016; Zablocki et al.,
2017; Ailem et al., 2018); minimizing the max-
margin loss between the image-vector and its corre-
sponding word vectors (Lazaridou et al., 2015); pro-
viding social cues based on child-directed speech
along with visual scenes (Lazaridou et al., 2016); or
by extracting the relationship between words and
images using multi-view spectral graphs (Fukui
et al., 2017).
Hybrid: this category covers the combination of
previous methods and other strategies. Here, the
grounded word vectors are usually the results of
updating the textual word vectors during training
(Mao et al., 2016) or the output of sentence en-
coders such as LSTM (Hochreiter and Schmidhu-
ber, 1997). Such methods include predicting the
image vector along with training a language model
(Chrupała et al., 2015) or generating an alterna-
tive caption at the same time (Kiela et al., 2018).
Other approaches such as using the coefficients of
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classifiers for grounded representation have also
emerged (Moro et al., 2019). Our model falls in the
hybrid category as we take a multitasking approach.
However, unlike some previous works (Kiela et al.,
2018; Collell Talleda et al., 2017; Bordes et al.,
2019) we do not impose explicit constraints be-
tween the image features and their captions. Our
model learns the relationship indirectly via multi-
task training.

3 Multi-Task Visual Grounding

In this section, we present the details of the de-
veloped method. The training data set D con-
sists of image–caption pairs, (Sk, Ik) ∈ D, with
Sk = [w1, w2...wn] being a sentence with n
words describing the image Ik. We use the Mi-
crosoft_COCO_2017 dataset (Lin et al., 2014)
in our experiments. Let Te(w) ∈ Rd be a pre-
trained textual embedding of the word w, which
has been trained on textual data only (e.g., GloVe).
The objective is to train a mapping matrix M to
ground the word vector Te(w) visually, resulting
in a grounded embedding Ge(w) = Te(w) · M ,
where Ge(w) ∈ Rc. To do so, we train the ma-
trix M to refine the textual vector space via two
image-based language model tasks and a binary
discrimination task on image-sentence pairs. For
the language models, a GRU (Cho et al., 2014) is
trained to predict the next word, given the previous
words in the sentence provided as image caption,
and its associated image vector. The transpose of
the textual embedding Te is used to compute the
probability distribution over the vocabulary (see
Figure1). We employ an identical scenario to form
a second language model task using another GRU,
where the sentence is fed backward into the model.

The image-sentence discrimination is a binary
classification task predicting whether the given
sentence Sk represented in the grounded space
matches the image Ik. By training the model simul-
taneously on these three tasks confined by a linear
transformation, we augment the visual information
into the grounded embeddings (output of mapping
matrix in Figure 1) while preserving the underlying
structure of the textual embeddings.

3.1 Language Model

Given the input caption associated with image Ik as
Sk = [w1, w2...wn], we first encode the words us-
ing a pre-trained textual embedding Te to obtain the
embeddings as St = [t1, t2...tn]. We then linearly

project these embeddings from the textual space
into the visually grounded space via the trainable
mapping matrixM asGe(Sk) = St ·M , to obtain a
series of grounded vectors Ge(Sk) = [x1, x2...xn]
where xi ∈ Rc. In the grounded space, the per-
ceptual information of the image Ik correspond-
ing to Sk is fused using a single-layer GRU (Gf

(f–forward) in Figure 1) that predicts the next out-
put ht+1 = GRUf (xt, ht|θ), where θ denotes the
trainable parameters, xt the current input (Ge(wt)),
and ht ∈ Rc the current hidden state.

Image information is included by initializing the
first hidden state h0 with the image vector of Ik.
The GRU update gate propagates perceptual knowl-
edge from images into the mapping matrix. This
has been shown to be more effective than providing
the image vector at each time step as input (Mao
et al., 2016).

