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Abstract

This paper describes Team Ohio State’s ap-
proach to the CMCL 2021 Shared Task, the
goal of which is to predict five eye-tracking
features from naturalistic self-paced reading
corpora. For this task, we fine-tune a pre-
trained neural language model (RoBERTa; Liu
et al., 2019) to predict each feature based
on the contextualized representations. More-
over, motivated by previous eye-tracking stud-
ies, we include word length in characters and
proportion of sentence processed as two addi-
tional input features. Our best model strongly
outperforms the baseline and is also competi-
tive with other systems submitted to the shared
task. An ablation study shows that the word
length feature contributes to making more ac-
curate predictions, indicating the usefulness of
features that are specific to the eye-tracking
paradigm.

1 Introduction

Behavioral responses such as eye-tracking data pro-
vide valuable insight into the latent mechanism
behind real-time language processing. Based on
the well-established observation that behavioral re-
sponses reflect processing difficulty, cognitive mod-
eling research has sought to accurately predict these
responses using theoretically motivated variables
(e.g. surprisal; Hale, 2001; Levy, 2008). Earlier
work in this line of research has introduced incre-
mental parsers for deriving psycholinguistically-
motivated variables (e.g. Roark et al., 2009; van
Schijndel et al., 2013), while more recent work has
focused on evaluating the capability of neural lan-
guage models to predict behavioral responses (Hao
et al., 2020; Wilcox et al., 2020).

The CMCL 2021 Shared Task on eye-tracking
data prediction (Hollenstein et al., 2021) provides
an appropriate setting to compare the predictive
power of different approaches using a standardized
dataset. According to the task definition, the goal

of the shared task is to predict five eye-tracking fea-
tures from naturalistic self-paced reading corpora,
namely the Zurich Cognitive Language Processing
Corpus 1.0 and 2.0 (ZuCo 1.0 and 2.0; Hollenstein
et al., 2018, 2020). These corpora contain eye-
tracking data from native speakers of English that
read select sentences from the Stanford Sentiment
Treebank (Socher et al., 2013) and the Wikipedia
relation extraction corpus (Culotta et al., 2006).
The five eye-tracking features to be predicted for
each word, which have been normalized to a range
between 0 and 100 and then averaged over partici-
pants, are as follows:

• Number of fixations (nFix): Total number of fix-
ations on the current word

• First fixation duration (FFD): The duration of the
first fixation on the prevailing word

• Total reading time (TRT): The sum of all fixation
durations on the current word

• Go-past time (GPT): The sum of all fixations
before progressing to the right of the current word

• Fixation proportion (fixProp): The proportion of
participants that fixated on the current word

In this paper, we present Team Ohio State’s ap-
proach to the task of eye-tracking data prediction.
As the main input feature available from the dataset
is the words in each sentence, we adopt a transfer
learning approach by fine-tuning a pre-trained neu-
ral language model to this task. Furthermore, we
introduce two additional input features motivated
by previous eye-tracking studies, which measure
word length in characters and the proportion of
sentence processed. Our best-performing model
outperforms the mean baseline by a large margin
in terms of mean absolute error (MAE) and is also
competitive with other systems submitted to the
shared task.
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Figure 1: Model architecture for eye-tracking feature prediction.

2 Model Description

Our model relies primarily on the Transformer-
based pre-trained language model RoBERTa (Liu
et al., 2019) for contextualized representations of
each word in the input sentence.1 However, since
RoBERTa uses byte-pair encoding (Sennrich et al.,
2016) to tokenize each sentence, there is a mis-
match between the number of output representa-
tions from RoBERTa and the number of words in
each sentence. In order to address this issue, the
model uses the representation for the first token
associated with each word to make predictions. For
example, if byte-pair encoding tokenizes the word
Carlucci into Car, lu, and cci, the represen-
tation for Car is used to make predictions for the
entire word Carlucci.2

Additionally, two input features based on previ-
ous eye-tracking studies are included in the model.
The first is word length measured in characters
(wlen), which captures the tendency of readers
to fixate longer on orthographically longer words.
The second feature is proportion of sentence pro-
cessed (prop), which is calculated by dividing the
current index of the word by the number of total
words in each sentence. This feature is intended
to take into account any “edge effects” that may

1Although other word representations could be used within
our model architecture, the use of RoBERTa was motivated
by its state-of-the-art performance on many NLP tasks. The
RoBERTabase and RoBERTalarge variants were explored in this
work, which resulted in two different models. We used the
implementation made available by HuggingFace (https:
//github.com/huggingface/transformers).

