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Abstract

This paper demonstrates discopy, a novel
framework that makes it easy to design com-
ponents for end-to-end shallow discourse pars-
ing. For the purpose of demonstration, we im-
plement recent neural approaches and integrate
contextualized word embeddings to predict ex-
plicit and non-explicit discourse relations. Our
proposed neural feature-free system performs
competitively to systems presented at the lat-
est Shared Task on Shallow Discourse Pars-
ing. Finally, a web front end is shown that
simplifies the inspection of annotated docu-
ments. The source code, documentation, and
pretrained models are publicly accessible.

1 Introduction

Whenever people compose text, they (consciously
or not) make sure that related sentences are co-
hesive and coherent within a common section.
By using models to analyze discourse, we iden-
tify relations within a text that consist of phrases
and a certain sense. These discourse relations and
their understanding are important for other tasks
in the NLP community such as abstractive sum-
marization (Gerani et al., 2014), text simplifica-
tion (Zhong et al., 2020), and argumentation min-
ing (Hewett et al., 2019). The Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008), for example,
describes discourse as a set of individual relations.
The following two (artificial) examples demonstrate
the main types of relations annotated in their cor-
pus:

1. While it is raining outside, I clean the dishes.
(Temporal.Synchronous)

2. Yesterday I walked through the rain, today I
am sick. (Contingency.Cause)

Relations consist of two arguments (Arg1 in ital-
ics and Arg2 in bold) and a sense (e.g. Tempo-

ral.Synchronous1) is assigned. The first example
is called an explicit relation, because the relation is
signaled by a phrase called connective (Conn is un-
derlined). The second example refers to the group
of implicit relations because of the absence of a
connective that signals the relation. Additionally,
if adjacent sentences have an entity-based relation,
they are marked as EntRel.
The area of shallow discourse parsing (SDP)

aims to build models finding aforementioned dis-
course structures. Started through the development
of PDTB, shallow discourse parsing gained more
awareness by two shared Tasks (Xue et al., 2015,
2016). Successful systems at the last competition
were those of Wang and Lan (2016); Qin et al.
(2016); Schenk et al. (2016); Oepen et al. (2016);
Stepanov and Riccardi (2016).
This work introduces an end-to-end neural sys-

tem that implements recently researched compo-
nents for these tasks. Our goal is to design compo-
nents that all rely on the same contextualized word
embeddings as input and, thus, it avoids the ne-
cessity to train huge neural networks. We compare
our results with state-of-the-art shallow discourse
parsers that took part at the CoNLL Shared Task
in 2016 (Xue et al., 2016) which is to our knowl-
edge the last time full systems were published. The
contributions of this paper are as follows:

1. We introduce a simple modular and easily
extendable framework for shallow discourse
parsing.We also provide pretrained systems by
recent advances in word representations that
demonstrate competitive performance com-
pared to existing systems.

2. We provide a first version of a web front end
to visualize parser outputs and, optionally, to
connect a parser via REST API.

1Senses are ordered in a hierarchy of up to three levels.
Temporal refers to the first level and Synchronous to the second,
respectively.
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2 System Architecture

In our framework discopy, we design a clean and
modular parser pipeline principle. Each compo-
nent has to implement a specified interface that
assumes to process a well defined document struc-
ture. Starting with a document without annotated
discourse relations, each component further adds its
predictions while the document is passed through
the pipeline, for example one component identi-
fies connectives and their sense and, based on this
prediction, another component extracts arguments
around these connectives to complete the explicit
relations. This parser architecture makes the defi-
nition of a custom pipeline easy and components
remain interchangeable. Together with the frame-
work, we provide multiple components for an end-
to-end neural shallow discourse parser. The sim-
ple pipeline interface (exemplified in Listing 2)
with methods such as fit, parse, and eval, ensures
pleasant user experience. The system combines re-
cent research on various subtasks with advances
in contextualized word embeddings. We make the
framework and pre-trained components available
under https://github.com/rknaebel/discopy. In
the following, we briefly summarize the compo-
nents implemented in our system.
# load pdtb documents with contextualized embeddings
docs_train = load_bert_conll_dataset(...)
docs_val = load_bert_conll_dataset(...)
# definition of the parser pipeline by list of

components
parser = ParserPipeline([

# add connective and its sense
ConnectiveSenseClassifier(...),
# use connective to add explicit arguments
ConnectiveArgumentExtractor(...),
# extract adjacent sentences without explicit
relation