The transpose of the mapping matrix (M>) is
used to map back from grounded space to the tex-
tual space. That is, the output of the GRU in each
time-step is mapped back into the textual space as
wnext = ht · M>, where wnext ∈ Rd is an ap-
proximation of the next word’s textual embedding.
The mapping matrix M is used to both encode and
decode into/from the grounded space. This im-
proves generalization (Press and Wolf, 2017) and
prevents the vanishing gradient problem compared
to the case where the mapping matrix is only used
at the beginning of the network (Mao et al., 2016).
wnext is fed into the transpose of the textual embed-
dings in the same scenario: z = T>e (wnext), where
z ∈ R|V | and V indicates the vocabulary. The final
probability distribution over V is computed by a
softmax:

P (y = j|z) =
ez

>Wj∑V
c=1 e

z>Wc
(1)

Defining the input (previous words and the image
vector) and the predicted output (next word predic-
tion) as above, we minimize the categorical cross
entropy which is computed for batch B as:

LFW (θ) = − 1

|B|
∑
i∈B

∑
c∈V

yi,clog(ŷi,c), (2)

Where ŷi,c and yi,c are the predicted probability
and ground truth for sample i with respect to the
class c.

Moreover, we define a second similar task:
Given the input caption associated with image Ik
as Sk = [w1, w2...wn], we reverse the order of
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the words: Sk = [wn, wn−1...w1] and use another
GRU (Gb (b–backward) in Figure 1) with identical
structure trained on the loss LBW (θ). The rest of
the network is shared between these two tasks. Hav-
ing this backward language model is analogous to
bi-directional GRUs (Schuster and Paliwal, 1997)
which, however, can not be used directly since the
ground truth would be exposed by operating in both
directions.

3.2 Image-sentence discrimination

Even though context-driven word representations
are a powerful way to obtain word embeddings
(Pennington et al., 2014; Peters et al., 2018a), the
performance of such models varies on language-
vision tasks (Burns et al., 2019). Therefore, we
propose yet another task to align the textual word
vectors to their real-world relations in the images.
The discrimination task predicts whether the given
image and sentence describe the same content or
not (shown by ‘caption-image match?’ in Figure 1).
These types of tasks have been shown effective for
learning cross-modality representations (Lu et al.,
2019; Tan and Bansal, 2019).

Given the input caption for image Ik as Sk =
[w1, w2...wn], after projecting the embeddings into
the grounded space as before, we encode the whole
sentence by employing a third single-layer GRU
(Gm in Figure 1) with the same structure as before
hn = GRUm(Ge(Sk), h0|θ). Where the last out-
put hn encodes the whole sentence. h0 is again
initialized with the image vector of Ik. The final
output is computed by a sigmoid function. This
task shares the mapping matrix M and the textual
embeddings Te. We minimize the binary cross en-
tropy, which could be computed for each batch as:

LB(θ) = − 1

|B|
∑
i∈B

yilog(ŷi)+(1−yi)log(1− ŷi)

(3)
For negative mining, half of the captions in each
batch are replaced with captions of different, ran-
dom images.

3.3 Regularization and overall loss

All the three tasks explained above share the pre-
trained textual embeddings (see Figure 1) which
gives rise to the question of whether the textual
embeddings should be updated or kept fixed dur-
ing training. By updating, we might distort the
pre-trained semantic relations, especially given our

limited training data. Keeping them fixed, on the
other hand, does not provide the flexibility to gen-
erate the desired grounding as these embeddings
are noisy and not perfect (Yu et al., 2017). To pre-
vent distorting the semantic information of words
while retaining sufficient flexibility, we propose the
following regularization on the embedding matrix
Te:

R(α, β) =
α

|V |
∑
w∈V

∣∣∣∣β − we · wn

‖we‖‖wn‖

∣∣∣∣, (4)

where α controls the overall impact and β controls
how much the new word vectors wn are allowed to
deviate from the pre-trained embedding we. β = 1
indicates no deviation and β = 0 allows for up to
90 degree deviation from wn when minimizing the
equation. We join all the tasks into a single model
and minimize the following loss:

LAll(Θ) = LFW (θ)+LBW (θ)+LB(θ)+R(α, β)
(5)

where Θ denotes all the trainable parameters.