2Future work could investigate the use of more sophis-
ticated approaches, such as using the average of all token
representations associated with the word.

be observed at the beginning and the end of each
sentence, as well as any systematic change in eye
movement as a function of the word’s location
within each sentence. These two features, which
are typically treated as nuisance variables that are
experimentally or statistically controlled for in eye-
tracking studies (e.g. Hao et al., 2020; Rayner et al.,
2011; Shain, 2019), are included in the current
model to maximize prediction accuracy.3

A feedforward neural network (FFNN) with one
hidden layer subsequently takes these three features
(i.e. RoBERTa representation, wlen, and prop) as
input and predicts a scalar value. To predict the
five eye-tracking features defined by the shared
task, this identical model was trained separately
for each eye-tracking feature. An overview of the
model architecture is presented in Figure 1.4

3 Training Procedures

3.1 Data Partitioning

Following the shared task guidelines, 800 sentences
and their associated eye-tracking features from the
ZuCo 1.0 and 2.0 corpora (Hollenstein et al., 2018,
2020) provided the data for training the model.
However, a concern with using all 800 sentences
to fine-tune the RoBERTa language model as de-
scribed above is the tendency of high-capacity lan-

3Other variables typically examined in eye-tracking stud-
ies include frequency-based measures (e.g. token frequency)
and prediction-based measures (e.g. various instantiations of
surprisal). However, those variables were not included in
our models as input features, as it was thought that the high-
capacity RoBERTa model trained on a masked language mod-
eling objective would implicitly encode such information.

4Code for model training and evaluation is available at
https://github.com/byungdoh/cmcl21_st.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/byungdoh/cmcl21_st
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Model Dev (MSE) Test (MAE)

nFix FFD GPT TRT fixProp nFix FFD GPT TRT fixProp

RoBERTabase 28.307 0.757 14.780 4.234 198.917 3.987 0.682 2.364 1.540 11.311
RoBERTalarge 28.023 0.762 14.669 4.502 200.352 4.079 0.668 2.407 1.544 11.210

Mean baseline 91.783 2.062 35.509 13.838 662.309 7.303 1.149 3.782 2.778 21.775

Table 1: MSE on the held-out dev set and MAE on the test set for the two models.

Model Test (MAE)

nFix FFD GPT TRT fixProp

Full model 3.987 0.682 2.364 1.540 11.311

-prop 3.987 0.681 2.364 1.540 11.315
-wlen 3.997 0.681 2.376 1.543 11.424

-prop,wlen 3.998 0.681 2.377 1.543 11.431

Table 2: MAE on the test set for full RoBERTabase
model and its ablated variants.

guage models to agressively overfit to the training
data (Howard and Ruder, 2018; Jiang et al., 2020;
Peters et al., 2019). To prevent such overfitting,
the last 80 sentences (10%; 1,546 words) were ex-
cluded from training as the dev set and were used
to conduct held-out evaluation. This partitioning
resulted in the final training set, which consists of
720 sentences (90%; 14,190 words).