ImplicitArgumentExtractor(),
# attach implicit sense
ArgumentSenseClassifier(...),

])
# fit custom pipeline on annotated documents
parser.fit(docs_train, docs_val)
# extract discourse relations
parses = parser.parse(docs_val)

Listing 1: Discopy pipeline source code example.

Contextualized Word Embeddings. We start by
generating contextualized embeddings for each doc-
ument. These embeddings come from a chosen
BERT architecture that is provided by the Hugging
Face transformers library (Wolf et al., 2020).
Pre-tokenized sentences are processed again by a
specific BERT tokenizer which results in a possibly
higher number of sub-tokens as the input sequence.
For each input token, we select and concatenate the
last four hidden layers that correspond to the first
sub-token, following the principle demonstrated by

Devlin et al. (2019) that performed best using the
BERT architecture as a feature extractor. Each com-
ponent in our discourse parser uses the same input
embeddings. This has the advantage, to only pro-
duce the computation-intense embeddings once in
the beginning.
Connective Sense Classifier. The first component
in the pipeline refers to the problem of connec-
tive disambiguation and explicit sense classification.
This component is based on the work of Knaebel
and Stede (2020) of which we use the jointly trained
model to keep the number of components as small
as possible. The component first extracts connective
candidates based on a pattern-matching approach.
Then, these candidates are classified as having a
sentential meaning or a connective meaning which
is indicated by a predicted sense class. The idea of
using the same features for both tasks originates
from Pitler and Nenkova (2009).
Explicit Connective Argument Extractor. The
component that is responsible to extract explicit
arguments creates a window surrounding the previ-
ously predicted connective and searches for corre-
sponding arguments (Arg1 and Arg2) within this
span. We extend the connective argument extractor
of Knaebel et al. (2019) and replace GloVe embed-
dings (Pennington et al., 2014) by our contextual-
ized embeddings.
Implicit Sense Classifier. Implicit relations are an-
notated on adjacent sentences within the same para-
graph that do not contain any other explicit relation.
For the implicit sense classifier, we choose a simple
approach and collect all implicit candidate sentence
pairs. We follow previous work by Rutherford et al.
(2017) which has been recently chosen as a baseline
in work by Liang et al. (2020). There, embeddings
for both arguments are collected and processed by
a recurrent neural network. Then, both intermedi-
ate representations are combined using a maximum
pooling layer and given to a fully connected layer to
predict the implicit sense. We adopt this approach
by using our contextualized embeddings, and we
add a labels for entity-based relations (EntRel) as
well as a for the absence of any relation (NoRel) to
the final set of predictions.

3 Visualization

In conjunction with our system, we provide a proto-
typical web-based front end with several views that
simplifies the inspection of parser results. It can be
used to visualize annotated documents, parse docu-

https://github.com/rknaebel/discopy
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Figure 1: Web-based front end overview. A selected document is shown with its discourse relations in the bottom.

ments, and inspect them interactively. Further, the
visual inspection makes it easier to identify weak-
nesses of a developed parser, e.g. inaccurate con-
nective identification or misplaced argument spans.
The system is built on top of a simple Python web
service powered by FastAPI2 and it is designed us-
ing a reactive JavaScript library calledVueJS3. Both
sides communicate via RESTful interface with each
other.