4 Experimental setup

We use the Microsoft_COCO_2017 dataset (Lin
et al., 2014) for training. Each sample contains
an image with 5 captions. The dataset is split into
118k train and 5k validation samples. Each batch
includes 256 image vectors along with one of their
captions. Hence, multiple image vectors might oc-
cur in each batch. Image vectors are obtained by
transferring the penultimate layer of pre-trained
Inception-V3 (Szegedy et al., 2016) trained on
ImageNet (Deng et al., 2009). A NN with one
hidden layer and tanh activation is employed to
project the image vectors into the initial hidden
state of the GRUs: ht ∈ R1024. We lowercase all
the words, delete the punctuation marks, and only
keep the top 10k most frequent words. Two pop-
ular pre-trained textual word embeddings namely
GloVe (crawl−300d−2.2M−cased) and fastText
(crawl − 300d − 2M − SubW ) are used for ini-
tialization of the embedding Te. The mapping ma-
trix M transforms the textual embeddings into the
grounded space. We investigate the best dimension
of this step and the improvement over pure textual
embeddings in the next sections. Batch normaliza-
tion (Ioffe and Szegedy, 2015) is applied after each
GRU. For the regularization,R(α = 0.001, β = 1)
for GloVe and R(α = 0.01, β = 0) for fastText
yielded the best relative results by meta parame-
ter search. This shows that FastText embeddings
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require more deviation (β = 0 indicates 90 de-
gree deviation) to adapt to the proposed tasks. We
trained the model for 20 epochs with 5 epochs tol-
erance early stopping using NAdam (Dozat, 2016)
with a learning rate of 0.001.

As we train a single mapping matrix M for pro-
jecting from textual to grounded space, it can be
used after the training to transfer out-of-vocabulary
(OoV) word-vectors into the grounded space in a
zero-shot manner. This way, visually grounded
versions of both Glove and fastText are obtained
despite being exposed to only 10k words.

5 Evaluations

While the question of what is a good word embed-
ding model is still open (Wang et al., 2019), there
are two main categories of evaluation methods:
intrinsic and extrinsic. Intrinsic evaluators measure
the quality of word embeddings independent of
any downstream tasks. For instance, quality can
be assessed by comparing similarities between
embeddings with word similarities as perceived
by human raters. Extrinsic evaluators on the
other hand assess the performance based on
sentence-level downstream tasks. There is not
necessarily a positive correlation between intrinsic
and extrinsic methods for a word embedding
model (Wang et al., 2019). Nonetheless, we use
both types of evaluators to compare our visually
grounded embeddings with those presented in
related works as well as to purely text-based
embeddings.
Baselines: we considered two types of embed-
dings as baselines 1) the pre-trained textual
embeddings Te, 2) Te refined based only on the
captions without injecting any image information
using a similar language modeling task LFW with
a one-layer GRU (ht ∈ R1024 ) followed by a fully
connected layer. We refer to the second baseline as
C_GloVe and C_fastText for Glove and fastText
trained only on captions.
Intrinsic Evaluators: We evaluate on some of the
common lexical semantic similarity benchmarks:
MEN (Bruni et al., 2014), SimLex999 (Hill et al.,
2015), Rare-Words (Luong et al., 2013), MTurk771
(Halawi et al., 2012), WordSim353 (Finkelstein
et al., 2001), and SimVerb3500 (Gerz et al., 2016).
The evaluation metric is the Spearman correlation
between the predicted cosine similarity vector and
the ground truth.

Extrinsic Evaluators: We evaluate on the seman-
tic textual similarity benchmarks (STS) from year
2012 to 2016 using SentEval (Conneau and Kiela,
2018). Here, the task is to measure the seman-
tic equivalence of a pair of sentences solely based
on their cosine coefficient. We are particularly in-
terested in these benchmarks for two reasons. 1)
They evaluate the generalization power of the given
vector space without any fine-tuning. 2) Since
they contain sentences from various sources such
as news headlines and public forums, they reveal
whether abstract knowledge is still preserved by our
framework. We used BoW (averaging) to obtain
sentence representations. While BoW is a simple
sentence encoder, it is a great tool to evaluate the
underlying structure of a vector space. For instance,
the BoW representation of a pair of sentences such
as ‘her dog is very smart’ and ‘his cat is too dumb’
are, unfortunately, very similar in a vector space
that does not distinguish dissimilar from related
words (e.g., smart and dumb). We will show that
our model properly refines the textual vector space
and alleviates these kinds of irregularities.