3.2 Implementation Details

For each eye-tracking feature, the two models were
trained to minimize mean squared error (MSE,
Equation 1),

L(θ) = 1

N

N∑
i=1

(yi − f(xi; θ))
2 (1)

where f(·; θ) is the model described in Section 2,
xi is the concatenation of three input features, yi
is the target value associated with the eye-tracking
feature, and N is the number of training examples
in each batch. The AdamW algorithm (Loshchilov
and Hutter, 2019) with a weight decay hyperpa-
rameter of 0.01 was used to optimize the model
parameters. The learning rate was warmed-up over
the first 10% of training steps and was subsequently
decayed linearly. The number of nodes in the hid-
den layer of the FFNN was fixed to half of that of
the input layer. Additionally, dropout with a rate
of 0.1 was applied before both the input layer and
the hidden layer of the FFNN. Finally, to avoid
exploding gradients, gradients with a norm greater
than 1 were clipped to norm 1.

The optimal hyperparameters were found using
grid search based on MSE on the held-out dev
set. More specifically, the learning rate was ex-
plored within the set of {1× 10−5, 2× 10−5, 3×
10−5, 5 × 10−5}, batch size was explored within
the set of {4, 8, 16, 32, 64} sentences, and the max-
imum number of training epochs was explored
within the set of {8, 16, 32, 64, 128, 192}. During
training, the model was evaluated on the dev set
after every training epoch.

4 Results and Discussion

Table 1 shows the MSE on the dev set and MAE5

on the test set for the two models. Both models
strongly outperformed the baseline approach that
predicts the mean value of the training set, resulting
in a ∼40% decrease in MAE for all five features.
Additionally, although the difference is small, the
RoBERTabase model tended to perform better than
the RoBERTalarge model on the test set.6 This sug-
gests that models with higher capacity may not
necessarily be preferable for this task, especially in
light of the small amount of training data available.

To evaluate the contribution of the wlen and prop
features, an ablation study was conducted using
the RoBERTabase model. In addition to showing
how useful wlen and prop information is for pre-
dicting eye-tracking features, the analysis was also
thought to reveal whether or not such information
is already contained within the RoBERTa repre-
sentations. The two input features were ablated
by simply replacing them with zeros during infer-
ence, which allowed a clean manipulation of their
contribution to the final predictions.

The results in Table 2 show that the ablation of
the prop feature made virtually no difference in the
model predictions. This is most likely due to the
fact that the Transformer (Vaswani et al., 2017),
which the RoBERTa models are based on, includes
positional encodings that allow the model to be sen-

5The official evaluation metric, 1
N

∑N
i=1 |yi − f(xi; θ)|.

6The RoBERTabase model ranked 11th out of 29 submis-
sions on the shared task (6th out of 13 participating teams).
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sitive to the position of each token in the sequence.
Therefore, in order to fully examine the contribu-
tion of positional information on this task, a variant
of the current model using RoBERTa representa-
tions trained without positional encodings would
have to be evaluated.

The ablation of the wlen feature resulted in a
more notable difference in four out of five eye-
tracking features. This indicates that information
about orthographic length is both useful for eye-
tracking data prediction and also orthogonal to
the information captured by the RoBERTa rep-
resentations. This may partially be explained by
RoBERTa’s use of byte-pair encoding, which can
result in many short tokens for a given word (e.g. to-
kens Car, lu, cci for the word Carlucci).
Since only the first token was used by the current
models to represent each word, explicitly includ-
ing information about word length seems to have
contributed to making more accurate predictions.
More generally, this highlights the utility of incor-
porating features that are specific to eye-tracking,
which may not be inherent in high-capacity lan-
guage models trained for a different objective.

5 Conclusion

In this paper, we present our approach to the CMCL
2021 Shared Task on eye-tracking data prediction.
Our models primarily adopt a transfer learning ap-
proach by employing a feedforward neural network
to predict eye-tracking features based on contextu-
alized representations from a pre-trained language
model. Additionally, we include two input fea-
tures that have been known to influence eye move-
ment, which are word length in characters (wlen)
and proportion of sentence processed (prop). Our
best model based on RoBERTabase strongly outper-
forms the mean baseline and is also competitive
with other systems submitted to the shared task. A
follow-up ablation study shows that the wlen fea-
ture contributed to making more accurate predic-
tions, which indicates that explicitly incorporating
features specific to the eye-tracking paradigm can
complement high-capacity language models on this
task.
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