Figure 1 demonstrates the view of a selected doc-
ument. At the top, there is a simple search bar for
easily accessing documents. Directly below, the
document’s text is shown together with a list of its
discourse relations at the bottom of the view. Then,
each discourse relation is listed with its correspond-
ing relation type (e.g. Explicit, Implicit, EntRel,
AltLex), as well as its sense. Different parts of a
relation, first and second arguments as well as the
connective, are highlighted by colors. Additionally,
some context tokens are given before and after the
relation if possible.

4 Experiments

The connective sense classifier takes the connec-
tive candidate and one surrounding context tokens

2fastapi.tiangolo.com
3vuejs.org

as input. The two hidden layers both have dimen-
sions 256. A dropout layer follows after each hidden
layer with a 0.3 drop rate. Both argument extrac-
tors use two bi-directional recurrent layers with a
hidden size of 256 in each direction, a dropout rate
of 0.2 before and after the fully connected layer
having a dimension of 128. The explicit extrac-
tor is trained on explicit examples with a window
size of 100. The implicit sense classifier accepts
two arguments with at most 35 tokens each. The
same bi-directional recurrent layer with hidden size
128 processes both arguments. The drop rate of the
dropout layer that follows after concatenation is
0.25, and the size of the hidden dimension after-
ward is 128. All models are trained with AMSGrad
Adam (Reddi et al., 2018) and a 0.001 learning rate.

5 Results and Discussion
For our evaluation, we use the same experimen-
tal design as proposed at the CoNLL Shared Task
2016 (Xue et al., 2016). We have trained multiple
pipelines with varying language models used to
compute the input embeddings. The model names
in our experiment tables follow the naming of the
word embedding model4. As comparison systems,
we choose the overall best performing submissions

4Model names follow huggingface.co/models

fastapi.tiangolo.com
vuejs.org
huggingface.co/models


131

Model Explicits Implicits
F1parser F1conn F1A1 F1A2 F1A12 F1parser F1A1 F1A2 F1A12

Standard WSJ Test (Section 23)

ecnucs 40.31 93.96 51.39 76.43 44.31 22.38 64.66 66.86 50.83
oslopots 39.38 94.43 51.99 72.57 43.93 18.02 69.92 71.45 53.47

bert-base 62.75 95.64 51.24 78.30 51.79 25.80 45.57 46.82 39.87
bert-large 58.44 95.00 46.67 73.56 46.56 34.01 45.40 46.64 39.68

roberta-base 60.57 96.18 48.69 76.64 49.89 33.31 45.45 46.70 39.71
roberta-large 56.34 96.08 45.52 73.32 45.41 35.12 45.45 46.70 39.75
albert-base 60.57 96.87 47.57 76.38 48.54 40.71 45.69 46.94 39.99
albert-large 59.30 95.18 44.65 74.30 46.47 33.16 45.57 46.75 39.75

Wikipedia Blind Test

ecnucs 33.94 91.34 51.05 74.20 42.84 19.54 61.05 75.83 51.15
oslopots 34.45 91.79 52.43 75.20 43.95 21.89 64.60 76.40 52.02

bert-base 57.80 93.88 56.22 74.58 53.06 23.20 44.58 55.30 41.42
bert-large 56.89 93.32 49.72 71.61 50.46 32.44 44.61 55.28 41.46

roberta-base 59.77 93.95 54.14 77.40 56.00 36.60 44.51 55.21 41.35
roberta-large 50.94 93.72 46.14 68.76 45.60 36.17 44.42 55.13 41.26
albert-base 55.77 94.70 50.46 74.77 49.91 39.33 44.90 55.61 41.74
albert-large 51.93 93.73 45.70 74.01 44.98 32.66 44.73 55.44 41.58

Table 1: Experimental results (strict F1 scores) for Section 23 of WSJ and the blind data set proposed for CoNLL
Shared Task.

for each test set (ecnucs (Wang and Lan, 2016)
and oslopots (Oepen et al., 2016)). Similar to the
Shared Task, we compare two different thresholds:
strict refers to an exact match of relations while
partial counts relations as correct if their overlap
is at least 70 %. Performances are measured on Sec-
tion 23 of the PDTB as well as PDTB-like annotated
Wikipedia data prepared for the Shared Task.