Model RW MEN WSim MTurk SimVerb SimLex Mean
353 771 3500 999

GloVe 45.5 80.5 73.8 71.5 28.3 40.8 56.7
C_GloVe 46 82.1 74.1 72.3 29.3 43.3 57.85
VGE_G 52.6 85.1 78.9 73.4 37.4 51.8 63.2
FastText 56.1 81.5 72.2 75.1 37.8 47.1 61.6
C_fastText 49.2 68.3 58.1 56.8 30.3 41.9 50.76
VGE_F 57.8 83.6 73.9 76.1 39.2 49.0 63.2

Table 1: Intrinsic evaluation. Visual grounding (de-
noted by ‘VGE’) improves the results compared to the
baselines on all test sets.

Model RW MEN WSim MTurk SimVerb SimLex
353 771 3500 999

VGE_G 52.6 85.1 78.9 73.4 37.4 51.8
VGE_F 57.8 83.6 73.9 76.1 39.2 49.0
Cap2Both 48.7 81.9 71.2 _ _ 46.7
Cap2Img 52.3 84.5 75.3 _ _ 51.5
Park et al. _ 83.8 77.5 _ _ 58.0
Park_VG. _ _ _ _ _ 15.7
Collell et al. _ 81.3 _ _ 28.6 41.0

Table 2: Comparison of grounded embeddings to previ-
ous work on intrinsic tasks. Ours are denoted by VGE.

6 Results

Intrinsic Evaluation – Baselines: Table 1 shows
the intrinsic evaluation results for the baselines and
our visually grounded embeddings (VGE_F and
VGE_G for visually grounded fastText and Glove
respectively). In general, fastText performs bet-
ter on word-level tasks compared to GloVe, prob-
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ably because it provides more context for each
word by leveraging from its sub-words. The re-
sults also validate the efficacy of our proposed
model since updating the embeddings on captions
alone (C_fastText and C_GloVe) brings subtle or
no improvements. By the proposed visual ground-
ing, significant improvements are achieved on all
datasets for both fastText and GloVe. Analyz-
ing why the improvement varies across different
datasets is difficult. However, the table reveals in-
teresting properties. For instance, the improvement
on SimLex999, which focuses more on the similar-
ity between words, is larger than that on WSim353,
which does not distinguish between similarity and
relatedness. Hence, visual grounding seems to pri-
oritize similarity over relatedness. Considering the
overall performance, it enhances both embeddings
to the same level despite their fundamental differ-
ences.

Intrinsic Evaluation – Grounded Embeddings:
We compare our model to related grounded em-
beddings by (Collell Talleda et al., 2017; Park and
Myaeng, 2017; Kiros et al., 2018; Kiela et al., 2018)
(Table 2). We limit our comparison to those who
adopted the pre-trained GloVe or fastText since
these pre-trained models alone outperform many
visually grounded embeddings such as (Hasegawa
et al., 2017; Zablocki et al., 2017) on many of our
evaluation datasets.

Conceptually, Kiela et al. (2018) also induces
visual grounding on GloVe by using the MSCOCO
data set. Even though they propose a number of
tasks for training (Cap2Img: predicting the image
vector from its caption, Cap2Cap: generate an alter-
native caption of the same image; Cap2Both: train-
ing by Cap2Cap and Cap2Img simultaneously) our
model clearly outperforms them as ours integrate
visual information without degraded performance
on abstract words.

Park and Myaeng (2017) proposed a polymodal
approach by creating and combining six different
types of embeddings (linear and syntactic contexts,
cognition, sentiment, emotion, and perception) for
each word. Even though they used two pre-trained
embeddings (GloVe and Word2vec) and other re-
sources, our model still outperforms their approach
on MEN and WSim353, but their approach is better
on Simlex999. This performance can be attributed
to the many-modality training as using only their vi-
sually grounded embeddings (Park_VG) performs
much worse. This clearly shows that their visual

embeddings do not benefit abstract words (cf. Park
and Myaeng, 2017). In summary, our approach ben-
efits from capturing different perspectives of the
words’ meanings by learning the reversible map-
ping in the context of multi-task learning.

