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Abstract

This paper concerns the structure of phono-
logical neighbourhood networks, which are a
graph-theoretic representation of the phono-
logical lexicon. These networks represent
each word as a node and links are placed be-
tween words which are phonological neigh-
bours, usually defined as a string edit distance
of one. Phonological neighbourhood networks
have been used to study many aspects of the
mental lexicon and psycholinguistic theories
of speech production and perception. This pa-
per offers preliminary graph-theoretic observa-
tions about phonological neighbourhood net-
works considered as a class. To aid this ex-
ploration, this paper introduces the concept of
the hyperlexicon, the network consisting of all
possible words for a given symbol set and their
neighbourhood relations. The construction of
the hyperlexicon is discussed, and basic prop-
erties are derived. This work is among the first
to directly address the nature of phonological
neighbourhood networks from an analytic per-
spective.

1 Motivation

Recent work in phonological psycholinguistics
has investigated the structure of the lexicon
through the use of phonological neighbourhood
networks (Chan and Vitevitch, 2010; Turnbull and
Peperkamp, 2017; Siew, 2013; Siew and Vitevitch,
2020; Shoemark et al., 2016). A phonological
neighbourhood network is a representation of the
lexicon where each word is treated as a node and
a link is placed between nodes if and only if those
two nodes are phonological neighbours. Two words
are neighbours if their string edit distance, in terms
of phonological representation, is one. In other
words, the neighbours of a word w are all the
words that can be formed by the addition, dele-
tion, or substitution of a single phoneme from w.
The neighbourhood relation is symmetric (if w is a
neighbour of w′, then w′ is necessarily a neighbour

plan

flan
clan

plane

plaque

pan
plans

planned

planner

plant

Figure 1: Example phonological neighbourhood net-
work centred around the English word plan. Note that
some neighbours of a word are neighbours of each
other. Adapted from Turnbull and Peperkamp (2017).

ofw), intransitive (ifw is a neighbour ofw′, andw′

is a neighbour of w′′, it is not necessarily the case
that w is a neighbour of w′′), and anti-reflexive (w
cannot be a neighbour of itself).

Figure 1 shows an abbreviated phonological
neighbourhood network for some words of English.
One advantage of this representation is that it per-
mits analysis with the methods of network science
and graph theory, and work so far has shown a good
deal of promise in modeling psycholinguistic prop-
erties of the lexicon with these methods (Chan and
Vitevitch, 2010; Vitevitch, 2008). A common analy-
sis technique within network science is to compare
a given network with a randomly generated one
that has the same number of nodes and links. No-
table features of the target network relative to the
random network are likely due to intrinsic proper-
ties of the target network, rather than chance. From
this structure one can then infer details about the
organising principles that generated the network
originally.

For phonological neighbourhood networks, how-
ever, this method is often inappropriate, as many
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logically possible network structures are not pos-
sible phonological neighbourhood networks. This
fact is because the links between nodes—the neigh-
bourhood relations—are intrinsic to the definitions
of the nodes themselves. Changing a link between
nodes necessarily means changing the content of
a node, which then could entail other changes to
other links. This problem was highlighted by Turn-
bull and Peperkamp (2017),1 who instead chose to
randomly generate lexicons and derive networks
from those lexicons. However, randomly gener-
ated lexicons do not guarantee the same number
of links will be present in the resulting network,
making it difficult to compare like with like. For
this reason, studying phonological neighbourhood
networks as a class, and discovering their defin-
ing characteristics, is an important methodological
goal for psycholinguists.

This research therefore seeks to answer the fol-
lowing broad questions: What are the distinctive
characteristics of phonological neighbourhood net-
works, including their definitions in terms of edge
sets and vertex sets, their extremal properties, and
characterization of forbidden subgraphs? Is there
an effective and efficient method by which phono-
logical neighbourhood graphs can be distinguished
from other graphs? The present paper lays the
mathematical foundations for future investigations
of both of these questions.

2 Preliminaries

This section briefly defines the basic mathematical
definitions and operations used in the remainder of
the paper. The reader is referred to standard text-
books in graph theory, such as Trudeau (1993) or
Diestel (2005), for more details. As mathematical
terminology and notation can vary between sub-
fields, alternative names and characterizations of
some objects are mentioned in the ensuing sections,
but they are not strictly necessary to understand the
arguments of this paper.

Networks can be modeled as mathematical ob-
jects known as graphs, which consist of vertices
(nodes) and edges (links). Let G be an undirected
graph with no self-loops with vertex set V (G) and
edge set E(G). Let Kn denote the complete graph
with n vertices and all possible edges.