In Table 1, strict results of the studied mod-
els are summarized. In the table’s left part point-
ing to explicit relations, neural models outperform
traditional models in most categories except for
Arg1 identification, but still results are pretty close.
Especially the bert-base model has an overall
high performance. Interestingly, albert-base
performs quite good, even though it has the smallest
number of trained parameters. Also, it seems not
beneficial in our experimental design to use a large
version of a model. A reason for that might be the
higher number of input values per token leading
the model to an unstable training. The performance
for implicit relations (arguments and overall) is no-
ticeably weak as we used I fairly simple method for
recognizing arguments following Lin et al. (2014).
Thereby, the overall implicit results are lowered as
relations were not counted as correct during evalu-
ation. The partial scores in Table 2 were expected
to be higher compared to their strict counter parts.

6 Conclusions

In this work, we demonstrated a framework for shal-
low discourse parsing and integrated a web-based
graphical user interface to study parser outputs. We
presented an exemplary pipeline built from neu-
ral components that are based on recent models.
We extend previous approaches to incorporate pre-
computed contextualized word embeddings. Our
pipeline system performs competitively to former
discourse parsers and partially outperforms them,
while not using any linguistic features.

In the future, we plan to integrate more recent
neural architectures into the system to improve over-
all scores. Further, wewant to improve the graphical
interface to seamlessly integrate the visualization
directly into the text such as done with brat5 for
dependency parses. Thus, it will be easier to com-
pare multiple relations in their context. Overlapping
arguments are a major problem, why we decided
to list relations separately. Building on that a view
would be useful for comparing discourse relations
across documents, e.g. comparing predictions and
gold annotations or multiple parser outputs.
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Model Explicits Implicits
F1parser F1A1 F1A2 F1A12 F1parser F1A1 F1A2 F1A12

Standard WSJ Test (Section 23)

ecnucs 69.21 72.16 88.62 74.89 28.60 82.78 85.65 86.55
oslopots 65.96 70.75 86.90 71.27 24.36 84.74 86.47 85.85

bert-base 77.59 68.47 88.68 77.53 37.96 57.59 58.42 60.44
bert-large 76.11 65.78 85.67 75.33 42.74 57.39 58.15 60.21

roberta-base 76.19 69.21 87.12 78.17 40.97 57.28 58.25 60.19
roberta-large 73.04 64.30 86.21 74.18 43.74 57.26 58.23 60.18
albert-base 77.99 68.50 88.67 77.99 47.37 57.58 58.55 60.57
albert-large 79.19 67.45 85.65 77.52 42.37 57.41 58.31 60.32

Wikipedia Blind Test

ecnucs 57.25 70.19 79.67 71.69 26.90 79.53 84.11 82.73
oslopots 56.66 71.96 81.73 71.74 33.23 84.47 88.98 86.31

bert-base 74.49 73.47 83.86 79.22 35.96 57.45 60.05 60.61
bert-large 72.48 68.65 78.29 76.81 40.97 57.42 60.00 60.45

roberta-base 73.49 72.93 83.72 80.74 45.49 57.35 59.94 60.39
roberta-large 71.15 66.79 77.56 75.40 45.87 57.27 59.75 60.43
albert-base 75.06 71.66 83.36 80.62 48.67 57.76 60.24 60.80
albert-large 74.49 68.64 81.18 77.60 41.57 57.69 60.17 60.62

Table 2: Experimental results (partial F1 scores with 0.7 overlap) for Section 23 of WSJ and the blind data set
proposed for CoNLL Shared Task.
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