Fine-Grained Intrinsic Evaluation: we further
evaluate our model on the different categories of
SimLex999 divided into nine sections: all (the
whole dataset), adjectives, nouns, verbs, concrete-
ness quartiles (from 1 to 4 increasing the degree
of concreteness), and hard pairs. The hard sec-
tion indicates 333 pairs whose similarity is hard
to discriminate from relatedness. The results for
our best embeddings on SimLex999 (VGE_G) are
shown in Table 3. We see a large improvement over
GloVe in all categories. Some previous approaches
such as (Park and Myaeng, 2017) concluded that
perceptual information would be beneficial only to
concrete words (e.g., apple, table) and would ad-
versely affect abstract words (e.g., happy, freedom).
However, our model succeeds in maintaining high-
precision co-occurrence statistics from the textual
model while augmenting these with perceptual in-
formation, in such a way that the representations
for abstract words are actually enhanced. There-
fore, it outperforms GloVe not only on concrete
pairs (conc-q4) but also on highly abstract pairs
(conc-q1).
We compared the results on SimLex999 with an-
other recent visually grounded model called Pic-
turebook (Kiros et al., 2018), which employs a
multi-modal gating mechanism (similar to a LSTM
and GRU update gate) to fuse the Glove and Pic-
turebook embeddings (Table 3). It uses image fea-
ture vectors pre-trained on a fine-grained similarity
task with 100+ million images (Wang et al., 2014).
Picturebook’s performance is highly biased toward
concrete words (conc-q3, conc-q4) and performs
worse than GloVe by nearly 29% on highly abstract
words (conc-q1). Picturebook + GloVe on the other
hand shows better results but still performs worse
on highly abstract words and adjectives. Our model
(VGE_G) can generalize across different categories
and outperforms Picturebook+Glove with a large
margin on most of the categories while being quite
comparable on the others.

Refining the Textual Vector Space: Our
grounded embeddings, while improving related-
ness scores, prioritize similarity over relatedness.
This is further demonstrated through inspection of
nearest neighbors (Table 5). Given the word ‘bird’,
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Model All Adjs Nouns Verbs Conc-q1 Conc-q2 Conc-q3 Conc-q4 Hard
GloVe 40.8 62.2 42.8 19.6 43.3 41.6 42.3 40.2 27.2
VGE_G (ours) 51.8 72.1 52.0 35 53.1 54.8 47.4 56.8 38.3
Picturebook 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8
Picturebook+GloVe 45.5 46.2 52.1 22.8 36.7 41.7 50.4 57.3 32.5

Table 3: SimLex999 (Spearman’s ρ) results. Conc-q1 and Conc-q4 contain the most abstract and concrete words
respectively. Our embeddings (VGE_G) generalize across different word types and strongly outperform all the
others on most of the categories.

Model STS12 STS13 STS14 STS15 STS16 Mean
GloVe 52.25 49.59 54.72 56.25 51.39 52.84
C_GloVe 53.27 50.56 56.72 57.86 52.11 54.10
VGE_G 55.31 57.24 65.54 67.61 65.87 62.35
Fasttext 22.95 24.63 31.37 37.71 29.34 29.2
C_fasttext 29.69 23.80 37.58 45.29 29.34 33.14
VGE_F 31.78 32.26 42.51 48.79 38.15 38.70
VGE_G (ours) 55 57 66 68 66 62.40
Word2vec 52 58 66 68 65 61.80
ELMo (top_layer) 54 49 62 67 63 59.00
ELMo (all_layers) 55 51 63 69 64 60.40
Power-mean 54 52 63 66 67 60.40

Table 4: Comparison (Pearson correlation ×100) of
our embeddings (VGE_*) with baselines (first two sec-
tions) and other word embeddings (bottom) on STS.