A graph H is said to be a subgraph of a graph
G if V (H) ⊆ V (G) and E(H) ⊆ V (G), that is,

1See also Gruenenfelder and Pisoni (2009) for related con-
cerns.

if the the edges and vertices of H are subsets of
those of G. A subgraph H is an induced subgraph
of G if every edge in E(G) whose endpoints are
both in V (H) is present in E(H). In other words,
an induced subgraph can be obtained by the pro-
cess of removing vertices (and any incident edges)
from a graph, but not removing edges on their own.
Figure 2 provides illustrative examples.

The diamond is K4 with one edge removed. A
circle Ck has the set of nodes {1, 2, ..., k} and edge
set {{1, 2}, {2, 3}, ..., {(k − 1), k}, {k, 1}}. (Cir-
cle graphs that are induced subgraphs of a larger
graph are also known as k-holes.) Figure 3 depicts
the diamond and C5.

A star Sk is a graph with one central vertex
which is connected to k other unique vertices. No
other vertices or edges exist. Figure 4 depicts the
stars S3 (also known as a claw), S4, and S6.

The Cartesian product A×B of two sets A and
B is defined as

A×B = {(a, b)|a ∈ A, b ∈ B}, (1)

that is, the Cartesian product of A and B is
the set of all ordered pairs where the first el-
ement is a member of A and the second el-
ement is a member of B. For example, the
Cartesian product of {a, b, c} and {x, y} is
{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}.

The Cartesian product G�H of two graphs G
and H has the vertex set

V (G�H) = V (G)× V (H). (2)

A given vertex (a, x) is linked with another vertex
(b, y) if a = b (the first elements are identical) and
{x, y} ∈ E(H) (the second elements are linked in
H), or if x = y (the second elements are identical)
and {a, b} ∈ E(G) (the first elements are linked
in G). To aid understanding, Figure 5 depicts an
example of the Cartesian product of two graphs,
G and H . Graph G has V (G) = {a, b, c} and
E(G) = {{a, b}, {b, c}}. Graph H has V (H) =
{x, y} and E(H) = {{x, y}}. Observe how G
and H can be seen in G�H as two orthogonal
dimensions. Note also that the total number of
vertices in G�H is equal to the product of the
number of vertices in G and H .

We further denote the Cartesian exponent of a
graph G as

G�n = G�G�G . . .G︸ ︷︷ ︸
n

, (3)



235

G H J

a b

c d

a b

d

a b

d

Figure 2: Three graphs. H is an induced subgraph of G formed through the removal of vertex c and its incident
edges. J is also a subgraph of G, but it is not an induced subgraph due to the fact that the edge between vertices a
and d is missing.
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Figure 3: The diamond graph and C5.
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Figure 4: Star graphs S3, S4, and S6.
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Figure 5: Graphs G and H and the Cartesian product G�H .
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Figure 6: The complete graph K2 and Cartesian exponent K�3
2 , i.e. K2�K2�K2.
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Figure 7: The hyperlexicon H(2, {1, 2, 3}). Here the alphabet is defined as {0, 1} but any set of two symbols
is possible. Edges between layers (i.e. phoneme additions/deletions) are drawn in grey; edges within layers (i.e.
phoneme substitutions) are drawn in black.

that is, the Cartesian product of G with itself n− 1
times. Figure 6 depicts the graphs K2 and K�3

2 .
It can be seen that K�2

2 is a square, K�3
2 is a

cube, and K�n
2 is an n-dimensional hypercube.2

Likewise, the vertex labels of K�n
m are equivalent

to all strings of length n drawn from an alphabet
of m symbols. The edges of K�n

m are equivalent to
the neighbourhood relations of such strings. These
facts establish the basis upon which we can use
these tools to model phonological neighbourhood
networks.

3 The Hyperlexicon

In this paper we introduce the concept of the hy-
perlexicon. A hyperlexiconH(φ,L) is defined as
the phonological neighbourhood network gener-
ated from all possible string sequences of lengths
{`1, . . . `n} for ` ∈ L over an alphabet of length φ.

Figure 7 depicts the hyperlexicon of all ‘words’
of length 1, 2, and 3, over the alphabet of 0 and 1.
Stella and Brede (2015) observed that the set of all
possible phoneme sequences (i.e. the hyperlexicon)
is composed of multiple ‘layers’, each correspond-
ing to a distinct member of L. This layered struc-

2More generally, K�n
m is an m × m Rook’s graph in n

dimensions.

ture can be clearly seen in Figure 7. Edges within
a layer correspond to neighbours by substitution,
while edges between layers correspond to neigh-
bours by deletion or insertion. Note further that
each layer is isomorphic to K�`

φ , the `th Cartesian
exponent of the complete graph with φ vertices.3

Imagine now a hypothetical lexicon consisting of
the words 1, 00, 10, and 110. The phonological
neighbourhood network of this lexicon is depicted
in Figure 8, overlaid on the hyperlexicon from Fig-
ure 7. It can be seen that this lexicon’s network is
an induced subgraph of the hyperlexicon.

Indeed, phonological neighbourhood networks
are necessarily induced subgraphs of the hyperlex-
icon. For example, the English lexicon consists
of strings of varying lengths, with the set of En-
glish phonemes as its ‘alphabet’. There are some
strings of English phonemes which are not part of
the English lexicon—i.e. nonwords such as blick
and pmisgkr. The set of words in the English lex-
icon, then, is a subset of the set of all logically
possible strings of English phonemes. A hyper-
lexicon corresponds to the neighbourhood network
derived from a set of all logically possible strings

3Each layer can also be characterized as an expansion of
the hypercube graph Q`, or as a Hamming graph Ham(`, φ).
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Figure 8: The phonological neighbourhood network (in black) of the lexicon 1, 00, 10, and 110, depicted as a
subgraph of the hyperlexiconH(2, {1, 2, 3}) (in grey).

of length L, given some set of phonemes of length
φ. Any subset of this set of strings will correspond
to an induced subgraph of the hyperlexicon. Any
phonological neighbourhood network, then, with
words of lengths in L constituted from φ distinct
phonemes, is necessarily an induced subgraph of
the hyperlexiconH(φ,L). Studying properties of
the hyperlexicon therefore gives us insight into the
possible structures of phonological neighbourhood
networks.

The vertex set of the hyperlexicon is given by

V (H(φ,L)) =
⋃
`∈L

V (K�`
φ ), (4)

that is, the set union of each layer’s vertices. The
number of vertices of H(φ,L) is the sum of the
size of each layer, which is

L∑
φ`. (5)

If L is contiguous, H(φ,L) is necessarily con-
nected (i.e. there is exactly one connected com-
ponent); if L is not contiguous,4 thenH(φ,L) has
multiple connected components.

4 The Edges between the Layers of the
Hyperlexicon

Defining the edge set of H(φ,L) is less straight-
forward than the vertex set and is not fully solved.
Within each layer, the edges are the same as in
the graph K�`

φ . Between the layers the situation is
considerably more complex. To begin, we first de-
termine the number of possible unique neighbours
for any word. For a word of length ` in a language

4Such a scenario is plausible for languages with strict
phonotactics requiring an obligatory onset and forbidding
codas, i.e. all syllables must be CV. For such languages, L =
{2, 4, 6, 8, . . . }. Hua (Blevins, 1995) and Senufo (Kientz,
1979) have been reported to have this kind of syllable structure.

with φ distinct phonemes, neighbours are generated
through the addition, deletion, or substitution of
a single phoneme. The number of possible neigh-
bours can be shown to depend upon word length `,
alphabet size φ, and the number of pairs of adjacent
identical phonemes, described below.

4.1 Substitutions
It is straightforward to demonstrate that there are

φ`− ` (6)

possible substitutions. This statement follows from
the fact that neighbourhood is an anti-reflexive rela-
tion, so vacuously substituting a phoneme for itself
will not generate a neighbour.

4.2 Additions
The number of additions can be derived from the
fact that each of φ symbols can be added to `+ 1
positions, which gives φ(`+1). However, for each
insertion position, one of these φ phonemes will
result in a string which is identical to an insertion
of the same phoneme at a different location. For
example, prefixing a onto the beginning of ab is
equivalent to inserting a into the middle of ab:
they both result in aab. The number of additions
is therefore

φ(`+ 1)− ` (7)

which simplifies to Equation (6) plus φ:

φ`− `+ φ. (8)

4.3 Deletions
The number of deletions is not constant and de-
pends upon the structure of the word. For example,
although there are three distinct deletion positions
in a possible word aaa, all three of them lead to
the same unique word aa; so practically speaking
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K5 C4

Figure 9: In attempting to generate C4 (right) from K5 (left), a single vertex must be removed. However, as shown
by the middle graph, removal of a single vertex (in grey) results in a graph with too many edges. This is true
no matter which vertex we choose to remove. C4 is therefore not an induced subgraph of K5; we can call C4 a
forbidden subgraph of K5.

there is only one possible deletion. On the other
hand, all three possible deletions on abc result in
three unique strings (namely, bc, ac, ab), so it has
three deletions.