GloVe returns ‘turtle’ and ‘nest’ while grounded
GloVe returns ‘sparrow’ and ‘avian’, which both
reference birds. Moreover, our embeddings retrieve
more meaningful words regardless of the degree
of abstractness. For the word ‘happy’ for exam-
ple, GloVe suffers from a bias toward dissimilar
words with high co-occurrence such as ‘everyone’,
‘always’, and ‘wish’. This issue is intrinsic to the
fundamental assumption of the distributional hy-
pothesis that words in the same context tend to
be semantically related. Therefore, Glove embed-
dings, even though trained on 840 billion tokens,
still reports antonyms such as ‘smart’ and ‘dumb’
as very similar. In addition, common misspellings
of words (e.g., ‘togther’) while serving the same
role, occur with different frequencies in changing
context. Hence, they are pulled apart in purely text-
based vector spaces. However, our visual ground-
ing model clearly puts them in the same cluster.
Our model therefore seems to refine the text-based
vector space by aligning it (via the mapping ma-
trix) with real-world relations (in the images). This
refinement generalizes to all the words by using
our zero-shot mapping matrix which explains the
improvement on highly abstract words. A sample
of nearest neighbors for FastText and VGE_F is
available in Appendix B. However, since FastText
already performs quite well on intrinsic tasks, the
difference with its grounded version is subtle which
also confirms the results in Table 1.

Extrinsic Evaluation: Table 4 shows the results
on semantic similarity benchmarks. Both grounded
embeddings strongly outperform their textual ver-
sion on all benchmarks. While fastText outper-
forms GloVe on intrinsic tasks, GloVe is superior
here. The reason might be that unlike fastText
GloVe treats each word as a single unit and takes
into account the global co-occurrences of words.
This probably helps to capture the high-level struc-
ture of words (e.g., in sentences). Considering the
mean score, our model boosts both embeddings
approximately by 10 percent.
Furthermore, while we are well aware that our
simple averaging model cannot compete with the
state-of-the-art sequence models (Gao et al., 2021)
on the sentence level STS task, we compare it to
other word embeddings to highlight the contribu-
tion of visual grounding. Table 4 (bottom) shows
the results of our best model (VGE_G) with other
textual word embeddings namely ELMo (Peters
et al., 2018b), Word2Vec (Mikolov et al., 2013),
and Power-Mean (Rücklé et al., 2018) reported by
(Perone et al., 2018). While the textual GloVe is
the second-worst model (by mean score: 52.84)
in the table, its grounded version VGE_G is the
best one. Overall, these results confirm that 1) our
grounding framework effectively integrates percep-
tual knowledge that is missing in purely text-based
embeddings and 2) visual grounding is highly ben-
eficial for downstream language tasks. It would be
interesting to see if our findings extend to grounded
sentence embedding models (Sileo, 2021; Bordes
et al., 2019; Tan and Bansal, 2020) for instance by
training transformer-based models such as BERT
(Devlin et al., 2018) on top of our embeddings.
However, we postpone this to the future since our
focus here is on grounding word embeddings.

7 Model Analysis

We further analyze the performance of our model
from different perspectives as follows.
Dependency on the Encoding Dimension c: We
train our model with different dimensions of the
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happy sad big bird horse together smart
G V G V G V G V G V G V G V

lucky pleased sadly saddened hard humongous turtle sparrow dog racehorse well togeather sensible witty
everyone delighted shame tragic little Big nest Birds riding Thoroughbred bring togheter dumb shrewd

love merry horrible mournful squirrel avian ponies Horses both toegther sophisticated inteligent
always thrilled scared saddening donkey steed they togather attractive resourceful
wish joyful awful sorrowful apart togethor wise quick-witted
hope hapy pity Sad up 2gether

kinda heartbreaking them togehter
sorry heartbroken put togther

along toghether
with gether

Table 5: Results of 10 nearest neighbors for Glove (G) and VGE_G (V). Only the differing neighbors are reported.
While GloVe retrieves more related words, ours (VGE_G) focuses on similar words. Overall, VGE_G is closer to
human judgment and retrieves highly semantically similar words.

Dataset Best α Acc. with best α Acc. with α = 1

RareWords 1.00 52.6 52.6
MEN 0.63 85.2 85.1
WSim353 0.57 79.3 78.9
Mturk771 0.52 74.2 73.4
SimVerb3500 1.00 37.4 37.4
SimLex999 1.00 51.8 51.8

Table 6: Sensitivity analysis (Spearman’s ρ) on intrin-
sic datasets. α = 1 indicates no use of GloVe and
α = 0 means no use of VGE_G. Pure grounded embed-
dings alone yield the best results on 3 of the datasets.

Embeddings LFW LFW + LBW LFW + LBW + LB LAll +R(α, β)

VGE_G 61.60 61.82 62.66 63.20
VGE_F 61.70 61.83 61.60 63.20

Table 7: Mean score (Spearman’s ρ) on intrinsic
datasets with respect to each task. LAll refers to all
the three tasks andR(α, β) the regularization loss.

grounded embeddings and measure the mean ac-
curacy of all the intrinsic datasets. Table 8 shows
the results using GloVe and VGE_G with different
sizes. Significant improvement is already achieved
keeping the original dimension of GloVe (300).
Higher dimensions up to a certain threshold (1024)
increase the accuracy but beyond this point, the
model starts to overfit.
Dependency on the Textual Embeddings: Fur-
ther, we analyze how much of GloVe’s original
properties are maintained by the visual ground-
ing. Given Vw and Gw as the VGE_G and GloVe
vectors for the word w, we create a vector con-
taining both embeddings Ew = [(1−α)Gw;αVw].
Varying the relative weight α ∈ (0, 1] we eval-
uate on the intrinsic datasets in Table 6. Three
of the datasets yield the best results using only
the grounded embeddings. The reduction in ac-
curacy regarding ‘MEN’ is also very subtle. On
‘WSim353’ and ‘Mturk771’, however, the best re-
sults are achieved with α ≈ 0.5. This might be

Model_dimensions G_300 V_300 V_512 V_800 V_1024 V_2048
Mean Score 56.7 62.4 62.6 63.1 63.2 62.5

Table 8: Effect of grounded word-vectors magni-
tude on intrinsic tasks. ‘G’ and ‘V’ refers to Glove
and VGE_G respectively. Significant improvement is
achieved even with the same size as the textual GloVe.

because these datasets focus on the relatedness of
words while SimLex999 for instance distinguishes
between similarity and relatedness.

Ablation Study: We further analyze the contribu-
tion of each task by performing an ablation eval-
uation. Table 7 shows the mean score on all the
intrinsic datasets (see Table 1) with respect to each
loss for both embeddings. While both GloVe and
FastText show the same behaviour for language
model tasks, fastText embeddings require more de-
viation (β = 0 in R(α, β)) to adapt to the binary
discrimination task (LBW ). Textual embeddings
Te were frozen for all the cases except for LAll.
Even though the best performance, considering all
the datasets, is achieved by using all the losses (in-
cluding the regularization), each loss contributes
differently to the overall performance. A more
detailed ablation study based on the SimLex999
dataset is provided in Appendix A.
Connections to Human Cognition: Motivated by
the different processing patterns of abstract and
concrete words in the brain Montefinese (2019),
we showed that it is possible to benefit from visual
information without learning the two modalities in
a joined space. Our experiments show that leverag-
ing visual knowledge to inform the distributional
models about the real world might be a better way
of integrating language and vision. These modali-
ties while separated could be informed and aligned
with each other.
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8 Conclusion

We investigated the effect of integrating perceptual
knowledge from images into word embeddings via
multi-task training. We constructed the visually
grounded versions of GloVe and fastText by
learning a zero-shot transformation from textual to
grounded space trained on the MSCOCO dataset.
Results on intrinsic and extrinsic evaluation
support that visual grounding benefits current
textual word embedding models. The major
findings in our experiments are as follows:
a) Our improvement of visual grounding is not
limited to words with concrete meanings and
covers highly abstract words as well.
b) Discrimination between relatedness and
similarity is more precise when using grounded
embeddings.
c) Perceptual knowledge can profitably be trans-
ferred to purely textual downstream tasks.