The actual number of possible deletions depends
on the number of pairs of identical adjacent sym-
bols.5 Pairs of identical adjacent symbols act as a
single symbol for the purposes of counting possible
deletion sites. The number of deletions is therefore

`− a, (9)

where a is the number of pairs of adjacent identical
symbols in the word. For example abba has only
3 possible deletions, despite being of length 4. (For
this word, a deletion at position 2 is equivalent
to a deletion at position 3; the sequence bb can
be essentially treated as a single symbol for the
purposes of counting deletion sites.)

All words allow at least 1 deletion, and some
words allow as many as ` deletions.

4.4 Vertex Degree

From the sections above, it follows that each vertex
inH(φ,L) has φ`− ` edges to other nodes in the
same layer as it. If there is a higher layer, then each
node also has φ`− `+ φ edges leading to nodes in
that layer. If there is a lower layer, then each node
has between 1 and ` edges leading to that layer.

5 Forbidden Subgraphs

Finally, we begin to attempt to characterize the
class of hyperlexicons in terms of forbidden sub-
graphs. A forbidden subgraph of G is any graph
which is not isomorphic to any induced subgraph
of G. For example, there is no induced subgraph

5Using the terminology of combinatorics on words, a “pair
of identical adjacent symbols” can be understood as a square
of length 2.

of K5 which is isomorphic to C4. This fact is il-
lustrated in Figure 9. C4 is therefore a forbidden
subgraph of K5. Graph structures which are im-
possible within a hyperlexicon are also impossible
within real phonological networks, because real
phonological networks are induced subgraphs of
a hyperlexicon. Understanding the forbidden sub-
graphs of a hyperlexicon therefore allows us to
understand possible natural language networks.

5.1 Forbidden Subgraphs of individual layers

A hyperlexicon is composed of layers. Each layer
is K�`

φ , the `th cartesian exponent of Kφ. For the
special case of ` = 2 (i.e. words of length two),
these graphs have been studied in the mathematical
literature under the names of Rooks’ graphs, grid-
line graphs, adjacency graphs, and graphs of (0, 1)
matrices. Peterson (2003) studied these graphs in
cases where ` > 2, and established that the dia-
mond and C5 are among the forbidden subgraphs
of K�`

φ .
The 3-star S3 has been shown to be a forbidden

subgraph of K�2
φ (Hedetniemi, 1971). More gen-

erally, no layer at length ` has S`+1 as an induced
subgraph. This observation follows from the pi-
geonhole principle: the first ` vertices of S`+1 can
be found in the ` dimensions of the graph. The final
vertex must be in one of the dimensions already
considered, and therefore must be adjacent to an
existing vertex. This leads to a triangle, meaning
the induced subgraph is no longer a star.

These structures, forbidden from each individual
layer of the hyperlexicon, are not forbidden from
the hyperlexicon as a whole. Within the hyperlexi-
con H(3, {1, 2, 3}) we observe both the diamond
and C5; see Figures 10 and 11.6 Similarly, for a hy-

6We have been unable to find any induced C5 in cases
where φ < 3. While this conjecture might be of mathematical
interest, it is not relevant to our main use-case of phonological
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Figure 10: The diamond graph as an induced subgraph
of a hyperlexicon.
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Figure 11: C5 as two induced subgraphs of a hyperlex-
icon.

perlexicon with max(L) = 4, the star S5 is present
as an induced subgraph, as shown in Figure 12.

Since these structures cannot occur within each
layer, it follows that their existence within a hyper-
lexicon must necessarily span more than one layer.
Indeed, we hypothesize that in the case of S`+1

where ` = max(L), this structure must necessarily
span three layers.

5.2 Forbidden Subgraphs of the Entire
Hyperlexicon

No hyperlexicon hasKφ+2 as an induced subgraph.
Kφ exists, as this constitutes the ‘dimensions’ of
each layer. From Kφ it is possible to induce Kφ+1

by adding a vertex from one layer down. For exam-
ple, the string a is adjacent to aa, ab, ac, and so
on. However there is no other vertex in the lower
layer which is adjacent to all of a’s neighbours
and to a itself. Kφ+2 is therefore not an induced
subgraph of the hyperlexicon.

6 Conclusion

This paper has reviewed the basic structure of hy-
perlexicon graphs. Induced subgraphs of hyperlex-
icon graphs typify the class of phonological neigh-
bourhood networks. It is hoped that the preliminary
results presented here will spur further work on the

networks, as all known natural languages possess considerably
more than 3 phonemes.

abbc acc

ab bc

babc

abc

Figure 12: S5 as an induced subgraph of a hyperlexicon
with max(L) = 4.

nature of phonological neighbourhood networks
as formal objects. This work in turn has method-
ological implications for evaluating and measur-
ing phonological neighbourhood networks derived
from natural languages.
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