Moreover, we showed that visual grounding has
the potential to refine the irregularities in textual
vector spaces by aligning words with their real-
world relations. This paves the way for future
research on how visual grounding could resolve
the problem of dissimilar words that occur fre-
quently in the same context (e.g., small and big). In
the future, we will investigate whether transformer
blocks could profitably replace the GRU cells since
they lead the state-of-the-art in many downstream
sentence tasks. Moreover, while thus far our focus
has been on words, a similar approach could be
extended to obtain grounded sentence representa-
tions.
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9 Appendix

A Fine-Grained Ablation Study

In this section, we provide a more detailed abla-
tion study based on the SimLex999 dataset for both

FastText and GloVe. Shown in Table 10, the results
reveal interesting findings. The binary discrim-
ination task (LB) is the most beneficial one for
adjectives in the case of both embeddings. This
improvement arguably comes from the missing in-
formation in textual representations such as shapes,
colors, and sizes of the objects which are fused
by this cross-modality alignment. LB also boosts
the performance of the ‘Hard’ section in which
similarity is hard to distinguish from relatedness.
The reason probably lies in the shift of focus to-
ward similarity (see Table 5) which makes it easier
to distinguish between similarity and relatedness.
The language model tasks (LFW and LBW) seem
to contribute the most to nouns and verbs describ-
ing the scenes in the images. Moreover, our best
model (LAll +R(α, β)), regarding all the datasets,
does not achieve the best result here because each
dataset focuses on a different aspect of the lan-
guage (e.g, similarity or relatedness). However,
our final embeddings incorporate the information
from different perspectives and improve on all the
datasets.

B Refining the Textual Vector Space

Similar to the visually grounded GloVe embed-
dings, the grounded FastText (VGE_F) also refine
the irregularities of textual vector space (referring
to Section 6). Examples of differing nearest neigh-
bors are reported in Table 9. Since FastText per-
forms quite well on word-level tasks, the difference
is very subtle. The improvement seems to mainly
fall into alleviating the antonym problem (e.g, for
‘democracy’ in the table) and clustering typos to-
gether (e.g, ‘medicine’ and ‘medecine’). We can
also observe tokens such as ‘round.And’ that Fast-
Text’s tokenizer has failed to split but have been
cluster together by our approach. Overall, the table
confirms the results in Table 1.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/D17-1056
https://doi.org/10.18653/v1/D17-1056


170

democracy possible excited round medicine flawlessly arrogantly
F V F V F V F V F V F V F V

dictatorship democracy. necessary possibile excitied EXCITED round.And round.It medical medecine flawless Flawlessly foolishly haughtily
impossible possible.So anxious excited- rounded round.The pharmacology pharmaceuticals

oval -round medication medcine
roundin round.Now

Table 9: Results of 10 nearest neighbors for FastText(F) and VGE_F (V). Only the differing neighbors are reported.

Model SimLex999 Adjs Nouns Verbs Conc-q1 Conc-q2 Conc-q3 Conc-q4 Hard
GloVe 40.8 62.2 42.8 19.6 43.3 41.6 42.3 40.2 27.2
LB 42.5 70.1 41.3 25.1 45.8 45.9 43.8 46.6 28.1
LFW 52.6 70.1 53.1 37.8 54.4 54 49.3 55.2 38
LFW + LBW 52.5 69.7 52.6 40.6 55.5 54.1 48.7 55.4 38.3
LFW + LBW + LB 52.5 69.8 53.5 37.7 53.3 53.8 48.7 58 39.3
LAll +R(α, β) 51.8 72.1 52.0 35 53.1 54.8 47.4 56.8 38.3
Fasttext 47.1 59.8 50.5 31.5 46.4 46.8 48.5 52 29.6
LB 38.5 64.9 41.7 23.8 37.2 37 41.2 48 26.2
LFW 50.2 59 55.8 37.1 47.1 46.1 51.9 60.2 32.1
LFW + LBW 50.8 59.3 57.3 36 46.1 46.2 53.1 62.3 32.7
LFW + LBW + LB 50.8 60.6 57.1 35.8 48.1 46.4 52.7 61.3 33.4
LAll +R(α, β) 49.0 58.6 54.1 32.9 45.3 46.7 51.3 57.7 31.3

Table 10: Fine-grained ablation study on SimLex999 (Spearman’s ρ). Conc-q1 and Conc-q4 contain the most
abstract and concrete words respectively. The hard section includes a set of word-pairs in which similarity is hard
to distinguish from relatedness


